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Abstract
In view of the paradigm shift toward data-driven research in materials science and engineering, handling large amounts of data becomes increasingly 
important. The application of FAIR (findable, accessible, interoperable, reusable) data principles emphasizes the importance of metadata describing 
datasets. We propose a novel data processing and machine learning (ML) pipeline to extract metadata from micrograph image files, then combine 
image data and their metadata for microstructure classification with a deep learning approach compared to a classic ML approach. The ML model 
attained excellent performances with and without metadata and bears potential for performance improvement of further use cases within the 
community.

Introduction: motivation
Research in materials science and engineering (MSE) is subject 
to a paradigm shift with data-driven science emerging as a new 
field and big data being the new resource for scientific break-
throughs.[1,2] In order to handle large amounts of data and, more 
importantly, enabling new discoveries through data explora-
tion, good data management is crucial.[3] In 2016, Wilkinson 
et al. have proposed the FAIR guiding principles for research 
data management and stewardship, designed by various stake-
holders from academia, industry, publishing, and funding.[3] 
Since then, the GO FAIR initiative was founded, aiming to 
implement the FAIR data principles (go-fair.org), and numer-
ous others have decided to lead by example (e.g.,  FAIRmat[4]). 
In order to satisfy the FAIR guidelines, research data must be 
Findable, Accessible, Interoperable, and Reusable (go-fair.org/
fair-principles), as prerequisites for widespread usability in the 
scientific community. Scheffler et al. reinterpreted the acronym 
as ‘Findable and AI-ready,’ properties of research datasets they 
deem indispensable for future scientific research, especially 
regarding their use in AI or machine learning applications.[4] 
In order for research data to be considered as FAIR, an impor-
tant property is their richness in metadata, on which the com-
munity puts a special focus.[5,6] Metadata provides informa-
tion on the dataset itself and its main purpose is to facilitate 
organization and findability of the data, by supplying, e.g., 
details on the authors, purpose of the data, or the data acquisi-
tion.[7] The thorough collection and usage of metadata aim to 
increase the reproducibility of research findings, also enabling 
other researchers within the community to reuse the data and 

reproduce experiments, which unlocks the potential to greatly 
ameliorate collaboration within the community as well as to 
facilitate reviews and verification of research findings in order 
to ensure high-quality research.[4,7] In addition, with the emer-
gence of artificial intelligence (AI) and machine learning (ML) 
and the reuse of research data, it is of relevance to investigate 
the role metadata can play in machine learning applications.

A significant application of machine learning in materials 
science is the use of convolutional neural networks (CNN)—
a type of artificial neural networks for image analysis—for 
micrograph analysis, especially microstructure characteriza-
tion, as performed by,[8–12] among others. In fact, this is funda-
mental in the investigation of the correlation between materials 
microstructures and mechanical properties. The microstructure, 
referring to the inner structure of a material, contains a myriad 
of information regarding, on one hand, its genesis and pro-
cessing history, and, on the other, its chemical, physical, and 
mechanical properties.[12] Therefore, the microstructure is con-
sidered the central information carrier of a material,[13] and an 
in-depth analysis of the microstructure and the phases contained 
in it is decisive to understand process–microstructure–property 
relationships. Considering the paradigm change from empiri-
cal process–property correlation to microstructure-based devel-
opment of new  materials1,2 in MSE, an in-depth analysis and 
understanding of the microstructure are all more important for 
materials and process optimization. Similarly, for ML-based 
materials discovery and design, a focus on possible novel 
chemical compositions is not sufficient and a consideration of 
the microstructure is essential,[14] since the microstructure acts 
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as the central pillar when establishing relationships between 
processing and material properties. Typically, microstructure is 
analyzed manually, which can be time-consuming and produce 
qualitative results only, often accompanied by a high degree in 
subjectivity, making the analysis a bottleneck in microstruc-
ture-based materials development. With ever-improving imag-
ing techniques and the recent growth of AI use, we are faced 
with a new set of possibilities when it comes to machine learn-
ing applications for microstructure analysis.[13,15–18] For exam-
ple, ML-supported microstructure analysis has been conducted 
on steel,[12,19,20] nickel-base alloys,[21] ceramics,[22] or metal 
powder.[23] These image analysis tasks can be categorized into 
image classification, (semantic) segmentation, object detection, 
and classification.[23] The most commonly used neural network 
for microstructure analysis are CNN (including, but not limited 
to VGG,[24] Inception,[25] and  Xception[26]), densely connected 
neural networks  (DenseNet[27]), and deep residual networks 
 (ResNet[28]).

In this use case, research data are available in the form of 
image datasets, such as, for example, the ASM Micrograph 
Database,[29] the NEU-DET surface defect database,[30] or 
the Ultra-High-Carbon Steel Micrograph Database.[31] For 
the case of micrographs, Kemmer et al. and Huisnan et al. 
argue that imaging datasets become fully valuable and usable 

only when they are accompanied by abundant metadata.[6,32] 
In fact, this renders datasets reusable by other members of 
the community, as they have at their disposition all neces-
sary complementary information allowing them to utilize the 
dataset and fully understand its significance. Ghiringelli et al. 
emphasize that the reusability aspect of FAIR data especially 
refers to repurposing the research data, which is only possible 
if the dataset is accompanied by rich metadata.[33]

With respect to FAIR research data, we propose the fol-
lowing study on a data management workflow designed for 
usage of micrograph datasets for CNN classification tasks. 
An approach on the combination of image data and patient 
metadata for skin lesion images was proposed by Nunnari 
et al. in the context of the ISIC 2019 skin lesion classification 
challenge dataset, combining images and patient metadata 
which partially led to a significant improvement of the classi-
fication model  performance[34] and inspired the present work. 
In fact, with the recent debate on the cruciality of metadata 
in research datasets, we explore a novel data processing and 
machine learning pipeline whose central pillar is the con-
catenation of image (or pixel) data and metadata in a clas-
sification task, complemented by a study of the classification 
model performance assessing the effect of the added metadata 
on micrograph datasets (Fig. 1).

Figure 1.  General workflow for the establishment of a machine learning model including a preliminary data treatment pipeline.
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Materials and methods: FAIR datasets 
and AI in materials science
Workflow
To even get to the point where image and metadata can be 
combined in an ML model, a preliminary data processing 
pipeline is required, where all the necessary data are trans-
ferred into a processable format. Assuming that a complete 
dataset does not yet exist, the first step is to gather the 
required image data. In this case, we anticipate that a number 
of scanning electron microscopy (SEM) images was already 
recorded and exist in the TIF file format, which contains both 
image (or pixel) information and a range of additional infor-
mation in the form of strings or numerical values, arranged 
in the form of a dictionary, automatically saved upon export-
ing recorded images in the TIF file format. Furthermore, we 
assume that any crucial information regarding the specimen 
the image is taken from is also present, e.g., in tabular form, 
stored in the TIF file, or as substring in the filename of the 
image file. On that basis, metadata on the specimen, the imag-
ing (i.e., SEM parameters), and the image itself are extracted 
from the TIF file. The metadata extraction process differs 
with the version of the TIF file, the form of the dictionary 
used, and the manufacturer of the imaging system, but is 
generally enabled by the Tifffile Python library.[35] For exam-
ple, for Carl Zeiss SEM TIF images, metadata extraction is 
performed using the function sem_metadata, while for FEI 
Company (Field Electron and Ion Company, Hillsboro, OR, 
USA, subsidiary of Thermo Fisher Scientific Inc.) SEM, the 
library provides a function titled fei_metadata. The metadata 
is then converted to a tabular form which can be used in the 
machine learning algorithm, while the image data can remain 
in its original form (i.e., TIF file format). A convenient file 
format for metadata storage is JSON; others may include 
SQLite or CSV, with JSON being, for example, suggested by 
Aversa et al. who propose a GUI-supported mapping service 
for Carl Zeiss SEM metadata.[36]

Image data are loaded using the OpenCV cv2.imread 
module, and metadata is transformed from the CSV file in 
to a Pandas dataframe using pd.read_csv. The metadata is 
then pre-processed by scaling numerical values and one-hot 
encoding categorical values. For the ground truth assignment 
in the form of class labels, in our use case, the dataset is sub-
divided into folders, each containing one class. The classes 
are assigned to the images and then converted to categorical 
data. The metadata is assigned to the respective images via 
the image filename which is a unique identifier for the image.

The CNN classification model consists of two branches, 
one being fed the image data and the other the encoded 
tabular data. Both branches contain one or more convolu-
tional layers, and the obtained feature vectors are concat-
enated and fed into a dense classification layer. Figure 2 
shows a comparison of a single-branch (image data only) 
and a two-branch (image data and metadata) CNN classifi-
cation model. The image classification is performed with a 

ResNet50 backbone pre-trained on the ImageNet database 
(non-trainable weights), followed by a 2D global average 
pooling layer, a batch normalization layer, and two dense lay-
ers (128 and 32 units, respectively), respectively, including 
dropout layers in between. For the model with metadata, the 
metadata is treated using a dense layer (with a dropout layer) 
and then both branches of the model are concatenated. The 
last layer is the classification layer. The example model was 
created for the UHCSDB (Ultra-High-Carbon Steel Micro-
graph Database),[31] which, after pre-processing the metadata 
(i.e., one-hot encoding categorical data), comprises 14 dis-
tinct features fed into the metadata branch, compared to 32 
convolutional features.

Metadata collection and integration
The rich metadata which is required for scientific datasets to 
satisfy the FAIR guidelines generally consists of information 
regarding the author, time, and context of the dataset creation. 
However, metadata can go beyond this—for example, micro-
graph datasets can be complemented by information regarding 
the specimen, such as its chemical composition, heat treat-
ment, and pre-imaging preparation. Therefore, we gathered a 
wide range of metadata for our micrograph dataset. A compa-
rable approach was made by DeCost et al. who proposed the 
Ultra-High-Carbon Steel Micrograph Database (UHCSDB) 
and provided various metadata to add to the micrographs in 
their dataset.[31] They provided information on the magnifi-
cation (including the micron bar) and the detector (imaging 
information) and on annealing time and temperature as well as 
the quenching method (specimen information). The primary 
microconstituent was used as class for the classification task.

For our dataset, consisting of SEM images of high chro-
mium cast iron (HCCI), the metadata comprised (i) image 
metadata: brightness and contrast (as provided by the SEM 
metadata), (ii) imaging metadata: SEM detector, accelerating 
voltage, beam current, working distance, and physical pixel 
width, and (iii) specimen metadata: chromium content, heat 
treatment, temperature of heat treatment, quenching method, 
etchant for specimen preparation, and etching time. Metadata 
concerning authors and context has been collected as well in 
order to complement the dataset for publishing, but it is not 
taken into account by the machine learning model.

Following the concept of data repurposing as stated in the 
FAIR principles, we made use of the large number of SEM 
micrographs of HCCI specimens that had been previously 
recorded for other  purposes[37,38] and gathered them in a new 
dataset of images enriched with the above-mentioned metadata. 
HCCI, a cast iron of the Fe–C–Cr ternary system with a carbon 
content of 2.4–4 wt.% and chromium content of 15–30 wt.% 
according to ASTM  A532[39] is an interesting material for 
machine learning applications, as the microstructure is multi-
scale and multi-phase, showing larger eutectic carbides (EC) 
as well as, for heat-treated specimens (as used in our dataset), 
smaller-scale secondary carbides (SC), which are visualized 
using different etchants and contrasting methods, resulting in a 
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wide variety of contrasts.[40] From the micrographs, using hand-
assigned masks, we extracted smaller tiles of 200 × 200 pix-
els that could be clearly assigned to one of the two classes 
(EC or SC). The full metadata HCCI dataset comprises 460 
full images, of which a total of 5462 tiles were extracted for 
classification.

Tests and methods
An assessment of the CNN classification model was performed 
with two different datasets:

– The UHCSDB as proposed by DeCost et al.[31] a major 
openly available micrograph database with an accom-
panying metadata set in materials science. Since the 
classes in the dataset are highly unbalanced, it is par-
ticularly interesting for ML trainings, especially when 
evaluating a model’s performance. The micrographs were 
classified into 7 folders by their primary microconstitu-
ent class, as shown in Fig. 3. The provided metadata is 
especially interesting because the manufacturing param-

eters are richly described. Efforts were made to com-
plete the metadata table and provide complete metadata 
for the entire dataset. Additionally, the metadata table 
was rebuilt by converting the scale into microns for all 
images, converting the heat treatment duration to hours 
for all images, and changing the order of the micrographs 
to correspond to the order of the micrographs in the fold-
ers. Both filename and the primary microconstituent were 
omitted.

– The above-mentioned self-curated dataset on HCCI speci-
mens for binary classification with an extensive set of 14 
metadata features. The above-mentioned high variance in 
contrast and brightness within the classes makes this data-
set particularly interesting, as seen in Fig. 4. Additionally, 
in contrast with the UHCSDB where the metadata is rich-
est for the manufacturing of the specimens, the metadata 
of the HCCI dataset is focused greatly on the imaging 
(i.e., SEM) information. Before assessing the CNN classi-
fication model itself, for this HCCI dataset, a preliminary 
classification of EC and SC tiles was performed using 
Haralick texture parameters (spatial relationship/depend-

Figure 2.  Classification models for pixel data only (left) and pixel and metadata (right) for the use case of the UHCSDB (14 input features 
for the metadata branch).
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ence of gray values in the  image[20]) and metadata using 
the MathWorks MATLAB Classification Learner app with 

its assistant feature ranking and selection tool and hyper-
parameter optimization.

Figure 3.  Example SEM micrographs from the Ultra-High-Carbon Steel Micrograph Database (UHCSDB). The seven classes were chosen 
according to the primary microstructure constituent of the images: (a) martensite and/or bainite, (b) proeutectoid cementite network 
microstructure, (c) pearlite, (d) pearlite containing spheroidized cementite, (e) pearlite containing Widmanstätten cementite, (f) sphe-
roidized cementite, and (g) spheroidite and Widmanstätten cementite.[31]

Figure 4.  Example SEM micrographs from the High-Chromium Cast Iron (HCCI) database. All micrographs show the eutectic carbide 
class, showcasing the high variance of contrast and brightness of the images within the dataset.
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The primary goal of the assessment was to confirm the proper 
functioning of the metadata-assisted CNN classification model by 
comparing it to the performance of the image-only model. The 
secondary aim was to assess the impact on the performance of the 
model by varying both the dataset and the model (i.e., its back-
bone for feature extraction), as well as using an adversarial exam-
ple. Therefore, firstly, the CNN model with a ResNet50 backbone 
was assessed with respect to its accuracy and loss for training and 
validation (i.e., previously unseen) data, for each dataset. Sec-
ondly, the model performance was tested for different backbones, 
all with the UHCSDB dataset. Thirdly, two adversarial examples 
were used to assess the effect of wrongly used metadata, by first 
purposefully assigning metadata to the wrong images, rendering 
the metadata (and basically the entire dataset) unusable, followed 
by training with correct metadata and validation with images and 
purposefully wrongly assigned metadata, by randomly shuffling 
the metadata of the validation step upon loading.

The metrics used for model assessment were accuracy (num-
ber of correct predictions over total number of predictions) 
and categorical cross-entropy loss (cumulated error) for both 
training and previously unseen validation data, with the aim of 
increasing accuracy and reducing loss. Generally, validation 
loss is the most significant metric, as it reflects the model’s 
performance on unseen data, and therefore qualifies its ability 
to generalize.

Results and discussion
Preliminary tests on hybrid image and metadata classification 
using conventional ML approaches, conducted with the HCCI 
dataset using the MATLAB Classification Learner application, 
have shown an increased accuracy when using a combination 
of features from image and metadata, as compared to image 
information only. Haralick textural features as well as local 
binary pattern were used as image features, resulting in 28 total 
image texture parameters.

A run with texture parameters only yielded an accuracy of 
95.4%, after a reduction to 15 features (by MATLAB Classifica-
tion Learner App automated feature selection) and optimizing 
the hyperparameters. The classification of the metadata only 
yielded an accuracy of 80.2%, with some features having no 
importance for the algorithm at all (e.g., image size as that was 
identical for all images and irrelevant to the tile size), so they 
could easily be omitted. Not all feature ranking algorithms pro-
vided identical results but removing the universally low-ranked 
features allowed to reduce data from 15 to 7 features, resulting 
in an accuracy of 84.5% for metadata only. For the hybrid classi-
fication, a final accuracy of 97.5% was reached, using 15 texture 
and 8 metadata parameters after hyperparameter optimization.

This aligns with the results of hybrid ML models from 
biomedical applications, which reported a benefit from using 
patient metadata.[34,41] These promising preliminary tests were 
the motivation to also test hybrid CNN classifications, since the 
performance of DL models often outperforms that of conven-
tional ML in image processing.

For deep learning classification for both HCCI and UHC-
SDB datasets using our own model, image-only classification 
yields excellent results with a very high validation accuracy 
of up to 98% and little error, surpassing the results from the 
conventional machine learning classification. The performance 
can be increased a little more using data augmentation (rescal-
ing, zooming, and flipping of the images) before the training, 
which is especially relevant for smaller datasets. Using meta-
data results in slightly increased validation accuracy as well 
as a decrease of the error (validation loss). After identifying 
ResNet50 as the optimal CNN backbone, both the use of pixel 
data with data augmentation yielded accuracies of up to 100% 
for the HCCI dataset, compared to a maximum of 98% for pixel 
data only. For the UHCSDB, accuracies reached up to 99% for 
pixel data and 100% for hybrid data. However, with backbones 
as high performing as ResNet50, it is questionable whether the 
use of metadata is significant enough to be worth the additional 
steps of data treatment, especially when data augmentation can 
be done in fast and easy to implement step and yields similarly 
good results. A comparison of various backbones shows that 
ResNet50 overall performs best, with validation accuracies up to 
98% for both image and combined features. In fact, the effect of 
the metadata addition is minimal and falls within the error range 
of the metrics. For in this showcase less high-performing back-
bones, such as VGG16, Inception, or Xception, the improve-
ment of the accuracy when using metadata is generally higher 
(up to 7%), with an accompanying decrease in the loss, but the 
performance does not reach as high as ResNet50. Hence, the 
hyperparameters chosen for the deep learning model, especially 
the backbone, do influence its performance.

Although a slight increase in performance due to the use meta-
data was detectable, the substantial rise in accuracy as seen in 
biomedical CNN  models[34] failed to appear. This is most probably 
due to the fact that the micrographs, recorded with a high-perform-
ing SEM, are already data rich, i.e., they are particularly high in 
details,[23] compared to medical images, such as X-rays. Patient 
metadata therefore probably provides more important features in 
comparison to the features that can be extracted from medical 
images. Additionally, ResNet50 is very high performing in feature 
recognition, which results in an overall excellent performance for 
micrographs alone and an additional use of metadata cannot have 
any major effect. In fact, for other backbones, the overall perfor-
mance was lower but in comparison, the effect due to the metadata 
use increased. In short, in this use case, metadata can be helpful if 
the most appropriate ML approach or the optimal hyperparameters 
were not chosen beforehand. However, with the proper choice of 
ML approach and hyperparameters, baseline models of image only 
classification can outperform other metadata-based classification. 
Thus, the effect of hyperparameter-tuning can outweigh that of 
using metadata when it comes to improvement of the ML model. 
Nonetheless, for applications where users cannot or do not want 
to invest as much time and effort into building and optimizing a 
ML model, using metadata can be a useful approach. In fact, while 
model optimization has a vast impact on its performance, it can 
become complex and may require some guesswork. Therefore, a 
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ML model simply including metadata could be beneficial, robust, 
and easier to build from scratch in this use case. Once a pipeline 
for metadata pre-processing and inclusion into the ML model has 
been established, an incorporation of metadata by default can defi-
nitely prove to be useful.

The general impact of metadata use was tested using a first 
adversary example, where a change in the train-test split seed 
resulted in metadata getting wrongly assigned to the image data, 
rendering it unusable. The resulting performance of the hybrid 
model was similar to that of the image model, showing that with-
out useful metadata, a hybrid model serves no purpose. At the 
same time, the equally high performance of both models despite 
faulty metadata shows how performant the image data model is 
and that the effect of the metadata in our showcase is minimal. 
The limited effect of the metadata features may also be attributed 
to the smaller number of metadata features, as compared to con-
volutional features. A second adversarial example, consisting in 
training the model with a correct dataset but performing a valida-
tion with external data where incorrect metadata was assigned to 
the images, showed no difference in the model’s performance in 
comparison to not using metadata at all, which aligns with the 
previous results that wrongly assigned metadata serve no purpose, 
which thus applies for both training and validation. Rather, there 
might be a potential bias of the model generated by the metadata 
(e.g., production parameters or magnification) which could con-
tradict an objective microstructure classification—however, this 
would have to be subject to further evaluation.

The general good functioning of the hybrid model could be 
beneficial for the incorporation of further data in addition to 
image data, such as material properties, especially when aiming 
for a deeper understanding of processing–microstructure–prop-
erties relationships for materials design and optimization. Other 
simulation or data generation methods for material property 
prediction were proposed by Herriott et al.[42], who suggested 
data-driven modeling for mechanical property prediction of a 
simulated microstructural dataset using a macroscale finite-
volume model for thermal history prediction during direct 
laser deposition, paired with a 3D cellular automata (CA) and 
a solid mechanics model or by Acar et al.,[43] presenting a ML 
approach to study the linkage between deformation processing 
and microstructural texture evolution supported by a single-
crystal plasticity model. Other examples comprise finite ele-
ments (FE) simulations for mechanical response prediction 
from the microstructure,[44] the Materials Genome Integration 
System Phase and Property Analysis (MIPHA),[45] or the use 
of electron backscatter diffraction (EBSD) data.[46–48] Zhang 
and Shao propose other data acquisition techniques for image-
based materials property prediction, including numerical (band-
width, structural geometry), textual (composition, structure, 
properties), and image data (various types of microscopy and 
spectroscopy), emphasizing, for example, Fourier transformed 
infrared (FTIR) spectra or molecular images.[17]

Conclusion and outlook
We have shown how to extract and curate metadata in order 
to use them in ML applications, in the context of the FAIR 
guidelines. We have proposed a machine learning algorithm 
based on a CNN which can combine image (i.e., pixel)-
based classification with metadata and compare the perfor-
mances. While the CNN yields excellent results for both 
datasets (HCCI dataset with high variance and UHCSDB 
with unbalanced classes), the significance of metadata 
was minor because of the high initial performance. For 
the assessed classification task, it is questionable whether 
the implementation of metadata is worth its cost, as the 
metadata curation can be time-consuming. Considering 
the targeted systematic collection of metadata from the 
FAIR principles, the effort of the metadata curation would 
decrease, making their use more convenient, and experi-
mental verifications could show use cases for which the 
use of metadata could be more significant. Furthermore, we 
encourage to use the concatenating architecture to import 
other features, not necessarily metadata, with the aim to 
improve CNN model performance. In conclusion, we have a 
proposed a novel step in the emerging topic that is metadata 
usage in materials science by combining it with a deep lean-
ing approach and look forward to exploring its potential.
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