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1. A literature survey using Cochran’s model on the global €0, utilization facilities based on location and product type and the
recent publications on €0, conversion to value-added products is presented.

2. Most existing €0, conversion facilities produce chemical intermediates, polymers, urea, and building materials, while most of the
research output focused on €0, conversion to chemical intermediates, polymers, building materials, and fuels

3. A future perspective on the need to increase €0, conversion facilities and research output on fuel synthesis to aid the aviation
and maritime sectors’ decarbonization was also highlighted.

Carbon capture and storage (CCS) has struggled over the past few decades to demonstrate the economic viability of CO, sequestration.
Consequently, this study reviewed the existing integrated carbon capture utilization facilities and the published articles on CO, conversion to
building materials, chemical intermediates, fuels, urea, and polymers. Representative sample sizes were determined, and the analysis of the
current CO, conversion facilities and volume of published articles between 2016 and 2022 were done based on a 90% confidence limit within
a 9.93% margin of error and a 95% confidence limit within a 5% margin of error, respectively. The results showed that over 90% of global CO,
conversion facilities produce chemical intermediates, urea, polymers, and building materials, and less than 10% produce fuels. More than
half of the global CO, conversion facilities are in South-East Asia (mainly China), with the remaining in Western Europe (23%), North America
(20%), and Oceania (3%). The analysis of the research publications within the time under investigation showed that the research focus is
currently on CO, conversion to chemical intermediates, polymers, building materials, and fuels (over 95%) and less on urea.

Keywords carbon dioxide - circular economy - environment - reuse - sustainability

Discussion

The economic viability of the CCS technology has been on the front burner of every aspect of energy (primarily from fossils) sustainability in
recent times. Some experts have stated that more focus should be placed on achieving net-zero emissions than the energy transition. They
argue that even the mining and processing of the “finite” metals used for manufacturing the so-called “clean” tech equipment, just like their
fossil counterparts, also result in the emission of greenhouse gases. Consequently, producing carbon—neutral fuels is a more realistic pathway
for tackling climate change and attaining environmental sustainability. The conversion of CO, to chemical intermediates, polymers, building
materials, and fuels has been identified as a viable way of creating a business case for the CCUS process. However, there is currently no con-
sensus on which products will most likely provide a positive balance sheet for the CCUS process.
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Introduction

The atmospheric concentration of poisonous gases, due to
human activities, has been rising extensively since the Industrial
Revolution. It has reached dangerous levels not seen in the last 3
million years and has continually increased. Without significant
control and conversion to valuable products, it will become a
major disaster for the ecosystem. CO,, which accounts for over
70% of all greenhouse gases, is prominent among these poison-
ous gases. According to the IEA 2021,! global CO, emissions
declined by 5.8%in 2020. CO, emissions were lower than energy
demand in 2020 due to the pandemic hitting interest for other
fossil-derived fuels, especially oil and coal, while renewables
increased. Despite the decrease in 2020, global energy-related
CO, emissions remained at 31.5 Gt, which added to CO, reach-
ing its highest-ever average annual concentration in the atmos-
phere of 412.5 parts per million in 2020, around half higher
than when the industrial revolution began. In 2021 worldwide,
energy-related CO, emissions were projected to bounce back and
increase by 4.8% as coal, oil, and gas demand returned with the
economy. The increment of more than 1500 Mt CO, would be the
most significant increase since the carbon-intensive economic
recovery from the worldwide financial crisis over ten years. It
leaves worldwide emissions in 2021 of around 1.2% (about 400
Mt), below the 2019 peak. However, carbon dioxide is now a rec-
ognized carbon feedstock for the chemical supply chain, becom-
ing an alternative to oil and gas.

Key industries required for industrialization, like cement,
petrochemicals, oil and gas, power, steel, chemicals, and other
heavy-emitting industries, are responsible for alarge proportion
of CO, emissions globally. As the world strives to meet the net-
zero emission target in the coming decades, balancing sustain-
ability becomes highly imperative for societies to thrive. Sustain-
ability is most likely to be achieved by capturing and utilizing
the stored CO, as fuel, electricity, chemical feedstocks, and
other value-added products. One proven and established tech-
nology by which CO, is captured is carbon capture utilization
and storage (CCUS). CCUS has the potential to sequester about
90% of harmful CO, emissions from heavy-emitting-related
industries? and help create a sustainable environment. It will,
therefore, be crucial and is expected to play a critical role in the
clean energy transition agenda. The main types of CCUS are
pre-combustion, post-combustion, and oxy-fuel technologies.
Detailed descriptions and processes of CCUS technologies can
be found elsewhere.>*

The utilization of the captured CO, provides an economic jus-
tification for the carbon capture and storage (CCS) process. The
utilization of CO, is basically through direct (non-conversion)
and indirect (conversion) methods. Various review publications
on CO, utilization have analyzed the multiple techniques of
CO, utilization (simulations, biochemical, catalytic, and elec-
trochemical) to obtain numerous value-added products. While
some studies centered on a few products,s’7 others analyzed
only a single product.®~'> Published studies on a wide variety of
CO,-derived products where up to six (6) and more products are
analyzed and compared simultaneously are scarce in the open
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literature. This broad coverage is significant for selecting the
best possible technique(s), process conditions, and products at
aglance.

In general, there are three methods by which CO, can be con-
verted into chemical products. They include.

* The application of physical energy such as electricity.

* Choosing suitable oxidized low-energy synthetic tar-
gets such as organic carbonates.

* Using high-energy materials such as hydrogen.

Forecasting and identifying market opportunities in CO,
utilization technology in terms of viability, readiness, markets,
and momentum is highly imperative. According to the CO,U"®
research report, there have been tremendous advancements in
CO, utilization recently, and many methods have proven to be
scalable. Accordingly, four critical markets have been identified
asviable priorities for CO, utilization. They are building materi-
als, chemical intermediates, fuels, and polymers. The CO2U16
report also identifies eight product categories within the four
critical markets that should be pursued based on their techno-
logical maturity, commercial potential, and potential impact on
carbon emission reduction. These product categories are:

(a) Building materials

* Concrete
* Carbonate aggregates

(b) Chemical intermediates

* Methanol
* Formic acid
* Syngas

(c) Fuels

* Liquid fuels and
* Methane

(d) Polymers

* Polyols
* Polycarbonates

The majority of the conversion process in the open literature
is by hydrogenation, chemical, electrochemical, photocatalytic,
and thermal conversion. Consequently, this study will focus on
CO, conversion literature via hydrogenation, chemical, elec-
trochemical, photocatalytic, and thermal conversion. The pri-
mary reason for this study is the massive amount of literature
being churned out on the subject without proper synthesis of
the available knowledge. For instance, a good way of measuring
CO, emission mitigation compliance globally can be in terms of



existing CCUS facilities. Also, the percentage share of the total
number of research publications on the value creation of CO,
conversion will provide valuable insight into the various prod-
ucts derivable from CO, conversion. Hence, there is a need to
summarize findings so researchers, operators, and other stake-
holders can understand the best prospects. Understanding the
best means of converting CO, to value-added products relative
to other sources of producing the same products will help shape
the direction of the CO, utilization research area. Also, the
knowledge of the global distribution of CO, utilization facilities
will help identify the regions/countries at the forefront of CO,
capture and utilization and those lagging behind. This approach
helps measure regions’ and countries’ commitments and compli-
ance in mitigating CO, emissions. These are essential gaps in
knowledge that need to be explored. The basis of the research
publication literature analysis will be articles published on CO,
utilization between 2016 and 2022.

Research methodology

This study is a systematic review of published articles or data
on existing CO, utilization facilities and published research
articles on CO, utilization (from 2016 to 2022). The research
papers, including peer-reviewed journal publications, books,
study reports, newsletters, and conference proceedings, were
sourced from the Google search engine. After removing dupli-
cates and screening, 69 CO, conversion facilities and 425
research publications on CO, utilization, obtained from over
500 published articles, were used for the study. The Cochran
model'” was adopted to determine the representative sample
sizes for the study. Table 1 shows the values of the statistical
parameters used in determining the representative sample size
by Cochran’s model.

From the sample size analysis, it can be seen that a minimum
sample size of 69 is needed to analyze the data on CO, utilization
facilities, with a confidence limit of 90%, a population propor-
tion of 0.5, and a margin of error of 9.93%. At the same time, a
minimum number of 385 research articles is required to inves-
tigate the data on published research on CO, utilization, with a
confidence limit of 95%, a standard deviation of 0.5, and a mar-
gin of error of 5%. The margin of error for the CO, conversion
facilities was raised to 9.93% while reducing the confidence limit
to 90% due to the scarcity of the required data. A confidence

Tahle 1. Statistical parameters for sample size determination.

limit of 90% and above and a margin of error of less than 10% is
considered adequate in obtaining representative samples for data
analysis. For the published articles on CO, conversion to value-
added products, this study will focus on the products identified
in the CO,U' report as viable materials. In addition, research
publications on the conversion of CO, to DME and urea will be
included in this study to broaden the scope of products that are
derivable from CO,.

Furthermore, these products were selected because of their
premium significance in sustainable industrialization, eco-
nomic development, and energy security of any society. The
outputs of each product of CO, utilization are presented in two
sections. The first section analyses the various existing facili-
ties for CO, conversion, while the second section analyses the
various research publications on CO, utilization. The method of
production and output generated is also stated. The key process
parameters at which the optimum values are achieved are also
reported for better specificity of the results.

Analysis of C0, conversion facilities and published
articles

This section highlights and synthesizes published data on
existing CO, conversion facilities as well as published articles
on CO, conversion to value-added products selected in line with
the objectives of this study between 2016 and 2022. The analyses
are presented as follows:

€0, conversion facilities

Different facilities are used to obtain various value-added
products using CO, as feed. Some facilities convert CO, to sin-
gle products like methanol, DME, Urea, polymer, formic acid
(FA), syngas, fuels, and building materials; others convert CO,
to more than one product. The main aim of this section is to
present and analyze data on the existing conversion facilities to
determine their location, quantity, and the specific product they
are designed to produce. The conversion facilities are presented
as follows.

CO,—methanol facilities

Methanol is a common feedstock for several synthetic chemi-
cals. The main value-added products obtained from methanol

Parameters Confidence limit (%) Population proportion Margin of error (%) Minimum sample size
C0, conversion facilities 90 0.5 9.93 69
Research articles 95 0.5 5.00 385
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include formaldehyde, acetic acid, methyl tertiary-butyl ether,
and dimethyl ether.'® Its transformation into olefins is an emerg-
ing sector. Figure 1 shows a block diagram of methanol produc-
tion from CO, hydrogenation.

Tables 2 and 3 show the existing and planned methanol indus-
trial and commercial facilities worldwide. It is worthy of note
that the planned methanol facilities in Table 3 were not used in
the data analysis but rather to highlight the anticipated growth
of CO, to methanol conversion facilities in the near future.

CO,-DME facilities

Dimethyl ether (DME) is a natural compound primarily uti-
lized as airborne fuel and as a reagent for creating broadly applied
mixtures such as dimethyl sulfate and acetic acid.*® Dimethyl
ether is a new and reasonable synthetic fuel that can substitute
liquefied petroleum gas (LPG) or mixed in fuel mixture to its
excellent combustion properties (cetane number = 55-60). DME
has the potential to be fed into diesel engines, which would be
only slightly modified, and its combustion prevents soot forma-
tion.** The one-step and two-step Dimethyl ether production
processes are relatively well established. Figure 2 shows the
schematic of the production process of DME from CO, hydro-
genation, while Table 4 shows the existing DME industrial and
commercial facilities worldwide.

CO,—polymer facilities

About 400 million tonnes of polymers are created worldwide
annually. The amount has been developing by 3-4% each year for
quite a long time, and they have become a vital and significant
piece of the advanced world. Regardless of their valuable and
adaptable material properties, polymers face a significant issue:
90% of them are produced from fossil carbon and end up as CO,
emissions.*

Generally, the plastics industry cannot be decarbonized
because carbon is the primary atom in their material structures.
In this context, renewable alternatives to fossil feedstocks are
required. Chemicals and polymers produced today now utilize
renewable carbon, mostly from biomass. However, as biomass
and the recycling of plastics alone will not suffice in bridging the
gap in demand for polymers and plastics, carbon-dioxide utiliza-

tion could be the solution to polymer production in the future.*’

One such way of producing polymers from CO, is hydrogenation.
Figure 3 shows the schematic of the polymer production process
from CO, hydrogenation, while Table 5 shows the existing indus-
trial and commercial facilities worldwide.

CO,-urea facilities

Due to its significance in fertilizer production, urea is indus-
trially produced on an immense scale. In 2019, for instance,
annual world production was around 218 million tonnes. Urea is
constantly synthesized from ammonia and carbon dioxide. Large
quantities of CO, are often generated during ammonia produc-
tion, beginning from nitrogen available in the air and hydrogen
produced from natural gas. As aresult, urea production facilities
are almost always located adjacent to the site where ammonia
is produced.*” Aside from the CO, generated during ammonia
production, captured CO, from other carbon-intensive processes
can also be used with hydrogen to make urea. Figure 4 shows the
schematic of the urea production process from CO, hydrogena-
tion, while Table 6 shows the existing CO, to urea industrial and
commercial facilities worldwide.

CO,—FA facilities

Within the limits of our literature search, there is no car-
bon dioxide conversion facility to FA, probably because meth-
anol can serve as a feedstock for producing FA. FAis used as a
chemical intermediate in adhesives, preservatives, dimethyl-
formamide (DMF), and other products.'® Figure 5 shows the
schematic of the process of producing FA from carbon-dioxide
hydrogenation.

CO,-building materials facilities

One proven way to lower emissions from the building and
construction industry is the conversion of CO, into con-
crete and other building material aggregates. It is one of the
most mature and efficient CCU technology. Businesses are
effectively transforming CO, into building materials thanks
to research and innovation. Project activities that capture
waste CO, that would have otherwise been released into the
atmosphere can utilize the gas as a feedstock in concrete con-
struction. By creating a type of concrete that sequesters CO,
into the material itself, which has an added benefit, and by

Figure 1. Methanol production
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Table 2. Existing facilities for CO, to methanol production.

Methanol pro- C0, tonnes recy-

Country Company Start-up year  duction (t/year) cling per year Source
Germany TOTAL/Sunfire 2020 70,000 - [18]
e-C0, Met project
Germany bse Engineering/Institute for Renewable Energy 2020 10 - [18]
Systems (IRES)
Japan Mitsui and Celanese Corporation 2009 130,000 180,000 [18]
Korea Korean Institute of Science and Technology 2004 37 - [18]
(KIST) /CAMERE process
China Dalian Institute of Chemical Physics 2020 1000 [18]
Denmark Power2Met Danish Consortium 2019 287 - [18]
Iceland CRI 2011 4000 5500 [19]
Germany MEFCO, 2019 500 - [20]
Sweden FReSMe 2019 365 - [21]
Germany Carbon2Chem 2020 18 - [22]
Canada Bioindustrial Industrial Canada 2020 1,800,000 426,022 [23]
Qatar Qatar Fuel Additives Company (QAFAC) 2014 982,350 182,500 [24]
China Shunli 2022 110,000 500,000 [25]
Belgium Consortium of 7 at the port of Antwerp 2022 8000 - [26]
Switzerland Swiss Liquid Future 2012 75L/d 6000 [27]

developing concrete that uses less Portland cement, these
project activities aim to minimize greenhouse gas emissions.
The sequestering of CO, lowers emissions by taking gas that
would have otherwise been emitted and capturing, compress-
ing, and transporting it to a site where it can be embedded into
the concrete. Lowering the cement required in the concrete
further reduces emissions because cement production is a
high-energy and carbon-intensive process.*® Figure 6 shows
the schematic of converting CO, to calcium carbonate for

cement and concrete production. Table 7 shows the existing
facilities for concrete production.

CO,-syngas and fuels

The conversion of CO, to syngas and fuels offers an alter-
native pathway to waste utilization and decarbonization. Con-
ventional syngas are produced from fossil-based sources like
natural gas and coal via various chemical processes, including
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Table 3. Planned facilities for CO, to methanol production.

Methanol produc-  CO, tonnes recy-

Country Company Start-up year tion (t/years) cling per year Source
Australia (Tasmania) ABEL 2023 60,000-70000 - [18]
Sweden Liquid Wind 2023 (plan for six 45,000 90,000 [28]
facilities by 2030)
Norway A Consortium of Companies/ 2024 100,000 146,000 [29]
CRI
Belgium A Consortium of 10 at the port - 44,000 140,000 [30]
of Ghent
Germany Dow - 200,000 330,000 [31]
Denmark A Consortium of companies 2024 100,000 146,000 [32]

Figure 2. DME production pro-
cess via CO, hydrogenation.
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Table 4. Existing facilities for DME production.
DME production C0, tonnes recy-
Country Company Start-up year (t/years) cling per year Source
South Korea KOGAS 2008 1,095,000 - [35]
Germany ALIGN-CCUS Project DME 2020 183 - [36]
from CO,
United States Oberon Fuel 2013 16,425 - [37]
China BASF and Lutianhua 2020 110,000 - [38]
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Figure 3. Polymer production
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the electrochemical reduction of the produced CO,. However,
sustainable and clean syngas can also be made from CO, gasi-
fication of multiple materials, using specific catalysts to obtain
the desired products. Carbon-neutral fuels like jet fuels, more
efficient gasoline, and liquid hydrocarbons can be produced from
CO, conversion via several chemical processes. The conversion
of CO, to these fuels, including syngas, can enhance energy
security while helping to achieve the net-zero emission targets.
Despite the numerous benefits, only a few commercial conver-
sion facilities are available globally (see Tables 8 and 9).

Published articles on €0, conversion

This section contains the data on the published literature
on the conversion of carbon dioxide to different value-added
products, including methanol, urea, DME, FA, polymer, build-
ing materials, syngas, and fuels. There are various methods by
which CO, can be converted into other products. These methods
are photochemical, biochemical, electrochemical, thermal, and
chemical. The pros and cons of the different techniques of CO,
conversion into other products can be found elsewhere.’ Pub-
lished literature from 2016 to 2022 on the conversion of CO, to
the selected products chosen for this study is analyzed and pre-
sented in the following sections. This literature analysis was done
to synthesize the available knowledge on CO, conversion studies
to clearly determine the significant areas of focus for researchers
on the subject matter in recent times.

CO,—-methanol

Catalytic hydrogenation of a mixture of CO, is the basis of
syngas processes. These syngas processes make it possible to
produce a variety of chemical products, including methanol. A
careful survey of published works revealed two main research
approaches for CO, to methanol conversion. They are theoretical
(simulation) and experimentation. Table 10 shows the carbon
dioxide conversion to methanol analysis via different methods.

CO,—dimethyl ether

Despite numerous studies on DME production, there is still a
lack of process simulations for directly converting carbon diox-
ide to DME. Its distinguishing feature at the most conceptual
level is that DME is synthesized directly from synthesis gas and
is called a “direct” or “one-step” process. By contrast, the con-
ventional process is called the “indirect” or “two-step” process

because DME is produced from an intermediate product, metha-
nol. Table 11 shows the results of the literature analysis on CO,
to DME for the period under investigation.

Compared to the indirect method, the direct method of con-
verting CO, to DME is more cost-effective, with a higher return

on investment and CO, utilization impact.45-146-152

CO,—polymer

Different CO,-based monomers and polymers like polyester,
polyureas, polyurethanes, polyols, and polycarbonates are pro-
duced from CO, and have been commercialized. Still, it remains
to be seen if the technology can compete. Reduction in the cost of
CO, and/or greater incentives to reduce carbon emissions must
be implemented for CO, utilization to polymers to compete with
conventional feedstock.!®® The data on the published work on
CO, to polymer is presented in Table 12.

CO,-FA

Currently, FA is used as a chemical intermediate in adhesives,
preservatives, DMF, and other products. Because it’s more reac-
tive than methanol, FA is more suitable as a chemical intermedi-
ate. Research in the reduction of carbon dioxide to FA (CH,OH)
is still early-stage. FA also has been proposed as a fuel source
for fuel cells. This application is still in the proof-of-concept
phase.?” Converting harmful CO, to beneficial FA is a step in
the right direction. Consequently, several researchers have been
working on CO, conversion to FA. Some of the results are pre-
sented in Table 13.

€0 -urea

The production of urea uses large amounts of CO,, which can
be obtained from any CO,-generating process, including carbon
sequestration. A few researchers have published works on CO,
to urea conversion. Table 14 shows the literature analysis of the
published works within the period under investigation.

CO,-building materials

The conversion of CO, to concrete and other building aggre-
gates is one of the primary sectors identified by the CO, utiliza-
tion roadmap’s concentration of active developers.>2® Solid car-
bonates are created from converting gaseous CO, from industrial
point sources or ambient air, and they can either supplement or
replace concrete components. The three leading CO, utilization
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(continued)
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technologies used in the building materials industry for the pro-
duction of concrete via CO, mineralization include®®;

e CO, curing: CO, replaces energy-intensive steam cur-
ing to decrease cement content and boost strength while
mineralizing and storing carbon in precast and ready-mix
concrete.

e Carbonation: A solid carbonate is created when CO,
interacts with Ca or MgO. This substance supplements
or replaces traditional concrete components (e.g., aggre-
gates, SCMs).

e (CO,-based-cements: In making cement, CO, is used as a
raw material, replacing traditional Portland cement.

Since the nineteenth century, Portland cement has been the
industry standard. Limestone, a primary raw material for Port-
land cement, emits carbon dioxide when burned in a cement
kiln. More than 55% of emissions associated with cement pro-
duction are attributable to this process. Portland cement can
be replaced with other cements that emit significantly fewer
greenhouse gases for any application.??® Table 15 shows the
published works on CO, to building materials within the period
under investigation.

CO,-syngas and fuel

Syngas, a vital fuel, is critical for synthesizing many chemi-
cals, including hydrogen, and the various chemicals and fuels
considered in this study. It consists primarily of Hy and CO. Syn-
gas differs chemically from other gases produced by gasification
processes typically carried out at low temperatures because it
uses higher pressures to synthesize chemicals and fuels.>”>
Global syngas production accounts for about 2% of primary
energy use. However, the syngas market, primarily from fossil
fuels, is dominated by the ammonia industry globally.*043
Jet fuels, methane, gasoline, and liquid hydrocarbon fuels are
other fuels that can be produced from CO, conversion via several
chemical processes. Tables 16 and 17 show published literature

on syngas and fuel synthesis.

Results and discussion

This section provides an analysis of the results. The data
on CO, utilization were compared in two ways. The first was
to obtain vital information on the various existing conversion
facilities, and the second was to provide information on the prod-
ucts of core interests to researchers through published articles.

Analysis of the existing carbon dioxide utilization facilities

Based on the sampled data, the distribution of the CO, con-
version facilities globally showed that while some continents are
leading in the CO, conversion processes to mitigate greenhouse
gas emissions, others are still lagging. From the results of the
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Figure 4. Urea production pro-
cess via CO, hydrogenation.
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analysis in Fig. 7, most conversion facilities are located in Asia
(mainly in China), followed by Europe (Western Europe), and
then North America (Mainly in the US). The high number of
CO, conversion facilities in Asia, driven mainly by China and
India, can be attributed to the commitment of both countries
(and other countries in the region) to minimize emissions from
their rapid industrialization drive in recent times. China, the
second-largest economy globally, has been on a steady path of
rapid industrialization. This rapid industrialization growth rate
comes with massive emissions of GHGs, especially CO,. Hence,
China has become one of the industrialized hubs with the high-
est emission index. Likewise, the stringent net-zero emissions
targets and environmental sustainability regulations and poli-
cies may be responsible for the relatively significant share of
carbon capture facilities in Europe and North America. Most of
the facilities in Asia convert CO, to polymer, urea, and chemical
intermediates. In Europe, the facilities mainly produce chemical
intermediates from CO,. Building materials feedstocks are the
predominant products obtained from CO, conversion in North
America. The facility distribution and CO, conversion options
in the regions are mainly driven by stringent regulatory policies
occasioned by the need to decarbonize and mitigate greenhouse
gas emissions for environmental sustainability, meeting net-zero
emission targets, providing an economic justification for CCS
projects, and the increasing demand for raw materials, chemi-
cals, and fuels, which are in high demand in any industrialized
societies.

The relatively insignificant or absence of CO, conversion
facilities in many developing countries in Africa, South Amer-
ica, Eastern Europe, other developing Asian countries, and the
Middle East (excluding Saudi Arabia) show the weakness or lack
of clear policy and stringent greenhouse gas emission mitiga-
tion regulations. It can also be attributed to the reluctance of
many countries in these regions to meet net-zero emission tar-
gets since they contribute the least emissions globally. Most of
these developing countries depend primarily on fossil fuels for
energy, and their lack of decarbonization strategies could under-
mine global efforts to combat climate change due to greenhouse
emissions.

Figure 8 shows the percentage distribution of the global car-
bon dioxide utilization facilities based on value-added products.
The results show that there are more facilities converting CO, to
chemical intermediate products like methanol, DME, and syn-
gas (29%), urea (25%), and polymers (23%) than there are for
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building materials (16%) and fuels (7%). The data suggests that
over 90% of the global CO, conversion facilities produce chemi-
cal intermediates, urea, polymers, and building materials. The
development of CCUS facilities is driven primarily by the need to
decarbonize and create a sustainable environment. Minimizing
the high carbon footprints associated with the conventional pro-
cesses from which these materials are produced could be respon-
sible for the relatively high amount of CO, conversion facilities.
As the global population rises, more people will require more
energy for sustainability. More energy will most likely result in
industrialization, which requires certain feedstocks as building
blocks. Hence, the demand for these feedstocks is expected to
rise. The rising demand for these feedstocks and the need for
environmental sustainability (in this case, carbon neutrality)
explains why the majority of CO, conversion facilities produce
chemical intermediates (methanol, DME, Syngas, FA) as well as
urea, polymers, and building materials.

The inadequate or lack of facilities for FA (an important chem-
ical intermediate) production from CO, could be due to several
technical and economic reasons. Its demand remains low, and
unless more specific beneficial applications are developed, its
utilization might remain challenging.'®® Overall, CO, conver-
sion to raw materials, chemicals, and fuels is mainly governed
by economics, especially when there are alternative feedstocks
for producing the same chemicals and fuels. The economics
and availability of alternative materials may be responsible for
the relatively low number of CO, conversion facilities to fuels
globally. Therefore, the number of CO, conversion facilities to
raw materials, chemicals, and fuels will only increase when it
becomes cost-effective and sustainable to use CO, as feedstock
for the conversion processes.

Analysis of published articles on €0 ,conversion

Figure 9 compares the volume of published research on the
conversion of CO, to various products under investigation.
Based on the sampled data, the results showed that the pub-
lished articles in the last 6 years were more on chemical inter-
mediates (45%), polymers (24%), and building materials (17%)
than there were for fuels (11%) and urea (3%). The relatively
high number of published articles on chemical intermediates
(methanol, DME, FA, and Syngas) and polymers could result
from their high demand and usefulness as a feedstock in many
chemical and industrial processes. The statistical results from



Table 6. Existing facilities for CO, to Urea production.

C0, tonnes
recycling per
Country Company Start-up year Urea production (t/y) day Final products Source
China BASF and Lutianhua 2020 1,580,000 - Ammonia and urea [39]
Russia PJSC Metafrax/Casale 2021 629,625 1200 Ammonia, urea and [48]
SA melamine
India National Fertilizers 2012 478,150 450 NH; and urea [48]
Limited (Vijaipur)
Pakistan Engro Fertilizers Limited 2011 1,300,000 340 NH; and urea [48]
Vietnam Petrovietnam Ferti- 2010 2,190,000 240 NH; and urea [48]
lizer and Chemicals
Corporation
Oman Sohar International 2009 1,277,500 - NH; and urea [48]
Urea and Chemical
Industries Co
India Nagarjuna Fertiliz- 2006 1,500,000 450 NH; and urea [48]
ers and Chemicals
Limited (Kakinada)
United Arab Emirates Ruwais Fertilizer 2009 2,117,000 400 NH; and urea [49]
Industries
Bahrain National Oil and Gas 1998 620,500 450 NH; and urea [50]
Holding Company
(NOGA Holding)
Kuwait petrochemical indus- 1985 1700 1700 NH; and urea [50]
tries co. (bsc)
India Indian Farmers Ferti- 2009 2,000,000 450 NH; and urea [51]
liser Co-operative Ltd.
(Aonla)
India Indian Farmers Ferti- 2006 1,416,000 450 NH; and urea [52]
liser Co-operative Ltd.
(phulpur)
Malaysia Petronas Fertilizer 1999 1,405,250 200 NH; and urea [53]
(Kedah) Sdn Bhd
Indonesia P.T. Pupuk Kalimantan 2002 3,430,000 - NH; and urea [54]

Timur
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Table 6. (continued)

C0, tonnes
recycling per
Country Company Start-up year Urea production (t/y) day Final products Source
New Zealand Kapuni Ammonia-Urea 1983 265,000 - NH; and urea [55]
Facility
Australia Perdaman chemical and 2,300,000 NH; and urea [56]
fertilizer pty Ltd
China KAPSOM/Henan Xin- 2011 200,000 Urea, formaldehyde [57]
lianxin Chemicals resin, and melamine
Figure 5. Formic-acid production —[Vevrane |<_| COMPRESSOR |
process (electrochemical reduc-
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the analysis of published articles in this study align with that of
existing conversion facilities except for urea. The high number
of published articles on chemical intermediates, followed by
polymers and building materials, can be attributed to the fact
that since most of the existing conversion facilities produce these
materials, researchers focus more on improving and optimizing
their production processes from the existing facilities. In addi-
tion, the high volume of published articles could be due to the
increased market demand for these products and the urgent need
to decarbonize the industrial sector. Furthermore, the special
attention on chemical intermediates, polymers, and building
materials may be that they provide the outlets for making CCUS
economically viable.!® Although there are also many other efforts
to convert other greenhouse gases, like methane CH, to some
chemical intermediates like methanol,*3748% chemicals,*87-489
and solar fuels,*”® most research interests tilt towards CO, con-
version rather than CH,, most likely because CO, accounts for
amore significant percentage of greenhouse gasses (76%) than
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methane (16%).%°! Hence, the general focus, like this study, is
more on CO, conversion. The attention of researchers on the
transformation of CO, to building materials (17%), especially
concrete in the building materials industry, stems from the need
to decarbonize the concrete (a critical raw material required for
industrialization) production industry, which is energy-intensive
with a high carbon footprint.

The absence or inadequacy of direct or indirect CO, to FA
facilities could be responsible for the relatively higher volume
of research on the area. The relatively low volumes of research
on urea (3%) could be because the technologies for converting
CO, to these products are pretty well established, and there are
other efficient and cost-effective feedstocks for their production.
As aresult, there is little novelty in using CO, as a feedstock,
resulting in little work to optimize the grey areas. In addition,
the conventional urea production process is an energy- and
carbon-intensive technology that contradicts the idea of car-
bon neutrality. Furthermore, since urea was not listed as one



Table 7. Existing facilities for building materials production.

Country Company C0, used (t/y) CO, recycled Products Source
Canada CarbiCrete’s technology 20,000 Nil Carbonated blocks [58]
Canada CarbonCure Technologies, - Nil Concrete [59]
United States (Greenfield) Irving Materials, Inc., - Yes Concrete [60]
United States (Los Angeles) Carbon Upcycling UCLA - Nil Concrete [61]
United States Ozinga - yes Concrete [62]
United States Thomas Concrete’s - Yes Concrete [63]
Japan Kajima Corporation - Nil C0,-SUICOM [64]
United States Solidia - Nil Cement and concrete [64]
United Kingdom 0.C.0 Technology 225,000 Nil Aggregates and fills for | [64]
blocks, concrete, and
screed
United States Blue planet - Yes Aggregates [64]
United States Calera 30,000 Nil Carbonate precipitates | [64]

of the priorities for CO, utilization'® and hence might not be a
viable economic route for the CCUS process, researchers may
be unwilling to conduct studies on CO, conversion to urea,
explaining why there is alow volume of publications in this area
in recent times. Nonetheless, continuous efforts should be made
to develop novel, cost-effective, and sustainable technologies
for converting CO, to these and many other products. Thisis a
sure way of making the decarbonization process attractive, cost-
effective, and competitive.

Tahle 8. Existing facilities for syngas production.

0, temp.
(°C) and
CO,used pressure  Syngas
Country Company (kg/h) (bar) (Nm%h)  Source
Germany |SUNFIRE- 730 0-40 750 [65]
SYNLINK 6-8
SOEC

Analysis of processes and catalysts used for €0 ,conversion

CO, transformation into various value-added products can be
classified under the following major processes: Photochemical,
Electrochemical, Thermal, and Chemical.?*°2-*%> The charac-
teristics of these processes are shown in Table 18. The catalysts
used in these various processes to obtain a desired product are
further highlighted.

Catalyst for CO, conversion to methanol

The methods of converting carbon dioxide into methanol are
affected by two significant factors. They include reaction condi-
tions and catalyst properties.*’® The various categories of cata-

lysts used for the production of methanol include*®;

e Cu-based catalyst
e Precious metal-base catalyst
e QOther catalysts

Cu-based catalyst Cu-based catalyst is the most used
catalyst for methanol production via Carbon dioxide*’®;
however, in order to achieve total activity, they require
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Table 9. Existing facilities for fuel production.

Country Company Startup year C0, used (kg/h) Product Source

China BASF and Lutianhua 2020 - 100,000 MTPA of Diesel [39]
exhaust fluid (DEF)

N Twelve 1E+6 E-Jet [66]

UK LanzaTech UK Ltd. 2023 - 79 KTA of E-Jet [67]

Canada Carbon Engineering 2020 - 200 barrels of synthetic fuel | [68]

Italy Climeworks 150 Jet Fuel [69]

pre-treatment in hydrogen, which is inconvenient for
small-scale onboard systems. This method relies on heter-
ogeneous Cu-ZnO catalysts, where Cuis the active phase,
and ZnO is a crucial promoter to increase the system’s
activity. Commercial Cu/Zn0/Al,O; catalyst develop-
ment has advanced noticeably in recent years despite
numerous disputes on the reaction mechanism,*’7->%
With the application of Cu-ZnO catalysts, high deac-
tivation and low activities are observed. This has led to
significant efforts in developing catalysts to improve the
high deactivation of Cu-ZnO catalysts and the low activ-
ity.>”! Another disadvantage is that Cu/ZnO catalysts
have a heightened sensitivity to a few parts per million
of sulfur and have the potential to exhibit pyrophoric
activity when exposed to air.°* This type of catalyst has
good activity, high methanol selectivity, low operating
pressure, and temperature, so it is an excellent choice for
hydrogenation catalysts in carbon dioxide conversion to
methanol.’*?

Precious metal-based catalyst Precious metal-based cata-
lysts (Au, Pd, Pt, Ga, Rh) have drawn a lot of interest in
converting carbon dioxide to methanol due to their high
activity in adsorption and dissociation of hydrogen. Some
metal-based catalysts, such as Palladium (Pd), as the
active metal, exhibit high results for methanol produc-
tion. However, to produce methanol using pure Pd, they
are usually combined with other metals as promoters. In
this case, the methanol selectivity is affected by the type
of promoters used.*® This type of catalyst will generate a
high methanol selectivity at a very high temperature.*°

Other catalyst High temperatures act as an equilibrium
restriction on the hydrogenation of carbon dioxide to
methanol. A catalyst often functions most effectively above
room temperature, necessitating extraordinary thermal
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stability. Therefore, the thermal stability criterion must
be closely followed if catalysts other than Cu and precious
metal-based catalysts are to be utilized.®

Catalyst for CO, conversion to DME

Compared to photocatalytic or electrocatalytic methods,
carbon dioxide’s one-step heterogeneous catalytic conversion
to value-added compounds shows better efficiency. Neverthe-
less, in practical demonstrations and applications, conventional
catalysts for the one-step carbon dioxide hydrogenation to DME
still have inadequate space-time yield and stability. From this
angle, the recent progress in the one-step carbon dioxide hydro-
genation to DME is concentrated on various catalytic systems
through an analysis of published experimental findings and the
reaction mechanism, which includes the catalytic properties
of carbon dioxide molecules, activation modes and active sites
under specific conditions.?** The various categories of catalysts

used for the production of DME include®’®;

* Cu-based catalyst
* Precious metal-base catalyst
* Oxide-derived bifunctional catalyst

Cu-based catalyst Cu-based catalysts are the most thor-
oughly researched catalysts in early studies. The well-
known bifunctional catalyst (CZA) coupling with acidic
sites is first used in carbon dioxide hydrogenation to
DME.*** Cu-based catalysts have not yet found practi-
cal usage in the carbon dioxide hydrogenation of DME.
Nevertheless, there is still room for improvement in
the catalytic performance, including DME selectivity,
catalytic activity, and stability. To achieve this, investi-
gating the nature of active sites and the reaction mecha-
nism becomes necessary.?%*



Table 10. Studies on CO, conversion to methanol.

Methanol
purity
FEED T (°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, 270/45 Chemical (experiment) Cu/Zn0-based - 2020 (8]
CO,/H, - Review Cu/Zn0-based - 2019 [10]
CO,/H, 180/30 Chemical (Experimental) CZCZ, - 2019 [11]
CO,/H, 25/1 Chemical (Simulation — Cu/Zn0/Al,0, >99:9 2016 [70]
CHEMCAD)
CO,/H, 503/76.98 Chemical (Simulation) Cu/Zn0/Al,04 - 2017 [71]
CO,/H, 232/50 Chemical (Simulation — Cu-based - 2018 [72]
Unisim/COSMOL)
CO,/H, 300/1 Chemical (Aspen Plus Cu/Zn0/Al,04 99.5 2022 [72]
V8.8 Simulation)
CO,/H, 40/20 Chemical (Simulation — Cu/Zn0/Al,04 99.5 2020 [73]
Hysys V10.1)
CO,/H, 183.6/57.8 Chemical (Simulation — - 99.5 2019 [74]
Hysys V8.8)
CO,/H, 220/50 Chemical (Simulation — Cu/Zn0/Al,04 - 2019 [75]
Aspen Plus)
CO,/H, 80/30 Chemical (Simulation — Cu/Zn0/Al,04 99 2017 [76]
economics)
C0/CO,/H, 260/30 Chemical (Experimental) Cu/Zn0/Al,04 - 2017 (771
CO,/H, 250/50 Chemical (Experimental) Cu and Fe-based 99.9 2017 [78]
CO,/H, 25/1 Chemical (Simulation) Cu/Zn0/Al,0, 99.9 2019 [79]
CO,/H, 300/25 Chemical (Simulation — Cu/Zn0/Al,04 - 2020 [80]
Hysys V10)
CO,/H, /50 Chemical (Simulation — - 2019 [81]
Aspen Plus)
C0,/NG/Steam 550/5 Chemical (Simulation — Cu based - 2016 [82]
Plus)
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Table 10. (continued)

Methanol
purity
FEED T (°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, 24075 Chemical (Experiment Au/Zn0 - 2016 [83]
— isotope labeling

experiments)

CO,/H, 250/22.5 Chemical (Experiment — Cu/Zn0-SBA-15 92 2017 [84]
Impregnation Tech-
nique)

C0/CO,/H, 210/78 Chemical (Simulation — - 98.7 2018 (85]

Aspen Plus)
CO,/H, - Chemical (Valorization) - - 2016 (86]
CO,/H, 250/20 Chemical (Experimental) Pd/Zn0 99 2016 (87]
CO,/H, 250/20 Chemical (Experimental) C,Z1-C - 2020 [88]
CO,/H, 250/20 Chemical (Experimental) C,Z1-C - 2020 (88]
CO,/H, 250/20 Chemical (Experimental) C;Z1-C - 2020 (88]
CO,/H, - Photochemical - - 2020 [89]
CO,/H, 250/65 Chemical (Simulation) Cu—Zn-Al 99.3 2016 [90]
C0,/H, - Electrocatalytic Cu-based 99.99 2018 [91]
CO,/H, 483-518/15-50 | Mathematical Modelling Cu/Zn0/Al,04 - 2017 [92]

(Anova analysis)
CO,/H, 200/1 Chemical (Experimental) | Pd/Cu ratio in Pd—Cu— 99 2017 (93]
In/SiC

CO,/H, 220/82 Simulation CuZA - 2020 [94]
CO,/H, 480-550/50-30 Chemical () - - 2018 [95]
CO,/H, 890/25 Chemical () Pd—Cu—Zn/SiC - 2018 [96]
CO,/H, 250/50 Chemical (Aspen Plus Cu/Zn/AI/Zr fibrous 100 2016 [97]

Simulation)
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Table 10. (continued)

Methanol
purity
FEED T (°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, - Chemical (simulation — - 99.5 2016 (98]
ASPEN Plus)
CO,/H, 473/55 Chemical (simula- Cu/Zn0/Al,04 93.9 2019 [99]
tion — ASPEN Plus and
MATLAB)
CO,/H, - Chemical (experiment) Cu.Zn0 - 2016 [100]
CO,/H, 145/80 Chemical (experiment) Ru-Macho—BH - 2019 [101]
CO,/H, - Chemical (experiment) Cu0-Zn0-Ce0, - 2019 [102]
CO,/H, 300/30 Chemical (experiment) | Cu/Al,04, Cu/AlCe0 and - 2019 [103]
Cu/Ce0,
CO,/H, 180/50 Chemical (Simulation - Cu/Zn0/Al,04 91.7 2019 [104]
Aspen Plus)

CO,/H, - Chemical (experiment) Zr0, - 2019 [105]
CO,/H, 650/ Chemical (experiment) PdZn/Ti0, - 2018 [106]
CO,/H, 250/50 Chemical (thermody- Cu/Zn0/Al,04 99.8 2017 [107]

namic model-based)
CO,/H, 508/30 Chemical (experiment) CuCeTiO0, - 2017 [108]
CO,/H, 508/30 Chemical (experiment) Cu/Si0, - 2017 [108]
CO,/H, - Chemical (experiment) CuZnCei - 2019 [109]
CO,/H, - Photoelectrochemical Mono-phase Cu,0 90 2018 [110]
CO,/H, 240/30 Chemical (experiment- Cu0/Zn0/Al,04 - 2016 [111]

solvent-free routine)
CO,/H, 240/30 Chemical (experiment— Cu0/Zn0/Al,04 - 2016 [111]

solvent-free routine)
CO,/H, 240/30 Chemical (experiment- Cu0-Zn0-Ti0,-Zr0, - 2019 [112]

facile solid-state route)
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Table 10. (continued)

Methanol
purity
FEED T (°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, 250/3 Chemical (experiment) Cu/Zn0-SBA-15 - 2019 [113]
(CZS_20_1)
CO,/H, 250/3 Chemical (experiment) Cu/Zn0/Zr02-SBA-15 - 2019 [113]
(C2Z5_20_1)
CO,/H, - Photocatalytic (experi-  |Porous copper/zinc bime- - 2020 [114]
ment) tallic oxide catalyst
CO,/H, - Chemical (experiment) Ti0, and Zr0, - 2016 [115]
CO,/H, 270/45 Chemical (experiment)  |LDH30Ga (Cu: 33.5 wt%) - 2018 [116]
CO,/H, 270/45 Chemical (experiment) | LDH30Ga-ww (Cu: 34.3 - 2018 [116]
wt%)

CO,/H, 270/45 Chemical (experiment) | CZG5Ga (Cu: 31.9 wt%) - 2018 [116]
co, - Chemical (experiment) Cu/Zn0/Al,04 - 2019 [117]
CO,/H, 270/50 Chemical (experiment) Cu/Zn0/Al,0, - 2017 [118]
CO,/H, 200/18 Chemical (experiment) Ui0-66-based - 2019 [119]
CO,/H, 240/10 Chemical (experiment — Cu0/Zn0/Al,0, - 2019 [120]

Polyol method)
CO,/H, 240/10 Chemical (experiment — Cu/Zn0/Ce0, - 2019 [120]

Polyol method)
CO,/H, 240/50 Chemical (experiment Cu0/Zn0/Zr0, (M) - 2016 [121]

— co-precipitation
microfluidic)
CO,/H, 240/50 Chemical (experiment Cu0/Zn0/Zr0, (pH) - 2016 [121]
— co-precipitation at

controlled pH)

CO,/H, 230/50 Chemical (experiment — CZZ0 - 2016 [122]
precipitation/reduction
method (NaHB,)
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Table 10. (continued)

FEED

T (°C)/P (bar)

Method

Catalyst

Methanol
purity
(%)

Publication year Source

CO,/H,

230/50

Chemical (experiment —
precipitation/reduction
method (NaHB,)

CZ13

2016 [122]

CO,/H,

230/50

Chemical (experiment —
precipitation/reduction
method (NaHB,)

CZ15

2016 [122]

CO,/H,

230/30

Chemical (experi-
ment — co-precipita-
tion +impregnation

10Cu~'Ce0,

2017 [123]

CO,/H,

230/30

Chemical (experi-
ment — co-precipita-
tion +impregnation

0.5Pd-10Cu/Ce0,

2017 [123]

CO,/H,

230/30

Chemical (experi-
ment — co-precipita-
tion +impregnation

2Pd-10Cu/Ce0,

2017 [123]

CO,/H,

230/15

Chemical (experiment
— Incipient wetness
impregnation

5% CuZn/rGo

2016 [124]

CO,/H,

230/15

Chemical (experiment
— Incipient wetness
impregnation

10% CuZn/rGo

2016 [124]

CO,/H,

230/15

Chemical (experiment
— Incipient wetness
impregnation

20% CuZn/rGo

2016 [124]

CO,/H,

230/30

Chemical (experiment —
with internal cooling
water)

Cu0/Zn0/Al,04 (Cp)

2017 [125]

CO,/H,

230/30

Chemical (experiment —
with internal cooling
water)

Cu0/Zn0/AL0; (Cp)

2017 [125]

CO,/H,

230/10

Chemical (experiment —
wetness impregnation)

Cu0/Zr0,+Ca0

2016 [126]

CO,/H,

230/10

Chemical (experiment —
wetness impregnation)

Ag/Cu0-210,

2017 [127]
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Table 10. (continued)

Methanol
purity
FEED T (°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, 320/20 Chemical (Aspen Plus Cu0/Zn0/Al,04 99 2021 [128]
Simulation)
C0,/H, 30/50 Chemical (Catalytic Amide-based iridium - 2021 [129]
Gas—Solid Phase
Reaction)
CO,/H, 300/50 Chemical (Catalytic Au/In,04-Zr0, - 2020 [130]
hydrogenation)
CO,/H, - Electrochemical conver- PbgsCuyy - 2022 [131]
sion
CO,/H, 300/50 Indium/cobalt-based CosInCy 75 and In,0, - 2018 [132]
system
CO,/H, 320-450/250-350 | Chemical (Catalytic Cu/Zn0/Zeolite - 2022 [133]
hydrogenation)
CO,/H, 250/70 Chemical (Aspen Plus Cu/Zn/AI/Zr - 2022 [134]
Simulation)
CO,/H, 230/25 Chemical (Aspen Plus Cu0-Zn0/~y—Al,0, - 2022 [135]
Simulation)
CO,/H, 250/30-70 Chemical (Aspen Plus Cu/Zn/AI/Zr - 2022 [136]
Simulation)
CO,/H, 289/46 Chemical (Aspen Plus - - 2021 [137]
Simulation)
CO,/H, 265/2 Chemical (Aspen Hysys - - 2016 [138]
Simulation with Energy
Analyzer)
CO,/H, 250/45 Chemical (Aspen Hysys Cu/Zn/Al/Zr 99 2019 [139]
Simulation with Energy
Analyzer)
CO,/H, 200 - 300/25 Chemical (Aspen Hysys Cu0/Zn0/Al,04 99 2018 [140]
Simulation)
CO,/H, 227740 Chemical (Kinetic Monte Cu0/Zn0/Al,04 - 2022 [141]
Carlo (KMC))
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Table 10. (continued)

Methanol
purity
FEED T(°C)/P (bar) Method Catalyst (%)  Publication year Source
CO,/H, 25/30 Chemical (Aspen Plus CZA 99.5 2022 [141]
Simulation and Matlab)
C0,/H, 25/30 Chemical (Aspen Plus CZA 99.8 2022 [141]
Simulation and Matlab)
C0/C0,/H,0/H, 350/100 Chemical (Aspen Plus Cu0/Zn0/Al,04 - 2022 [142]
Simulation)
C0,/0,/H, 210/75 Chemical (Aspen Plus Cu0/Zn0/Al,04 98.8 2018 [143]
Simulation)
Precious metal-based catalyst Most relevant  dioxide and propylene oxide to yield polymers with a carbonate
publication5500 agree that the decreased Pd species linkage concentration greater than 99%, SalenCo is the per-

serve as active sites for the hydrogenation of carbon
dioxide. But when it comes to the reaction mechanism,
no one can agree. Based on the existing results, we may
hypothesize that the nature of active sites causes this
difference. The activated carbon dioxide can then be
moved to the Pd surface and undergo hydrogenation to
produce DME.

Oxide-derived bifunctional catalyst Despite increased
stability, oxide-based catalysts still require improve-
ments in DME selectivity and catalytic activity. Prior
research has consistently demonstrated the critical role
that oxygen vacancies play. Nevertheless, the quantity of
oxygen vacancies and the catalytic activity/DME selec-
tivity cannot be correlated. To rationally design and
advance oxide-based catalysts for carbon dioxide hydro-
genation to DME with improved catalytic performance,
mechanistic studies on the formation/consumption of
oxygen vacancies and the kinetics of the oxygen vacan-
cies participating in elementary steps during carbon
dioxide hydrogenation are therefore necessary.’’

Catalyst for CO, conversion to polymer

The well-known catalysts used for polymer production are
heterogeneous and homogeneous. For the copolymerization
of carbon dioxide and propylene oxide, the catalysts for syn-
thesizing carbon dioxide-based polymer polyol are typically
chosen from double-metal cyanide and salen systems with high
activity and immortal polymerization character. Depending on
the catalyst, the resulting polyols exhibit various structures
and features. For the alternating copolymerization of carbon

fect catalyst.’*® While heterogeneous catalysts for the carbon
dioxide reaction with epoxides have received less attention
than homogeneous catalysts up to this point, research on the
latter is expanding. In particular, heterogeneous catalysts are
more desirable than homogeneous catalysts due to their ease
of separation from products and reutilization, especially with
the growing interest in the widespread industrialization of this
carbon dioxide conversion method.?°” At the same time, the

disadvantages are often limited activity and selectivity.?®

Catalyst for CO, conversion to FA

Solid catalysts are thought to be the most effective for this
purpose due to their efficiency and possibility for recycling.
Scientists have investigated the catalytic potential of numer-
ous metal-organic frameworks (MOFs) based on Co, Sn, Mn,
Ni, Bi, Hg, Cd, Pb, and Fe over time. In the production of FA,
most of the iron-based catalysts reported thus far exclusively
produce carbon monoxide as the primary product.®®

Various studies have shown the production of formate
through nano-structures of these metals, such as nanostruc-
tured Sn/SnOx thin film,”'" Sn or Sn oxide nanoparticles
with <5 nm,’" hierarchical mesoporous Sn02 nanosheets,’?
atomic layer deposited Sn or Sn sulfide on nanoneedle tem-
plates,s13 ultrathin Bi nanosheets,’'* and oxide-derived Pb.?'
Due to Hg, Cd, and Pb toxicity, most studies have mainly used
Sn or Bi. The CO, reduction reaction’s selectivity on different
metals can be regulated by adjusting the reaction conditions
toyield FA. For instance, high-pressure studies on CO, reduc-
tion reactions on W, Fe, Co, Ni, Zn, Pt, Rh, and Ir have been
conducted.’'® Despite having lower selectivity than Sn or Bi,
they nevertheless demonstrated considerable activity toward
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Table 11. Studies on CO, to DME.

FEED T (°C)/P (bar) Method Catalyst Pathways  Purity (%) Publication year Source
CO,/H, 270/25 Chemical (experi- v-AlL0; Direct - 2020 [12]
ment)
CO,/H, 260/30 Chemical (simula- - Indirect - 2017 [33]
tion)
CO,/H, 250/25 Chemical (simula- Indirect (99.6) 2016 (98]
tion — ASPEN Plus)
C0,/H, 270 and 50 Chemical (experi- | Cu.ZnO catalysts Indirect - 2016 [100]
ment)
CO,/H, 250/50 Chemical (simula- | Cu/Zn0/y-Al,04 Indirect (99.8) 2017 [107]
tion — Aspen Plus)
CO,/H, 230/- Chemical (precipita- Cu/Zn0/1r0, Direct - 2016 [122]
tion and reduc-
tion)
C0,/H,0/CH,/ 232/50 and 60 | Chemical (simula- - Direct/Indirect | (99) 2018 [143]
C,Hg/C3Hg tion — UniSim
Design R390.1)
CO,/H, 275/40 Chemical (simula- - Direct/Indirect | (99) 2019 [144]
tion — UniSim
Design R390.1)
CO,/H, 220-260/50 Chemical (experi- Ferrierite Direct - 2016 [145]
ment)
CO,/H, 200 to 260/50 | Chemical (experi- CuZnZr—FER Direct - 2017 [146]
ment)
CO,/H, 260/ 30 Chemical (experi- | CuO—Fe,0,—Ce0,/ Direct (63.1) 2016 [147]
ment) HZSM-5 bifunc-
tional
CO,/H, 260/30 Chemical (experi- Cu-—Fe/HZSM-5 Direct - 2016 [147]
ment)
C0,/H,/CO 200/50 Chemical (simula- - Direct 98.6 2016 [147]
tion)
C0,/H, 850/1 Chemical (simula- - Direct 99.95 2017 [148]
tion — Aspen
Hysys)
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Table 11. (continued)

FEED T (°C)/P (bar) Method Catalyst Pathways  Purity (%) Publication year Source
C0,/H,/ CO 200 — 250/60-80 | Chemical (simula- - Direct - 2020 [149]
tion — Chemcad)
CO,/H, 270/35 Chemical (experi- SAPO-11 Direct - 2018 [150]
ment)
CO,/H, 270/30 Chemical (experi- SAPO-18 Direct - 2016 [151]
ment)
CO,/H, 270/50 Chemical (experi- HSIW over Direct - 2016 [152]
ment)
CO,/H, 270/50 Chemical (experi- Mesoporous Direct - 2016 [152]
ment)
CO,/H, 270/50 Chemical (experi- Alumina Direct - 2016 [152]
ment)
CO,/H, 250/30 Chemical (experi- v-AlL0; Direct - 2017 [153]
ment)
CO,/H, 270/50 Mathematical model | Cu—ZnO/Al,0, - - 2022 [154]
(CZA)
C0/CO,/H, 275/40 Chemical (experi- | Cu0-Zn0-Zr02/ Direct - 2021 [155]
ment) SAPO-11
C0/C0,/H, 250/60 Modeling and Cu—Zn0/Al,04 Direct - 2017 [156]
simulation HZSM-5
CO,/H, 220-270/50 Sustainable DVME - Direct - 2016 [157]
synthesis—design
CO,/H, 200740 Fixed bed membrane |  Cu—Zn0/Al,0, Direct - 2021 [158]
reactor HZSM-5
CO,/H, 260/30 Direct synthesis | Cu—Zn0-Zr0, with Direct - 2018 [159]
WOx/Zr02
CO,/H, 260/30 Direct synthesis | Cu—Zn0-Zr0, with Direct - 2018 [160]
WOx/Zr0,
CO,/H, 240/50 Modeling (dual Cu—Zn0/Al,04 Direct - 2016 [161]
membrane reac- HZSM-5
tor)
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Table 11. (continued)

FEED T (°C)/P (bar) Method Catalyst Pathways  Purity (%) Publication year Source
C0/C0,/H, 275/30 Chemical (experi- Cu—Zn0-Zr0, Direct - 2018 [162]
ment)
CO,/H, 260/30 Chemical (experi- | Cu—Fe—La/HZSM-5 Direct - 2016 [163]
ment) and Cu—Fe—Ce/
HZSM-5
CO,/H, 275/40 Chemical simulation | Cu—Zn0/Al,0, Direct - 2022 [164]
(Aspen Custom HZSM-5
Modeler)
C0/C0,/H, 250/50 Chemical (Experi- - Direct - 2018 [165]
ment/Matlab)
CO,/H, 230/30 Chemical (experi- CZZH-300 Direct - 2016 [166]
ment)
CO,/H, 230/30 Chemical (experi- CZZH-400 Direct - 2016 [166]
ment)
C0/CO,/H, 305/70 Chemical (experi- | Cu0-Zn0-Zr0,@ Direct - 2019 [167]
ment) SAPO-11
CO,/H, 80/35 Chemical simula- Cu—Zn0/Al,04 Direct 99.99 2019 [168]
tion (Aspen Plus/
Matlab)

formate formation. Pd produced a substantial amount of CO,
but it also performed well in the synthesis of FA.3!7>18
Various methods for producing FA include electrochemical,
photochemical, and hydrogenation. In contrast to the other
methods, the electrochemically facilitated carbon dioxide con-
version to FA requires lower temperatures and pressures, low-
ering operating and production costs. This explains why most
of the CO, conversion to FA studies are via the electrochemical
method. Nevertheless, there is still a limit to the metal cata-
lysts” selectivity when converting carbon dioxide into certain
compounds.®"? The current photocatalytic system has several
drawbacks that prevent it from being used in industrial settings.
These drawbacks include low visible light consumption, rapid
charge recombination, and poor photogenerated electron and

hole migration capabilities.>2°

Catalyst for CO, conversion to urea

The conventional urea production process is an energy- and
carbon-intensive technology that contradicts the idea of carbon
neutrality. Electrocatalytic urea manufacturing is a promising
and sustainable method since, fortunately, using renewable

24 m MRS ENERGY & SUSTAINABILITY // VOLUME 11 // www.mrs.org/energy-sustainability-journal

energy in electrochemical synthesis has demonstrated consid-
erable potential for producing high-value nitrogen compounds.
However, its large-scale industrial growth is limited by its poor
yield and Faraday efficiency, as well as the uncertain process of
C-Nbond formation. Researchers are looking for electrocatalysts
with improved performance.>?! The various categories of catalysts
used to produce urea are®*! Metal and metal alloys, Metal com-
pounds, and Metal-organic compounds. Electrocatalytic synthesis
is a promising technique with the potential to produce urea more
efficiently and sustainably. Using an electrocatalyst to speed up
chemical reactions can save energy by removing the high pressure
and temperature requirement during electrocatalytic synthesis.>>!
However, there are still several difficulties with electrocatalytic
urea production. First, urea is the final target product. Secondly,
the creation of novel electrocatalysts is the most significant obsta-
cle. Thirdly, a thorough and in-depth investigation of the synthesis
process is the component of mutual reinforcement.’! According
to one study, electrocatalytic urea synthesis requires a Faraday effi-
ciency of 56.2% to compete with the conventional urea synthesis
industry at an average battery voltage of 2.7 V.?2> PdCu/CBC has
achieved the highest Faraday efficiency record of 69.1%.°**
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Table 13. Studies of CO, to FA.

Current FA production
Cathode/anode/ electro- densities rate (mmol/
T(°C)/P(Bar) Method catalyst (mA cm™2) m?s') Publication year Source
25/1 Electrochemical Mp-Sn0, NS 15 - 2019 [14]
Ambient temp./50 Electrochemical Sn Plates/Ir-MMO ~ 100 2(4) 2019 [273]
Ambient temp./1 Electrochemical Sn/C-GDE/Ir-MMO 200 438 2017 [274]
- Electrochemical |Sustainion anion membrane 140 - 2017 [275]
Ambient temp./1 Electrochemical Sn/C-GDE/Ir0, 140 6.8 2017 [275]
Ambient temp./1 Electrochemical Ir0, 450 - 2020 [276]
Ambient temp./73 Electrochemical - - 75 2019 [277]
Ambient temp./30 Electrochemical Sn plate/Ti/Ir0,—Ta,05 50 2.1 2018 [278]
20/1 Electrochemical | Sn/Bi-based electrocatalyst 300 1.15 2020 [279]
20/1 Electrochemical | Sn/Bi-based electrocatalyst 300 5.61 2020 [279]
60/1 Electrochemical Sn0, electrocatalyst 500 - 2020 [280]
20/1 Electrochemical Sn0, pNWs 438 - 2017 [281]
- Electrochemical Sn0, nanoparticles 147 46 2018 [282]
- Electrochemical |Sn0, nanoparticles (<5 nm) 145 64 2018 [282]
- Electrochemical | Nitrogen-doped graphene 7.5 - 2016 [283]
40/1 Electrochemical |Electrodeposited Sn particles ~1.6 - 2016 [283]
(~500 nm)
20/1 Electrochemical |Electrodeposited Sn (~1 pm ~10 - 2016 [284]
thick)
500/1 Electrochemical Sn quantum sheets/GO 18.8 - 2017 [285]
500/1 Electrochemical (Tin quantum sheets (~5 nm) 21.1 - 2017 [285]
25/1 Electrochemical | Tin oxide Sn0, nanoparticle 385x19 149+0.8 2019 [286]
25/1 Electrochemical Tin (Sn) nanoparticle 214 +6 74+0.6 2019 [286]
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Table 13. (continued)

Current FA production
Cathode/anode/ electro- densities rate (mmol/
T(°C)/P(Bar) Method catalyst (mA cm™?) m?s") Publication year Source
27/1 Electrochemical | Sc- and Ti-porphyrin-like - - 2021 [287]
graphene
200/1 Electrochemical |Chain-like mesoporous Sn0, 13 - 2019 [288]
- Electrochemical |sulfur-modulated tin (Sn(S)) 55 - 2017 [289]
500/1 Electrochemical Sn(S)/Au 51.1 - 2017 [289]
20/15-30 Electrochemical Sn cathode 90 2016 [290]
100/1 Electrochemical | SnO,@multiwalled carbon 8.5 - 2019 [291]
nanotube COOH
500/1 Electrochemical Wire-in-tube Sn0, - - 2018 [292]
25/1 Electrochemical Sn-CF1000 11 - 2018 [293]
25/1 SnS,/rGO 11.7 - 2016 [294]
500/1 Electrochemical [Electrodeposited Bi dendrites 14.6 - 2016 [295]
25/1 Electrochemical Bi nanoflake ~1 - 2017 [296]
25/1 Electrochemical Bi dendrite 24 - 2017 [297]
25/1 Electrochemical Bi nanosheets 16.5 - 2018 [298]
25/1 Electrochemical | Ultrathin Bi nanosheets 12.5 - 2018 [299]
25/1 Electrochemical | Few-layer bismuth subcar- 8.5 - 2018 [299]
bonate nanosheet
25/1 Electrochemical Sulfide-derived Bi 4.2 - 2018 [299]
25/1 Electrochemical P-orbital localized—Bi 54.1 - 2018 [300]
70/1 Electrochemical BiOx/C 1.35 - 2018 [301]
24/1 Electrochemical Bi—PMo nanosheets 30 - 2019 [302]
25/1 Electrochemical Bi,0,—NGQDs 16.6 - 2018 [303]
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Table 13. (continued)

Current FA production
Cathode/anode/ electro- densities rate (mmol/
T (°C)/P(Bar) Method catalyst (mA cm™?) m?s") Publication year Source
20-25/1 Electrochemical Mp-Bi 15 - 2018 [304]
25/1 Electrochemical NTD-Bi 42 - 2019 [305]
25/1 Electrochemical Hp-in catalyst 67.5 - 2019 [306]
25/1 Electrochemical Sulfur-Doped Indium 58.9 2019 [307]
25/1 Electrochemical | Dendritic Indium foams 6 - 2018 [308]
25/1 Electrochemical Co40, nanofibers 0.5 - 2018 [309]
15/60 Electrochemical |Sn NPs (Sn/C-GDEs)/ DSA/O, 200 4.38 2018 [310]
(Ir-MMO on Pt)
15/60 Electrochemical |Sn NPs (Sn/C-GDEs)/ Ir0, on 140 2.22 2018 [310]
Toray paper
15/ 60 Electrochemical |Sn NPs (Sn/C-GDEs)/ Ir0, on 140 4.63 2018 [310]
Toray paper
220/1 Electrochemical | Ultrathin Cos0, (1.72 nm) 0.68 - 2016 [311]
220/1 Electrochemical | Partially oxidized atomic ~10 - 2016 [311]
cobalt

Electrochemical Cu-CDots nanocorals ~4.2 - 2016 [312]

Electrochemical Pd catalysts 22 - 2016 [313]
70 Electrochemical CF-CO2R 51.7 - 2018 [314]
25/1 Electrochemical Pd—Sn alloy - - 2017 [315]
25/1 Electrochemical Tiny rod-shaped Sn - - 2018 [316]
25/1 Electrochemical Sn/CNT-Agls 32.9 82.7 2017 [317]

Catalyst for CO, conversion to syngas

The various categories of catalysts used to produce Syngas

for industrial-scale application.”®* The addition of promot-
ers was analyzed to support the catalyst’s catalytic activity

are primarily homogeneous and heterogeneous. Because of
their accessibility and low cost, non-noble metal-based cata-
lysts like nickel (Ni) and cobalt (Co) were frequently considered
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Table 14. Studies on CO, to urea.

Faradaic
Urea formation efficiency Publication
FEED T(°C)/P (bar) Method Catalyst (mmol g~"h™") (%) Yield (%) year Source
C0,/N,D/0,/ 178/1 Chemical - - - - 2020 [318]
H,0 (Simulation-
Aspen Hysys)
o, 25/1 Electrocatalytic | Nano-FeTi04 - - 2017 [319]
surface
CO,/N, 40/1 Electrochemical Te—Pd NCs - 10.2 82.3 2020 [320]
Reduction
CO,/N, 25/1 Photoelectro- - 98.5 22.1 2022 [321]
(N,CO2RR) chemical
reduction
C0,/diamine 150/80 ZnO/KF/Al,04 Zn0/KF/Al,0, 2020 [322]
C0,/amines 150/30 Electrochemical Y,(C,04)5 - - - 2016 [323]
C0,/amines 80/50 Chemical (Syn- - - - - 2017 [324]
thesis)
o, 170/40 Chemical KATriz - - - 2018 [325]
(experiment)
CO,/N,/NH4/ 100/160 Chemical - - - - 2018 [326]
0,/Ar (simulation-
Stamicarbon
process)
CO,/NH, 275/100  |Chemical (simu- - - - 2016 [327]
lation-looping
process)
CO,/NH, 180/150 Chemical - - - - 2016 [327]
(Simulation-
Aspen Hysys)

techno-economic sustainability of homogeneous catalysts for

industrial production will require additional evaluations.’

Catalyst for CO, conversion to methane

CO, methanation over a variety of metal catalysts, Ru,”*°
Ni,°%" Co,°2® and Fe,’?° has been studied for effective and eco-
nomical production. There are two types of catalytic systems:

homogeneous and heterogeneous.”®” Controlling single-site
catalyst performance during design and synthesis has proven to
be a difficult part of developing homogeneous catalysts.’* The
assessments reveal that electrocatalytic homogenous conversion
of carbon dioxide to fuel is still under development for optimiz-
ing catalyst characteristics and operating conditions for larger
applications. Furthermore, recent studies mainly evaluated
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Table 15. Studies of CO, to building materials.

Operating condition

FEED and blender-type Technologies (°C/har) Products Publication year Source
co, C0, Curing 25/1 - 2021 [329]
co, Carbonation 45/6.5 Portland cement-based 2022 [330]
concrete
o, CO, Curing 29/297 - 2017 [331]
o, - 45/75 - 2016 [332]
co, C0, Curing 10/7 Ultra-high-performance 2022 [333]
concrete (UHPC)
Co, C0, based-cements 2711 - 2016 [334]
o, C0, based-cements 23-25/1 - 2017 [335]
o, Carbonation 40/30 - 2022 [336]
co, €0, Curing 25/36 Artificial aggregates 2022 [337]
o, Carhonation 80/0.03-0.1 - 2022 [338]
co, Carbonation 20/117.3 Calcite 2016 [339]
o, Carbonation 25/1 - 2021 [340]
Co, Carbonation 25/1 Calcite 2017 [341]
o, Carbonation 150/30 Calcite 2018 [342]
o, Carbonation 70/1 Calcite 2016 [343]
o, Carbonation 25/1 Calcite 2016 [344]
co, Carbonation 50/1 Calcite 2018 [345]
co, CO0, Curing 22/2 Engineered cementitious 2018 [346]
composite
co, Carbonation 25/1 Fly ash concrete 2016 [347]
co, C0, Curing 20/1 Cement pastes 2020 [348]
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Table 15. (continued)

Operating condition

FEED and blender-type Technologies (°C/har) Products Publication year Source
co, C0, Curing 23/0.1 Curing Portland cement- 2018 [349]
based materials
co, C0, Curing 23/0.1 Hardening of cement 2019 [350]
pastes
o, Experimental Carbonation 40/1 Recycled concrete aggre- 2021 [351]
gates
Co, Carbonation 25/(0, 7.5 and 15) Concrete 2016 [352]
o, C0, Based-Cements 100/1-5 Cyclic Carbonates 2020 [353]
o, CO0, Based-Cements 35-38/1 Concrete 2016 [354]
co, C0, Based-Cements and 22/0.1-50 Concrete 2020 [355]
CO, Curing
co, €0, Curing 25/1 Concrete 2018 [356]
co, €0, Curing 20/1 Concrete 2018 [357]
co, Carbonation 25/1 Concrete 2021 [358]
o, - 25/1 Aggregates 2022 [359]
o, 25/1 Building materials 2021 [360]
o, Carbonation 25/2,4.6 Concrete 2020 [361]
o, C0, Curing 25/1 Concrete 2021 [362]
co, CO0, Curing 25/1 Concrete 2021 [329]
o, €O, Curing 25/1 - 2022 [363]
co, C0, Curing 23/1 Concrete 2021 [364]
co, C0, Curing 25/1 Concrete 2016 [365]
o, CO, Curing 25/10 - 2020 [366]
o, C0, Based-Cements 25/1 Cement 2020 [367]
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Table 15. (continued)

Operating condition

FEED and blender-type Technologies (°C/har) Products Publication year Source
co, C0, Based-Cements 25/244 Concrete 2022 [368]
co, C0, Based-Cements 25/163 Concrete 2022 [368]
Co, C0, Based-Cements 25/261 Concrete 2022 [368]
Co, C0, Curing 25/1 Cement and concrete 2021 [369]
o, C0, Curing 25/1 Concrete 2019 [370]
o, C0, cement-based 25/1 SCMs 2018 [371]
C0, and solid wastes €0, Curing 20/12 Concrete 2022 [372]
C0, and saturated brine Carbonation 120/280 Cement 2019 [373]
C0, and industrial wastes C0, Curing 25/25 Concrete 2019 [374]
(fly ash, blast furnace
slag, and red mud)
CO0, and fly ashes Carbonation 75/350 Ordinary Portland cement 2018 [375]
(0PC)
CO0, and fly ashes Carbonation 20/1 - 2016 [376]
CO0, and fly ashes Carbonation 30/1 - 2017 [377]
Fuel ash and CO, C0, Curing 20/1 Magnesium oxysulfate 2020 [378]
cement
Fuel ash and CO, C0, Curing 25/1 Magnesium oxychloride 2016 [379]
cement (MOC)
co, CO0, Curing 23/1 Nano-calcium carbonate 2018 [380]
co, C0, cement-based 80-150 and 600-800/3 | Calcium sulfoaluminate 2021 [381]
and 4 cement
co, C0, cement-hased 25/1 Cement 2019 [382]
co, C02 cement-based 25/1 Cement 2016 [383]
Co, C0, Curing 28/6 Aggregate and prepared 2020 [384]
concrete
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Table 15. (continued)

Operating condition

FEED and blender-type Technologies (°C/har) Products Publication year Source
co, C0, Curing 20-80/546 Concrete blocks 2016 [385]
co, C0, Curing 23/156 Construction materials 2019 [386]
Co, Carbonation 20/1 Concrete 2018 [387]
C0, and slurry waste Carbonation 260/300 Concrete 2016 [388]
o, CO, Curing 25/0.1 and 4 Concrete 2016 [389]
o, Carbonation 29/0.7 Cement 2018 [390]
co, C0, Curing 20/1 CaC0, 2016 [391]
C0,, concrete slurry CO0, Curing 60/0.1 Cold-bonded lightweight 2020 [392]

waste (CSW), and fine aggregates (CBLAs)

incineration hottom

ash (IBA)
co, C0, cement-hased 115/7 Carbonate aggregates 2017 [393]
Cco, Carbonation 25/37.4 MgO cement and Mg0- 2020 [394]

Portland binary cement

o, Carbonation 25/9.93 Aggregate 2017 [395]
Co, Carbonation 105/0.1 Aggregate 2021 [396]
o, Carbonation 25/0.1-5 Concrete aggregates 2017 [397]
o, Carbonation 20 —80/10 - 60 - 2017 [398]
co, Carbonation 20/1 - 2018 [399]
co, Carbonation 25/1 - 2017 [400]
co, Carbonation 50/10 - 2016 (401]

heterogeneous catalysts for direct carbon dioxide conversion
to syngas.’?® Heterogeneous catalysis powered by sunlight has
proven to be a viable and economical approach for converting
CO, to methane.®?

Several new metal catalysts and production techniques known
as the Sabetier reaction have been discovered. Studies revealed

that Ru was the most active catalyst at the time.?2¢ Thermo-
dynamics dictates that moderate temperatures (T<300 °C,
P<10 bar) are required to obtain the desired quality without
needlessly increasing pressure. In such cases, the design of the
catalyst is crucial for overcoming kinetic constraints, achiev-
ing adequate reaction rates, and minimizing reactor volumes.
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Table 16. Studies on CO, to syngas.

Operating
conditions
FEED Process (°C/bar) Catalyst Publication year Source
C0,, solar light and H,0 Photochemical 95/1 Au@Cr,0,4 2022 [404]
co, Photochemical 20/1 Polyoxometalates/Rull Composite 2020 [405]
C02 and N Photochemical 25/1 TEOA and COF1-g-C;N, 2022 [406]
o, Photochemical 25/1 Ni-Cos 0, NSDHN 2022 [407]
o, Photochemical 25/1 Co-TBAPy 2022 [408]
o, Photochemical 25/1 Hexanuclear cobalt metal-organic 2017 [409]
co, Photochemical 25/1 (Co/Ru).-Ui067(bpydc) 2019 [410]
o, Photochemical 25/1 CdSNRs/Fe(lll)Salen 2020 [411]
€0, and H,0 Photochemical 25/1 Coll(Ch) 2016 [412]
co, Photochemical 25/1 [Cos(btz)5(NO3),(H,0),] 2022 [413]
co, Photochemical 80/1 LDH 2021 [414]
o, Photochemical 80/1 LDH/TIC (1.7-1.0) 2021 [414]
o, Photochemical 80/1 TiC 2021 [414]
o, Photochemical 80/1 LDH/TIC 2021 [414]
o, Photochemical 80/1 LDH/TIC-1.2 2021 [414]
o, Photochemical 25/1 LDHSs, Ce-x 2021 [415]
€0, and H,0 Photochemical 25/1 Pd/layered double hydroxide 2019 [416]
nanosheets
co, Photochemical 120/1 Fe/Ni MOFs 2020 [417]
co, Photochemical 25/1 Fe-SAs/N-C 2020 [418]
€0, and H,0 Photochemical 25/1 Cobalt bipyridyl complex 2018 [419]
€0, and H,0 Photochemical 25/1 MnOx and CuPt 2018 [420]
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Table 16. (continued)

Operating
conditions
FEED Process (°C/bar) Catalyst Publication year Source
€0, and H,0 Photochemical 25/1 Rh-Au@ST0 2016 [421]
o, Photochemical 25/1 BP/monolayer Bi,WO0, 2021 [422]
€02 Photochemical 25/1 CoFe0y nanosheets 2022 [423]
o, Photochemical 25/1 H,Tig0,5 2021 [424]
o, Photochemical 25/1 POM-incorporated CoO UNWs 2020 [425]
o, Photochemical 25/1 Znln, S, nanosheets 2020 [426]
co, Photochemical 25/1 M-N-C 2020 [427]
co, Electrochemical 25/1 Palladium-based 2020 [428]
Co, Photochemical 25/1 Transition metal nitrides 2020 [429]
o, Photochemical 25/1 Co and Ni single-atom 2020 [430]
o, Photochemical 25/1 Cobalt—carbon composite 2020 [431]
o, Electrochemical 25/1 Cu/In,04 2018 [432]
o, Photochemical 25/1 Amorphization-activated copper 2022 [433]
indium core—shell
o, Electrochemical 25/1 - 2017 [434]
co, Photochemical 550/20 - 2020 [435]
co, Photochemical 25/1 40LaNi0.75Fe0.250,/Si0, 2018 [436]
€0, and H,0 Thermochemical | 560-700/1 Doped ceria-zirconia materials 2020 [437]
o, - 300-900/1-20 Ethanol and glycerol 2019 [438]
€0, and glycerol Photochemical 100/1 Ag-Ni/Sio, 2016 [439]

Nickel is an affordable and readily available active material that ~ enhancing low-temperature activity is challenging when utilizing
can accomplish these reaction rates. On nickel catalysts, high  Ni-based catalysts for carbon dioxide methanation since high-
values (>99%) of selectivity are readily attained.”>” However,  temperature reactions are constrained by chemical equilibrium
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Table 17. Studies on CO, to fuels.

Operating Publication
FEED Catalyst conditions Products year Source
Co, Fe-Mn—K 300/10 Jet fuel 2020 [440]
co, CuFe0, 300/10 Liquid fuels and olefins 2017 [441]
co, Fe—Co/K/Al,0, 300/11 Liquid fuels and olefins 2017 [441]
co, Na—Fe;0,/HZSM-5 320/30 High-density and high-value 2019 [442]
fuels
co, FeNa 320/30 Light olefins 2016 [443]
€0, and H, Na-Fe;0,/HMCM22 320/30 Isoparaffins 2018 [444]
C0, and H, Fe,0,_CT600 350/15 Cs,, hydrocarbons 2017 [445]
€0, and H, Cys/MnO, 200/80 Liquid fuel 2019 [446]
€0, and H, Fe—Zn—Zr@HZSM5-Hbeta 340/50 Isoalkanes 2016 [447]
co, AU-H 25/5 Fuel 2016 [448]
co, Palladium-gold 25/1 C, to C5 hydrocarbons 2016 [449]
o, nickel phosphides 35/10 C, and C, oxyhydrocarbons 2018 [450]
o, Cu-containing metal 25/10 C,, hydrocarbons (oxygenates) 2018 [451]
o, Nanoporous Cu films 25/1 Ethylene or ethane 2016 [452]
co, Anodized Cu 25/1 Ethylene 2018 [453]
o, Copper nanoparticle 25/1 C,—C5 products 2017 [454]
co, Nano dendritic copper 60/1 Ethylene 2017 [455]
co, Porous Cu 25/1 Ethene 2017 [456]
co, CuO-derived copper 25/1 C2 products 2017 [457]
o, Polycrystalline copper 25/1 C=>2 Products 2017 [458]
o, 3,5—Diamincz—DkTZ)A—triazole 25/1 Ethylene and ethanol 2018 [459]
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Table 17. (continued)

Operating Publication
FEED Catalyst conditions Products year Source
co, Hydroxide-mediated copper 25/1 Ethylene 2018 [460]
€0, and H, Ni/Al,0, 900/2.3 Fuels, methanol, and 1-pro- 2021 [461]
panol
€0, and H, Heterogeneous Review | CH,, lower olefins, gasoline, or 2018 [462]

long-chain hydrocarbons

C0, and H, NiWMgOx 300/1 Methane 2016 [463]
€0, and H, — (Thermochemical) —/- Methane 2018 [464]
C0, and H, 10Ni/Ce-~Zr0, 275/1 Methane 2017 [465]
€0, and H, Ni (electrochemical) 25/1 Methane 2021 [466]
€0, and H, 20% Ni/55% g-Al,0,-15% 300/1 Methane 2016 [467]
Zr0,~15% Ti0,—15% Ce0,
€0, and H, 10% Ni/Tio, 350/1 Methane 2016 [468]
€0, and H, One-pot tandem (electrochemi- —/- Methane 2019 [469]
cal)
€0, and H, 10Ni3Pr/Al,04 400/1 Methane 2017 [470]
€0, and H, Tw-Cu and Pc-Cu (electrochemi- | 400/1 Methane 2016 [471]

cal) Co-80% A0,

C0, and H, Solid basic oxides (photocata- 25/1 Methane 2020 [472]
lytic)
€0, and H, Pt@CSN 320/30 Methane 2017 [473]
€0, and H, Ag/In,04/Ti0, (photocatalytic) 50/2 Methane 2022 [474]
€0, and H, 2.5% Ru/P25 200/1 Methane 2016 [475]
€0, and H, Ru/Ce0, 300/1 Methane 2017 [476]
€0, and H, 20% Fe/cube-Ce0, 390/1 C,, hydrocarbons 2016 [477]
€0, and H, 10K13Fe2C0100Zr0, 400/30 C,. hydrocarbons 2018 [478]
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Table 17. (continued)

Operating Publication
FEED Catalyst conditions Products year Source
€0, and H, Ce0,—Pt@mSi0,—Co 250/6 C,, hydrocarbons 2017 [479]
€0, and H, 0.05MnFe 340/1 C,, hydrocarbons 2018 [480]
€0, and H, InZr0/SAPO-34 320/20 C,, hydrocarbons 2017 [481]
€0, and H, In,05/HZSM-5 340/30 C,, hydrocarbons 2017 [482]
€0, and H, In—Zr/SAPO-34 400/30 C,, hydrocarbons 2017 [483]
€0, and H, Na—Fe;0,/HZSM-5 320/30 C,, hydrocarbons 2017 [484]
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Figure 7. Global distribution of CO, conversion facilities.
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Figure 8. Global CO, conversion facilities based on products.

46 ® MRS ENERGY & SUSTAINABILITY // VOLUME 11 // www.mrs.org/energy-sustainability-journal

Figure 9. Percentage share of published articles.

and energy conservation. Due to their excellent thermal stability
and low cost, traditional metal oxides continue to be the most
promising support for optimizing Ni-based catalysts for car-
bon dioxide methanation.*®® Ni exhibits strong action toward
methane and excellent selectivity. However, as heat evolves
from the extremely exothermic methanation reaction, conven-
tional Ni-catalysts experience deactivation due to the sintering
of the Ni particles. Further catalyst degradation is caused by
coke deposition and the production of volatile nickel carbon-
yls. Additionally, Ni raises toxicological concerns. On the other
hand, Fe has poor selectivity but a very high activity for CO,
activation. Fe is 180 times less expensive than nickel since it
is far more abundant and nontoxic than nickel.??’ Besides Ni,
there are other metals that are active in methane production via
carbon dioxide. These metals for methane catalysts are based
on their activity (Ru>Fe>Ni> Co) and selectivity to methane
(Ni>Co>Fe>Ru).?*



Table 18. Characteristics of the various methods of CO, conversion.

Method Products Advantages Disadvantages
Photochemical FA and methane,** urea syngas, Eco friendly Product and catalyst separa-

urea Cost-effective tion is difficult

Energy consumption is less Low product yield

Low product selectivity

Electrochemical
urea

Formic acid, methanol, fuel 49249

Catalyst life span is low
High OPEX
Require high electrical energy

Scale-up is easy
Additional heat is not required

9,493
|Y

Thermal Methane, methano

High Yield High-temperature requirements

Chemical Urea, DME, methanol®

CO0, is used as raw materials High cost

Future perspective

Carbon dioxide utilization is a possible way of reducing the
cost of the CCS value chain. Converting the captured and stored
carbon dioxide into value-added products could reduce the costs
of building new CCS facilities or retrofitting existing ones. This
process is known as integrated carbon capture storage and utili-
zation (CCSU). The utilization pathway of carbon dioxide could
be economically sound, and its usage is increasing drastically
worldwide in various sectors: chemical, fuel, agriculture, and
mineralization through direct or indirect processes. However,
the research analysis showed that the successful conversion of
CO, to value-added products depends on the type of catalyst,
hydrogen availability, energy requirements, and economics,
among other factors. This implies that the energy requirements,
the type of catalyst used, and the sources of hydrogen production
could go along way in determining the process’s cost-effective-
ness, yield, efficiency, and sustainability.

The literature analysis showed that synthesizing chemical
intermediate products like methanol DME and polymers often
occurs at high temperatures and pressures, exceptin the study
of Gonzalez-Garay et al.,” which produced methanol at low
temperatures (25 °C) and pressures (1 bar). The increased
cost is one significant implication of producing these mate-
rials from CO, at high temperatures and pressures. Reduc-
ing the energy requirements will help drive down the associ-
ated costs of the process, thereby making a good economic
case for the CCSU process. Consequently, more research on
reducing the energy requirements while improving the yields
for chemical intermediates and polymer synthesis from CO,
should be investigated. Furthermore, more emphasis should
be placed on Gonzalez-Garay et al.”’s work on methanol syn-
thesis, where they simulated methanol production at near
atmospheric conditions of 25 °C and 1 bar. Their work should
be further investigated to see how the energy requirements
of methanol and, by extension, DME and polymers could be
reduced.

The development of competitive catalytic technologies for the
selective catalytic hydrogenation and other carbon dioxide con-
version processes to products offers a path forward to reducing
the enormous carbon dioxide emissions from fossil fuels by con-
verting them to valuable materials and products. Catalysis and
catalyst developmentis a growing research interest in converting
CO, to fuels and chemical products. However, there is still no
preferable approach and a better class of efficient catalysts for
converting CO, to fuels and chemicals in terms of cost-efficiency
and optimum production.’** From the analysis of the published
literature, most of the catalyst used in the conversions are inef-
ficient and requires some reducing agents/metal-based materi-
als. Itis anticipated that cost-effective, efficient, and sustainable
catalyst development represents a challenging problem in the
different CO, to chemical/fuel synthesis. Therefore, researchers
should focus on developing efficient and cost-effective catalysts
for CO, conversion processes.

Hydrogen is vital to the CO, hydrogenation process, syngas
synthesis, and urea production. A cleaner, cost-effective, and
efficient technology for hydrogen production will go along way
in enhancing a sustainable CO, conversion process. Various
categories of hydrogen production techniques, including the
conventional hydrogen production process from fossil fuels,
thermolysis, solar energy processes, water electrolysis, and other
novel methods, can be further researched to find a reliable, suit-
able, sustainable, and cost-effective way of hydrogen production
required for an efficient CO, conversion process. Researchers
should optimize proper hydrogen production techniques to
make the CCS process economically viable.

Calcium carbonate (CaCOj3) can be used in many applica-
tions, including building materials. The conversion of CO,
to CaCO; can help protect the depleting limestone (natural)
resources. Published works on this subject have shown the pos-
sibility of converting CO, to calcium carbonate (CaCO3) Inone
such study, CO, was converted to CaCO; when passed through
a Nickel catalyst.?®! In another study, CO, was converted to
CaCO; using genetically altered yeast.>*? Other studies on CO,
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conversion to CaCO; used the amine looping strategy,®> mem-
brane gas absorption,>*” and ultrasonic carbonization.’>* The
application of CO, in construction materials is gaining traction.
Even if the industrial trials mentioned in the above research pub-
lications demonstrate that CO, may be employed in construction
components, scalability and market viability are still impacted by
avariety of factors. Some challenges in the production of build-
ing materials via CO, usually include the unavailability of raw
materials, the cost of carbonated products, and the distance of
CO, source and suitability. Others are carbonation reaction and
processing and the construction codes and standards. It is chal-
lenging to commercialize these items on a broad scale due to
thelack of strict adherence to construction standards and rules.
Another issue is that construction codes frequently describe
the materials’ composition rather than the performance crite-
ria, making them more prescriptive than performance-based.
In the short to medium term, there is a tremendous opportu-
nity for CO, usage in the market for construction materials.
Although several chemical and biological use approaches are
more advanced in process technology than carbonation-based
concrete curing, additional study is needed to address signifi-
cantissues with carbonation technology, processing, and market
adoption. Breakthrough studies on the transformation of CO, to
CaCOj; can proffer a profitable pathway for the carbon capture
process and should, therefore, be investigated.

The study showed that most of the existing conversion facili-
ties and published research articles in recent times focused more
on CO, conversion to chemical intermediates, polymers, and
building materials. This suggests that converting CO, to these
products could be critical to CCUS’s economic viability. It also
indicates the viability of the chemical intermediates, polymers,
and building materials markets. Consequently, more studies
should be conducted to create energy-efficient processes and
technologies for improving and optimizing CO, conversion to
chemical intermediates, polymers, and building materials. Fur-
thermore, facilities for converting CO, to fuels are the least glob-
ally. Also, the research publications on fuel production from CO,
are relatively low. Having been identified as one of the poten-
tially viable and promising materials derivable from CO,,'° fuel
synthesis from CO, can become areliable decarbonization strat-
egy for the transport sector, especially the aviation and maritime
industries. These transport industry sectors will continue to play
avital role in globalization and trade and are expected to grow
significantly as the global population increases. The aviation
and maritime industries currently contribute significant GHG
emissions, resulting in global warming and severe environmen-
tal consequences. Hence, utilizing gaseous or liquid fuels in both
sectors can help achieve net-zero targets and carbon neutrality
in critical transport industry sectors.

Consequently, more studies are required in CO, conversion
to aviation and maritime fuels to decarbonize the sectors and
gain more insights into CO, conversion to fuels. Furthermore,
the importance of urea fertilizer in crop production and food
and energy security cannot be over-emphasized. Hence, further
investigations are needed to expand the frontiers of CO, conver-
sion to these products.
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Conclusion

Carbon dioxide utilization offers a pathway for reducing the
costs of the CCS process, producing carbon-neutral products,
and endearing a sustainable environment. This review has ana-
lyzed the existing global CO, utilization facilities based on loca-
tion and product type. Furthermore, published articles on CO,
conversion to materials identified in the CO,U'® report as viable
priorities for CO, utilization were also analyzed. The analysis of
the conversion facilities was done based on a 90% confidence
limit within a 9.93% margin of error. Likewise, the study on the
published articles was done based on a 95% confidence limit
within a 5% margin of error. The following conclusions can be
drawn from the study.

1. Over 90% of global CO, conversion facilities produce
chemical intermediates, urea, polymers, and building
materials, and less than 10% produce fuels.

2. More than half of the global CO, conversion facilities are
in South-East Asia (mainly China), with the remaining in
Western Europe (23%), North America (20%), and Oce-
ania (3%). Developing countries in Africa, Central and
South America, and others are far behind in the CCSU
process as there are currently too few or no CO, conver-
sion facilities in those regions. This is a call for concern
with respect to the global clean energy initiative.

3. The analysis of the research publications from 2016 to
2022 shows that the research focus is currently on CO,
conversion to chemical intermediates, polymers, building
materials, and fuels (over 95%) and less on urea.

4. Afuture perspective on CO, conversion includes increas-
ing research output and conversion facilities on fuels to
specifically help decarbonize the aviation and maritime
sectors while adopting energy-efficient processes and
technologies for cost-effective and efficient CO, conver-
sion.
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