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Abstract

Photopolymerizable resins are increasingly used to generate complex 3D printed parts through stereo lithography, digital light processing (DLP) and
liquid crystal display (LCD) 3D printing. Many challenges relating to the resin chemistry and printing parameters still exist and must be addressed
in order to entirely control the properties of parts after printing. This work reviews the current knowledge and describes the potential of DLP/LCD
methods for printed acrylate resins, as well as the steps necessary to achieve a better control over the mechanical properties of printed materials.

Introduction

The development of additive manufacturing as we now know
it has been a long process, its conceptualization dating back to
the 1940s. It was in the 1970-1980s that the idea of spatially
solidifying a polymer with light was first introduced: Dr. Hideo
Kodama described a rapid prototyping technology based on a
laser process in a patent that was abandoned after one year. In
1984, a trio of researchers from the French National Center for
Scientific Research (CNRS) and the Cilas/Alcatel company filed
another patent describing the layer-by-layer surface photopo-
lymerization of an object also using a laser, and they printed a
small staircase to prove the concept. Three weeks later, Chuck
Hull filed a separate patent also to build small objects layer-by-
layer but using UV light.l') The French patent was abandoned
for a lack of industrial interest, whereas Chuck Hull developed
the invention into a company and introduced the term ““stereo-
lithography”” (SLA) in 1986.131 Digital light processing (DLP)
technology!™ was only introduced in the beginning of the 2000s,
followed by liquid crystal display (LCD) printing.!

Today, the layer-by-layer printing of objects with photopo-
lymerization is dominated by these three technologies: SLA,
DLP and LCD. Currently, SLA printing is more widely used
in scientific fields and laboratories,*] whereas DLP and LCD
printings are more common for home use.

All three technologies rely on the photopolymerization of a
liquid resin at the bottom of a fluid reservoir. Most resins are
composed, at least in part, of acrylate species, the polymeriza-
tion of which is fast at ambient temperature. The formulation of
these resins is crucial as it affects every step of the process from
the printing parameters to the properties of the final object.

New printable polymer materials are emerging every year.
They can be distinguished by their different properties: their

biocompatibility for bioengineering applications!!*'?! and
dentistry,l'3713] their optical properties,['®) or their ability to
respond to stimuli (4D printing).['”'8] Additionally, these mate-
rials can present a range of mechanical properties. They can be
either soft or stiff, which is of great interest, especially in the
aerospace,®! energy, and construction industries.['>>"]

Many publications are devoted to the relationship between
the final mechanical properties of objects and their process-
ing routes.l'>?!"281 However, between both the formulation
of the resin and the printing process itself, many intercon-
nected parameters must be taken into account. This review
aims at establishing a consensus of the state-of-the-art from
all these different studies, results and viewpoints. This will be
achieved by analyzing the chemistry of acrylate resins, through
methods such as fourier transformed infrared (FTIR), rheol-
ogy, differential scanning calorimetry (DSC) or UV—visible
spectroscopy. The resulting mechanical properties of printed
parts will also be investigated through mechanical constants
presented in Table I, all of which are defined in the hypothesis
of isotropic materials and linear elastic fracture mechanics
(brittle fracture).[”]

Different types of 3D printers
As mentioned in the introduction, the 3D printing vat photopo-
lymerization principle was introduced many years ago and has
therefore been widely described in the literature.[>*% Today,
three technologies for the 3D printing of photopolymerization
resins—SLA, DLP and LCD—are mainly used, each differing
by their illumination process.

SLA (for stereolithography) photopolymerization makes use of
a laser with a given spatial resolution that locally polymerizes the
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Table I. Table of the different mechanical constants of 3D printed materials analyzed in this review.

Characterization Technique

G-F/A

Constant  Name Definition

Maximal amount of stress a material can with-
stand before exhibiting a plastic deformation 4
(unit: N/m?). Constraint at which the material
no longer deforms in an elastic manner, The ;
stress writes 6=F/A with F the force applied § ® 1 F
(N) and A the area of the loaded sample (m?)

o, Yield tensile strength

1
€ -t Lyt

[Elastic o )
domain ~ Plastic domain

D >

S(UTS) 8(0

[29]

Evield)

€, Yield tensile strain . .
Static tensile test scheme.

Relative elongation atlthle yield tensile stress
(%), Elongation & = 770, with 1 the length of
the sample during the test and 10 the initial
length

Maximal amount of stress a material can with-

stand before breaking (unit: N/m?)

OuTs Ultimate tensile strength

euTs Ultimate tensile strain Elongation at the ultimate tensile strength oypg
(%)

o Breakage tensile strength Tensile stress at material breakage (unit: N/m?)?

& Breakage tensile strain Elongation at material breakage (%)

Characterizes the stiffness of a material submit-
ted to a uniaxial stress in the linear elastic
regime. Defined as the ratio of the stress (o)
to the strain (&) in the linear tensile elastic
domain (unit: Pa), e.g. via a static tensile

E Young’s modulus

test.[?”]
E'and E” Storage and loss modu-  Dynamic determination at a given frequency A £(t) = €0 sin(wt)
lus is possible by Dynamic Mechanical Analy-

F
sis (DMA) where the storage (E’) and loss —=

modulus (E") are measured. They correspond
respectively to the stored and dissipated
energy for viscoelastic materials.2?}® 4

Imposed deformation
at the pulsation &

>t

|

-.O0@®= 0o sin(ot + 8)

L~ "5

DMA (Dynamic Mechanical Analysis) principle.[*”]

K¢ Toughness Ability of a material to resist fracture propaga-  Wedge spitting test, Compact Tension...
tion (unit: J/m?)
H Hardness Ability of a material to resist to permanent Indentation hardness test, scratch test, Vickers Hard-

deformation, such as scratching, cutting, abra- ness test...

sion, indentation or penetration (unit: N/m?)

2The yield strength, ultimate tensile strength and breakage tensile strength are different for ductile materials (materials able to deform plasti-
cally). However, the acrylate resin polymers studied in this review are brittle materials, thus, the yield tensile strength and breakage tensile
strength are equal in most cases.

®Some articles make use of static tensile test experiments to determine Young’s modulus, while others make use of dynamic mechanical analysis
(DMA) to determine the so-called storage modulus.

resin [Fig. 1(a)]. The object is polymerized point-by-point along
the laser path. This technique is repeatable and enables the printing
of rather large objects, although it is very time consuming because
it is a point-by-point process.>'! An important parameter in SLA
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printing is the hatching of the laser beam (distance between the
center of two laser scans), which can limit the resolution.[>*?]
DLP photopolymerization solves the problem of the slow
point-by-point printing by projecting the laser as an entire 2D
design onto a layer™3#! [Fig. 1(b)]. Here, the printing speed
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can be as fast as 0.5 to 15 mm/s**! and with a resolution of
about 100 pm.'** The main inconvenience of DLP is that
only small objects can be printed (due to the reduction of the
projector size to ensure high precision).!”! Additionally, possi-
ble optical distortions due to the projector must be addressed.

In LCD printing, an LCD screen is placed directly under
the resin vat [Fig. 1(c)], where direct contact of the screen on
the vat avoids optical distortions. The printing is also layer-
by-layer and the resolution depends on the screen pixel size,
and normally a resolution of 50 to 150 um can be reasonably
expected with LCD technology.*®37! However, it is possible
to go beyond this resolution with newer software develop-
ments. For example, LCD allows printing not only in black or
white pixel, but also with different grey levels, enabling very
high resolution (some publications claim a 10 pm in-plane
resolution(*). Finally, the loss of light energy due to the
absorption of the screen must be emphasized; approximately
90% of the light is absorbed by the LCD screen.*!! Moreover,
the direct contact of the screen with the vat bottom hinders
control of the oxygen level at the polymerization site, which
may cause many printing failures.

Although the same photochemical polymerization reac-
tion occurs in all three of these techniques, the resin must be
adapted for each process. Indeed, DLP and LCD resins are
more reactive than SLA resins because the power density of
the light used is inferior.** Therefore, it is necessary to refor-
mulate the resins to fit each process. To do so, in the next sec-
tion, we describe the use of Jacobs’ law as an efficient tool to
compare resins reactivity.

The photopolymerization reaction

The first step of photopolymerization (or the creation of the
“green part”, that is to say the, non-post-treated sample) is
almost always based on acrylate chemistry. Acrylates pho-
topolymerize quickly and at ambient temperature, which makes
them well adapted to 3D printing processes. Epoxy groups can
also be added to generate Interpenetrated Polymer Networks
(IPN). In IPN systems, acrylates initiate polymerization and
the green part is subsequently heated to activate further epoxy
polymerization.['*?!) However, IPN systems will not be dis-
cussed in this review.

Acrylate monomers can polymerize due to their acrylate
vinyl functional group, which undergoes a radical polymeri-
zation. In these reactions, the photoinitiator generates radical
reactive species when excited at a specific wavelength in the
UV spectrum. These reactive species initiate the polymerization
of the monomers.[*!! As explained by Kim et al.l*®! three main
steps can be distinguished in the photopolymerization reaction:

the initiation step:

I — 2Re
the propagation steps:

R e +M — RMe

Ry e +M; — RMy e

and the termination:

RM,; ