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Abstract
Contemporary materials science has seen an increasing application of various artificial intelligence techniques in an attempt to accelerate the materials 
discovery process using forward modeling for predictive analysis and inverse modeling for optimization and design. Over the last decade or so, the 
increasing availability of computational power and large materials datasets has led to a continuous evolution in the complexity of the techniques used 
to advance the frontier. In this Review, we provide a high-level overview of the evolution of artificial intelligence in contemporary materials science 
for the task of materials property prediction in forward modeling. Each stage of evolution is accompanied by an outline of some of the commonly 
used methodologies and applications. We conclude the work by providing potential future ideas for further development of artificial intelligence in 
materials science to facilitate the discovery, design, and deployment workflow.

Introduction
Materials science, like any other field in science and technol-
ogy, constitutes of four paradigms that are empirical, theo-
retical, computational, and data-driven science.[1–4] Over the 
last couple of decades, the increasing availability of advanced 
computational resources and the generation of big data[5–9] 
using the first three paradigms have shifted our approach from 
traditional methods to data-driven methods for data analysis 
(Fig. 1). Traditional methods involve designing empirical for-
mulations and computational methods with chemical intuition 
and performing trial and error-based hands-on experimentation 
and/or simulations. However, with a near-infinite space of pos-
sible candidate materials, trying to discover new materials with 
desirable properties and performance using traditional methods 
becomes extremely costly and time-consuming. Hence, data-
driven methods have become extremely popular for screening 
purposes, which can significantly reduce the cost and develop-
ment time compared to hands-on experiments and simulations. 
Data-driven methods use artificial intelligence (AI) techniques 
that have been employed and improved upon by people in their 
respective fields of research for various applications.[10–16] 
These data-driven AI techniques have also been used to help 
solve various tasks in the field of materials science, which can 
be broadly categorized into forward modeling for property pre-
diction analysis and inverse modeling for process optimization 
and materials design and have helped materials scientists better 
understand the underlying correlations and advance the frontier 
of knowledge.[17–29]

Some of the learning methodologies used to perform for-
ward and inverse modeling include reinforcement learning, 
active learning, generative modeling, genetic algorithms, 

scientific machine learning, and transfer learning. Reinforce-
ment learning involves decision-making tasks where the agent 
is trained to make optimal decisions within an environment by 
trial and error to obtain maximum reward.[30,31] Active learn-
ing aims to efficiently label or acquire new data by iteratively 
selecting the most informative samples from an unlabeled data-
set.[32,33] Generative modeling is used to train models which 
learn the underlying relation and patterns within the input data-
set and use that information to generate new samples that have 
similar characteristics to that of the input data.[34,35] A genetic 
algorithm is an optimization technique designed to search and 
find near-optimal solutions to complex problems with a large 
solution space or non-linearity of the objective function.[36,37] 
Scientific machine learning focuses on creating models that 
incorporate constraints based on scientific knowledge and phys-
ical principles when training the model.[38,39] Transfer learning 
is a technique that involves leveraging pre-learned knowledge 
from one task or domain to improve performance on a different 
task or domain.[40–42] All these methods are increasingly gain-
ing interest and applicability in materials science to accelerate 
material discovery, property prediction, and optimization, lead-
ing to the development of new materials with tailored proper-
ties and enhanced performance.

In this brief Review, we provide a high-level overview of the 
evolution of AI in contemporary materials science for the task 
of materials property prediction in forward modeling. The three 
stages of evolution discussed in this work include ‘Traditional 
Machine Learning,’ ‘Conventional Deep Learning,’ and ‘Graph 
Neural Networks.’ Each stage of evolution is accompanied by 
an outline of some of the commonly used methodologies and/
or network architectures and general applications. We conclude 

http://crossmark.crossref.org/dialog/?doi=10.1557/s43579-023-00433-3&domain=pdf
http://orcid.org/0000-0002-5519-0302


MRS 50th Anniversary Prospective

MRS COMMUNICATIONS · VOLUME 13 · ISSUE 5 · www.mrs.org/mrc                 755

the work by providing some possible future ideas for further 
development of artificial intelligence in materials science to 
facilitate the discovery, design, and deployment workflow.

Traditional machine learning
The advent of AI in materials science was accompanied by the 
application of traditional machine learning (ML), which funda-
mentally consists of algorithms that learn from structured data 
and build a (usually somewhat easily interpretable) model to 
make predictions. Traditional ML algorithms have been widely 
used for classification, regression, and clustering tasks in mate-
rials science.[43–47] To construct an effective and efficient ML 
model, one has to choose the algorithm used for model training 
and perform feature engineering to develop a suitable repre-
sentation for the input data. Some of the traditional machine 
learning algorithms commonly used for predictive analysis for 
both classification and regression tasks are shown in Table I.

