Skip to main content

Advertisement

Log in

Optimization of nickel-infused alumina nanostructure for enhanced solar-thermal conversion

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study investigates the optimization of nickel-infused alumina nanostructure for enhanced solar-thermal energy conversion. The optimization is based on the analytical model using the transfer matrix method, which is first validated with experimental results and then compared with a finite element model. The optimal nanostructure of the solar absorber shows a high solar absorptance of 0.87 and a low thermal emittance of 0.08. The optimal design can achieve a total net heat flux of 815 W/m2, approximately 26% higher than the nominal value of 647 W/m2 corresponding to the baseline design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. L. Zhang et al., Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-28457-8

    Article  Google Scholar 

  2. M. Li et al., Three-dimensional hollow reduced graphene oxide tube assembly for highly thermally conductive phase change composites and efficient solar-thermal energy conversion. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c00546

    Article  Google Scholar 

  3. X. Wang, S. Narayan, Thermal radiative switching interface for energy-efficient temperature control. Renew. Energy (2022). https://doi.org/10.1016/j.renene.2022.07.143

    Article  Google Scholar 

  4. X. Wang, S. Narayan, Thermochromic materials for smart windows: A state-of-art review. Front. Energy Res. (2021). https://doi.org/10.3389/fenrg.2021.800382

    Article  Google Scholar 

  5. X. Wang, C.Y. Tso, B. Traipattanakul, C.Y.H. Chao, Development of a phase change material (pcm)-based thermal switch. HKIE Trans. Hong Kong Inst. Eng. (2017). https://doi.org/10.1080/1023697X.2017.1312560

    Article  Google Scholar 

  6. F. Cao, K. McEnaney, G. Chen, Z. Ren, A review of cermet-based spectrally selective solar absorbers. Energy Environ Sci (2014). https://doi.org/10.1039/c3ee43825b

    Article  Google Scholar 

  7. Y. Li, D. Li, D. Zhou, C. Chi, S. Yang, B. Huang, Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Sol. RRL (2018). https://doi.org/10.1002/solr.201800057

    Article  Google Scholar 

  8. Y. Li, C. Lin, K. Li, C. Chi, B. Huang, Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett. (2022). https://doi.org/10.1021/acs.nanolett.2c00322

    Article  Google Scholar 

  9. V. Rinnerbauer et al., Recent developments in high-temperature photonic crystals for energy conversion. Energy Environ. Sci. (2012). https://doi.org/10.1039/c2ee22731b

    Article  Google Scholar 

  10. H. Wang, H. Alshehri, H. Su, L. Wang, Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air. Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2017.09.025

    Article  Google Scholar 

  11. S. Zhao, E. Wackelgard, Optimization of solar absorbing three-layer coatings. Sol. Energy Mater. Sol. Cells (2006). https://doi.org/10.1016/j.solmat.2005.03.009

    Article  Google Scholar 

  12. Z.Y. Nuru, D.E. Motaung, K. Kaviyarasu, M. Maaza, Optimization and preparation of pt-al2o3 double cermet as selective solar absorber coatings. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.12.201

    Article  Google Scholar 

  13. S.Y. Lin et al., An in-situ and direct confirmation of super-planckian thermal radiation emitted from a metallic photonic-crystal at optical wavelengths. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-62063-2

    Article  Google Scholar 

  14. X. Wang, H. Yang, M. Hsieh, J.A. Bur, S.-Y. Lin, S. Narayanan, Nickel-infused nanoporous alumina as tunable solar absorber. MRS Adv. (2020). https://doi.org/10.1557/adv.2020.300

    Article  Google Scholar 

  15. X. Wang, M.-L. Hsieh, J.A. Bur, S.-Y. Lin, S. Narayanan, Capillary-driven solar-thermal water desalination using a porous selective absorber. Mater. Today Energy (2020). https://doi.org/10.1016/j.mtener.2020.100453

    Article  Google Scholar 

  16. X. Wang, M.-L. Hsieh, J.A. Bur, S.-Y. Lin, S. Narayanan, The role of nanostructure morphology of nickel-infused alumina on solar-thermal energy conversion. J. Opt. 23(1) (2021). Art. no. 015101. https://doi.org/10.1088/2040-8986/abcc53.

  17. S.-K. Hwang, S.-H. Jeong, H.-Y. Hwang, O.-J. Lee, K.-H. Lee, Fabrication of highly ordered pore array in anodic aluminum oxide. Korean J. Chem. Eng. (2002). https://doi.org/10.1007/BF02697158

    Article  Google Scholar 

  18. C.T. Sousa, A. Apolinario, D.C. Leitao, A.M. Pereira, J. Ventura, J.P. Araujo, Precise control of the filling stages in branched nanopores. J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm14828e

    Article  Google Scholar 

  19. W. Lee, S.-J. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. (2014). https://doi.org/10.1021/cr500002z

    Article  Google Scholar 

  20. G.A. Niklasson, C.G. Granqvist, Optical properties and solar selectivity of coevaporated co-al 2o3 composite films. J. Appl. Phys. (1984). https://doi.org/10.1063/1.333386

    Article  Google Scholar 

  21. V.A. Markel, Introduction to the maxwell garnett approximation: Tutorial. J. Opt. Soc. Am. A (2016). https://doi.org/10.1364/JOSAA.33.001244

    Article  Google Scholar 

  22. L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. (1999). https://doi.org/10.1063/1.370757

    Article  Google Scholar 

  23. P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. (2003). https://doi.org/10.1063/1.1534621

    Article  Google Scholar 

  24. MATLAB. The MathWorks, Inc. [Online]. https://www.mathworks.com/products/matlab.html

  25. J. Nocedal, S.J. Wright, Numerical Optimization. Springer US, 2006. [Online]. https://doi.org/10.1007/978-0-387-40065-5

  26. H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. Part 2 Lett. (1996). https://doi.org/10.1143/JJAP.35.L126

    Article  Google Scholar 

  27. W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. (2006). https://doi.org/10.1038/nmat1717

    Article  Google Scholar 

  28. J. Salmi, J.P. Bonino, R.S. Bes, Nickel pigmented anodized aluminum as solar selective absorbers. J. Mater. Sci. (2000). https://doi.org/10.1023/A:1004773821962

    Article  Google Scholar 

  29. G. Yan, S. Kaur, J.W. Banks, J.E. Hicken, Entropy-stable discontinuous galerkin difference methods for hyperbolic conservation laws. J. Comput. Appl. Math. (2023). https://doi.org/10.1016/j.cam.2022.114885

    Article  Google Scholar 

  30. L.V.R. Cagliari, T. Babcock, J.E. Hicken, S. Mishra, Active flow control optimization with stability guarantees. AIAA Aviat. 2022 Forum (2022). https://doi.org/10.2514/6.2022-3353

    Article  Google Scholar 

Download references

Acknowledgments

Shankar Narayan acknowledges the support of the National Aeronautics and Space Administration under Grant No. 80NSSC21K0072 issued through the Space Technology Research Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Narayan.

Ethics declarations

Competing interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 589 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Repolho Cagliari, L.V., Hicken, J.E. et al. Optimization of nickel-infused alumina nanostructure for enhanced solar-thermal conversion. MRS Communications 13, 581–586 (2023). https://doi.org/10.1557/s43579-023-00386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00386-7

Keywords

Navigation