Applications
Most works involving traditional ML in materials science 
put emphasis on the input representation obtained via feature 
engineering of the unstructured data based on domain knowl-
edge.[43,47,53–61] The general workflow for the data-driven 
approach that incorporates traditional machine learning for 

training predictive models in materials science is shown in 
Fig. 2.

The workflow comprises the following steps: (1) Obtain raw 
input files from the first three paradigms of materials science, 
i.e., empirical science, theoretical science, and computational 
science; (2) Generate ML-friendly features from a featurizer 
that uses the domain knowledge to obtain attributes that repre-
sent a sufficiently diverse range of physical/chemical properties 
for a given composition and/or structure; (3) Feed the ML-
friendly features into the traditional ML technique of the user’s 
choice, depending on the input representation and application, 
in order to maximize the model performance; and (4) Use the 
trained model in further analysis involving materials property 
prediction for materials discovery, design, and deployment. A 
few examples of solving materials science problems with tra-
ditional ML techniques trained on materials data with a brief 
overview are as follows. Work in[59] used thousands of descrip-
tors obtained via domain knowledge-based feature engineer-
ing containing combinations of elemental properties such as 
the atomic number and ionization potential to analyze the ten-
dency for materials to form different crystal structures. Meredig 
et al.[43] used the fraction of each element present and various 
intuitive factors, such as the maximum difference in electron-
egativity as the materials representation to perform predictive 
modeling for the formation energy of ternary compounds. 
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Figure 1.   The four paradigms of science and its application toward predictive modeling.

Table I.   Traditional machine learning algorithms for predictive analysis.

Modeling algorithm Brief description

K-Nearest neighbors (KNN)[48] Uses proximity information to perform classifications/regression of class/value of a given data point
Support vector machine (SVM)[49] Construct a hyperplane in multidimensional space which maximizes the distance between different cat-

egories/values to distinctly classify/predict the data points
Decision tree[50] Model structured in the form of a tree, derived from the independent variables in the dataset, with each 

node having a condition over a feature
Random forest[51] Combines the output of multiple decision trees with a fixed set of parameters to reach the final result
XGBoost[52] Sequentially built shallow decision trees whose parameters adjust by itself iteratively and produce a 

stronger prediction



	

756         MRS COMMUNICATIONS · VOLUME 13 · ISSUE 5 · www.mrs.org/mrc

Work in[58] performed ML algorithm-based predictive mod-
eling for different materials properties using a generalized set 
of composition based consisting of stoichiometric attributes 
(e.g., number of elements present in the compound, several 
L
p norms of the fractions), elemental property statistics (e.g., 

mean, mean absolute deviation, range, minimum, maximum 
and mode of different elemental properties), electronic struc-
ture attributes (e.g., average fraction of electrons from the s, 
p, d, and f valence shells between all present elements), and 
ionic compound attributes (e.g., whether it is possible to form 
an ionic compound based on[62]) as materials representations. 
Faber et al.[60] took 3938 entries from Materials Project and 
used Coulomb matrix (CM)-based representation to train the 
ML model to obtain a low prediction error in cross-validation. 
Work in[47] used representation based on four different kinds 
of structural descriptors to create a model for cohesive energy 
from 18,903 entries consisting of compounds based on a select 
set of structures and elements. Schütt et al.[61] predicts the den-
sity of states at the Fermi level using an ML model with a rep-
resentation based on the partial radial distribution function and 
demonstrate that the model can be used to predict the property 
value for crystal structures outside of the original training set. 
Work in[63] uses 126 features derived from the local environ-
ment of each atom within a crystal structure known as Voronoi 
tessellation (e.g., effective coordination number, structural het-
erogeneity attributes, chemical ordering attributes, maximum 
packing efficiency, local environment attributes) of a material 
to perform predictive analysis. These sets of descriptors gener-
ated via feature engineering tend to be more effective toward 

a specific materials property only making them less generaliz-
able. Moreover, in general, ML algorithms are less scalable 
with an increase in the number of data points.

Conventional deep learning
Using unstructured data as model input for traditional ML algo-
rithms is challenging as the user has to first perform manual or 
domain knowledge-based feature engineering and then select 
a desirable algorithm to train the ML model. This makes the 
whole workflow costly, time-consuming, and difficult to scale 
with the ever-increasing data. In such scenarios, deep learning 
(DL) algorithms—which are ML algorithms based on deep neu-
ral networks—have emerged as a powerful tool for performing 
predictive analysis. Given a large materials dataset available 
for training the model, DL techniques can automatically and 
efficiently extract features from those unstructured data and 
build accurate models for different materials properties, often 
surpassing traditional ML techniques. There are different types 
of deep neural networks that can be used for training the model 
depending on the input representation of the unstructured data, 
some of which are shown in Table II.

Applications
Deep learning offers an alternative route for accelerating the 
production of predictive models by being able to excel on raw 
inputs and therefore reducing the need for designing physically 
relevant features using manual or domain knowledge-based 
feature engineering. There have been several works that used 

Figure 2.   The general workflow for the data-driven approach that incorporates traditional machine learning for training predictive models in 
materials science.

Table II.   Well-known conventional deep learning algorithms for predictive analysis.

Modeling algorithm Brief description

Feedforward neural network[64] (FNN) A network of a straight line from input to output connected via hidden layers of neurons. They are 
used for a wide variety of tasks when dealing with fixed length tabular data

Convolutional neural network[65] (CNN) A type of neural network that is specifically designed for image processing tasks. Their ability to learn 
the spatial relationships between pixels in an image make them effective for tasks, such as image 
classification and object detection

Recurrent neural network[66] (RNN) A type of neural network that is able to process sequential data by learning long-term dependencies 
between data points. They are often used for tasks, such as natural language processing and speech 
recognition
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deep neural networks to perform forward modeling for the task 
of materials property prediction.[67–76] The general workflow 
for the data-driven approach that incorporates conventional 
deep learning for training predictive models in materials sci-
ence is shown in Fig. 3.

The workflow comprises the following steps: (1) Obtain raw 
input files from the first three paradigms of materials science, 
i.e., empirical science, theoretical science, and computational 
science; (2) Obtain DL-friendly features directly from the raw 
input files without going through the featurizer that uses domain 
knowledge to obtain composition- and/or structure-based attrib-
utes incorporating a sufficiently diverse range of physical/
chemical properties; (3) Feed the DL-friendly features into the 
conventional DL technique of the user’s choice, depending on 
the input representation and application, in order to maximize 
the model performance as given in Table II; and (4) Use the 
trained model in further analysis involving materials property 
prediction for materials discovery, design, and deployment. It is 
advisable to apply conventional DL methods on a given dataset 
when dealing with a large dataset, as conventional DL meth-
ods are consistently shown to help improve the performance 
of the trained model as compared to traditional ML techniques 
in large dataset scenarios. A few examples of solving materials 
science problems with conventional DL techniques trained on 
materials data with a brief overview are as follows. Harvard 
Energy Clean Project by Pyzer-Knapp et al.[77] used a three-
layer network for predicting the power conversion efficiency 
of organic photovoltaic materials. Montavon et al.[68] predicted 
multiple electronic ground-state and excited-state properties 
using a model trained on a four-layer network on a database 

of around 7000 organic compounds. Zhou et al.[67] used high-
dimensional vectors learned using Atom2Vec along with a fully 
connected network with a single hidden layer to predict forma-
tion enthalpy. CheMixNet[70] and Smiles2Vec[78] applied deep 
learning methods to learn molecular properties from the molec-
ular structures of organic materials. ElemNet[69] used a 17-lay-
ered architecture to learn formation enthalpy from elemental 
fractions but has shown performance degradation beyond 
that depth (Fig. 3). Work in[71] used a combination of princi-
pal component analysis and convolutional neural networks to 
predict the stress–strain behavior of binary composite. Zheng 
et al.[79] uses multi-channel input for the deep convolution neu-
ral networks to improve the prediction accuracy as compared 
to single input channels. Nazarova et al.[80] use recurrent neu-
ral networks along with a series of optimization strategies to 
achieve high learning speeds and sufficient accuracy for the 
task of polymer property prediction. Yang et al.[72] used con-
volution recurrent neural networks to learn and predict several 
microstructure evolution phenomena of different complexities. 
IRNet[26,73] introduced the concept of deeper neural network 
architecture in materials science, where they build 17-, 24-, and 
48-layered architecture with residual connections to learn dif-
ferent materials properties from the composition and structure 
information of a crystal without degrading the performance. 
Branched Residual Network (BRNet) and Branched Network 
(BNet)[74] introduce the concept of branching in neural network 
architecture to perform materials properties prediction from the 
composition-based attributes for improved performance under 
parametric constraints (Fig. 3).

Figure 3.   The general workflow for the data-driven approach that incorporates conventional deep learning for training predictive models in 
materials science.
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Graph neural networks
Conventional DL is used to perform predictive analysis when 
dealing with input representation based on Euclidean datasets 
comprised fixed forms (such as images, text, and numerical 
tables). These datasets also tend to work on the fundamental 
assumption that every instance is independent of each other. 
However, applying conventional DL algorithms becomes chal-
lenging when presented with more complex data represented 
as graphs (non-Euclidean) without a fixed form and comprised 
intricate interactions between the instances inside the graph. 
Graph neural networks (GNNs) are a category of deep learn-
ing algorithms used to handle and perform inference on the 
complex data represented as graphs. GNNs work by iteratively 
updating the representation of each node in the graph based on 

the representations of its neighbors. This allows GNNs to learn 
about the local and global structure of the graph, which can be 
used to perform predictive analysis for various applications. 
Some of the common examples of GNNs based on how they 
learn the representations of nodes are shown in Table III.

Applications
As GNNs are able to capture the complex relationships between 
the nodes and edges in graphs, they have been used to learn the 
atomic interaction or the material embeddings from the crystal 
structure and composition.[61,86–95] The general workflow for 
the data-driven approach that incorporates graph neural net-
works for training predictive models in materials science is 
shown in Fig. 4.

The workflow comprises the following steps: (1) Obtain 
raw input files from the first three paradigms of materials sci-
ence, i.e., empirical science, theoretical science, and compu-
tational science; (2) Obtain GNN-friendly features from the 
raw input files, which are usually represented in a graph form 
with intricate interactions between the instances inside the 
graph. Additionally, in some cases, atom-, bond-, or angle-
based embeddings containing the pre-defined knowledge 
are also provided as a form of input to the model in order to 
aid the training process; (3) Feed the GNN-friendly features 
with/without embeddings into the graph neural network of 

Table III.   Common examples of GNNs based on how they learn the 
representations of nodes in a graph.

Modeling algorithm Main component

Graph convolutional networks (GCN)[81] Convolutional layers
Graph attention networks (GAT)[82] Attention mechanisms
GraphSAGE[83] Sampling-based approach
Graph autoencoders (GAE)[84] Autoencoder architecture
PinSAGE[85] Pooling-based approach
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Figure 4.   The general workflow for the data-driven approach that incorporates graph neural networks for training predictive models in 
materials science.
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the user’s choice, depending on the input representation and 
application, in order to maximize the model performance as 
given in Table III; and (4) Use the trained model in further 
analysis involving materials property prediction for materi-
als discovery, design, and deployment. In a real-life scenario, 
a given compound is always represented in a graphical form 
with intricate interactions between the atoms. Moreover, for a 
given compound, it is possible to have various structure types 
or polymorphs with completely different materials property val-
ues, which is difficult for traditional ML and conventional DL 
techniques to distinguish. Hence, graph neural networks tend 
to perform better compared to other techniques due to their 
ability to excel in such scenarios. A few examples of solving 
materials science problems with graph neural networks trained 
on materials data with a brief overview are as follows. Crystal 
graph convolution neural networks (CGCNN)[88] directly learn 
material properties via the connection of atoms in the crystal 
structure of the crystalline materials, providing an interpretable 
representation, which was then improved in[89] by incorporat-
ing Voronoi-tessellated crystal structure information, explicit 
3-body correlations of neighboring constituent atoms, and 
optimize chemical representation of interatomic bonds in the 
crystal graph. OGCNN[92] incorporates orbital–orbital interac-
tion and topological characteristics information in the CGCNN 
model to improve the performance of the model. A-CGCNN[93] 
introduces an attention mechanism and normalizing node fea-
tures in the network architecture to improve the prediction 
accuracy of the CGCNN model. SchNet[61] incorporated con-
tinuous filter convolutional layers to model quantum interac-
tions in molecules for the total energy and interatomic forces 
which was then extended in[86] where the authors used an edge 
update network to allow for neural message passing between 
atoms for better property prediction for molecules and materi-
als. MatErials Graph Network (MEGNet)[87] was developed 
as a universal model for materials property prediction of dif-
ferent crystals and molecules, which uses temperature, pres-
sure, and entropy as global state inputs. Goodall and Lee[90] 
developed an architecture called Representation Learning from 
Stoichiometry (Roost) that takes elemental fraction-based stoi-
chiometric attributes as input features along with embedding 
obtained via material science literature using advanced natural 
language processing algorithms known as matscholar embed-
ding to learn appropriate materials descriptors from data. The 
architecture uses a graph neural network that takes matscholar 
embeddings and the elemental fraction of each element present 
in the compound, which is passed through a series of parallelly 
stacked message-passing layers, weighted attention layers, and 
fully connected layers with residual connections before mak-
ing a prediction (Fig. 4). Directional Message Passing Neural 
Network (DimeNet)[96] and DimeNet++[97] use the directional 
information by transforming messages based on the angle 
between the atoms along with spherical Bessel functions and 
spherical harmonics to achieve better performance than the 
Gaussian radial basis representations with latter model being 
faster as compared to the former model. Geometric Message 

Passing Neural Network (GemNet)[98] was developed as a 
universal approximator for molecule predictions that is invari-
ant to translation and equivariant to permutation and rotation 
using directed edge embeddings and two-hop message pass-
ing in its architecture. Atomistic Line Graph Neural Network 
(ALIGNN)[91] combines different structure-based features, 
including atom, bond, and angle information of the materials, to 
perform materials property prediction and obtain high-accuracy 
models for improved materials property prediction. ALIGNN 
architecture consists of embedding layers for each of the input 
types, followed by the ALIGNN layer and GCN layer, each 
containing two edge-gated graph convolution layers[99] and one 
edge-gated graph convolution layer, respectively, and finally 
an average pooling layer before making a prediction (Fig. 4). 
ALIGNN was then improvised as ALIGNN-d in[100] where 
they introduced dihedral angles along with other information 
as the model input. DeeperGATGNN[94] constructed based on 
GATGNN[95] combines residual connections and global atten-
tion mechanism with differentiable group normalization to 
address the over-smoothing issue and improves the prediction 
accuracy of crystal properties when dealing with large datasets. 
Graphormer[101] uses a self-attention mechanism in the GNN 
to achieve significantly improved performance in the predic-
tion of crystal and molecular properties in the OGB[102] and 
OC20[103] challenges. Crystal Edge Graph Attention Neural 
Network (CEGANN)[104] learns unique feature representations 
using graph attention-based architecture and performs classifi-
cation of materials across multiple scales and diverse classes.

Future directions
The widespread use and development of various AI-based 
models in materials science inspired by standard practices in 
the computer science community have led to the utilization 
of advanced algorithms with tailor-made input representations 
for application in materials science. With how fast materials 
science is catching up with the state-of-the-art methodology 
in computer science, it is just a matter of time before research-
ers formulate a method to design a generalized workflow to 
extract input representation which can then be used to train the 
next generation of neural networks. Hence, in this section, we 
would like to give a brief overview of a new class of neural 
networks known as the graph matching networks (GMNs)[105], 
which might be the next class of neural networks that can help 
advance and boost the model accuracy closer to the chemical 
accuracy if modified and implemented for the materials science 
community.

Graph matching networks
GMNs[105] is a class of neural networks that is used to per-
form supervised learning by processing the similarity between 
a pair of graphs given as input. As the name suggests, they are 
particularly well suited for tasks where the input data are struc-
tured in the form of a graph. As GMNs take a pair of graphs 
as the model input and jointly compute the similarity score on 
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the pair, they tend to be potentially more powerful than the 
embedding models, which independently map each graph to a 
vector. The network architecture comprises encoders (one for 
each graph) and a cross-graph attention mechanism. First, the 
encoder is used to produce vector representation for each node 
in the graph given as model input. Then, these vector represen-
tations are passed to the cross-graph attention mechanism to 
compute a similarity score between each pair of nodes. Finally, 
the similarity score between each pair of nodes is used to com-
pute a final similarity score between the two graphs. Compared 
to the embedding-based graph models, the matching model can 
potentially change the vector representation of the graphs on 
the basis of the other graph used for comparison. This way, if 
the two graphs do not match, the model will modify the vector 
representation of the graph to be comparatively more different 
from the two graphs that match.

GMNs have been shown to be a powerful tool for both 
graph–graph classification and graph–graph regression tasks, as 
it is able to learn the complex relationships between the nodes 
and edges of graphs more effectively as compared to the tradi-
tional methods. They also generalize well to new graphs that 
have not been seen during training by learning robust vector 
representations of graphs. Although GMNs have been shown 
to outperform state-of-the-art models in several studies, they 
are computationally expensive to train, difficult to interpret, 
and highly sensitive to the choice of hyperparameters. Overall, 
GMN is a new approach that has shown to be promising when 
utilizing graph-structured objects for performing graph–graph 
classification and regression[106–109] and is expected to improve 
the robustness and accuracy of the predictive modeling for dif-
ferent scientific domains, including materials science.

Conclusion
AI has grown to become an important and flexible tool with 
various applications for materials discovery, design, and 
deployment. In this section, we discuss some other facets of 
AI in the context of materials informatics, which are important 
considering the growing interest, applicability, and impact of 
data-driven approaches in materials science.

Limitations and challenges
There still exist a wide variety of limitations and challenges 
that need to be worked upon to leverage the maximum potential 
of AI-based models in the materials science community. Some 
of these limitations and challenges (Fig. 5) include reliability 
and quality assessment of datasets, uncertainty quantification 
of the deployed model, conversion of the raw data to tailor-
made input representation, explainability/interpretability of the 
trained model for prediction tasks, reproducibility, transferabil-
ity, and usability of the complex models. Moreover, for most 
of the datasets, it is only feasible to use traditional machine 
learning or convectional deep learning techniques due to the 
lack of tools and information to convert the raw data into a suit-
able input representation that can be fed into the more advanced 

methods, such as graph neural networks. Although there have 
been ongoing efforts to address the challenges associated with 
the application of AI in materials science for materials dis-
covery, design, characterization, and performance prediction, 
which incorporates various techniques,[110–113] these areas of 
research are still in their nascent stage. Hence, more research 
on filling the gap in the knowledge between AI-based models 
and their application to the materials science problem will help 
to better understand underlying correlations, create an easy-to-
use pipeline for raw data to tailor-made input representation 
conversion, potentially determine physical laws and knowledge 
that are currently unknown, and bring down the model errors 
to resemble the chemical accuracy and eventually contributing 
to scientific understanding and progress with minimal human 
input.

Ethical considerations
Like any other scientific field, materials science must look 
into various ethical considerations when incorporating AI 
in its research, development, and applications. These ethical 
considerations are essential to ensure responsible and sustain-
able progress and prevent unintended negative consequences. 
Some of the key ethical considerations in materials science 
include (1) potential impacts on jobs: we need to recognize 
the potential negative effect of new materials and technolo-
gies on the job market and come up with proactive measures 
to mitigate negative impacts on workers, such as retraining 
programs, reskilling initiatives, and social safety net; (2) rec-
ognizing AI-generated content: reducing the risk of spreading 
possible misinformation through data generated using AI (such 
as generating and spreading materials properties and structures 
information obtained from generative modeling) via rigorous 
validation and testing using transparent and reproducible prac-
tices; and (3) bias in AI models: mitigating bias in AI models 
when dealing with training data that are unrepresentative or 
contain inherent biases to ensure fair and unbiased predictions 
by trying to use diverse and inclusive datasets and employing 
bias detection and correction techniques to minimize potential 
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Figure 5.   Limitations and challenges of AI-based models in the 
materials science community.
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biases. Addressing these considerations and establishing ethi-
cal guidelines and codes of conduct can help guide responsible 
research and innovation in materials science.

Collaborative efforts
Successful multidisciplinary collaborations have played a 
significant role in advancing AI in materials science. These 
collaborations bring together experts from various fields to 
tackle complex challenges, create innovative solutions, and 
open new possibilities. Some examples of how experts from 
different fields can work together to advance the field include: 
(1) Computer scientists provide expertise in algorithm devel-
opment and optimization by developing AI models and algo-
rithms tailored for materials data analysis and prediction; (2) 
Data scientists offer insights into handling large and complex 
materials datasets by ensuring data quality and accessibility 
for AI-driven analyses; (3) Computational materials scientists 
contribute their knowledge in developing efficient simulation 
methods by incorporating high-performance computing into 
the workflows; (4) Experimental materials scientists provide 
guidance on relevant material properties and structures and 
insights into material processing and performance evaluation; 
(5) Chemists contribute their expertise in chemical synthesis 
and offer domain-specific knowledge on material properties and 
molecular structures; and (6) Industry partners provide real-
world testing and validation, ensuring the practical relevance of 
AI models and materials discoveries. Fostering an inclusive and 
collaborative research environment with experts from different 
disciplines can collectively advance the field, leading to trans-
formative discoveries and developments in materials science.
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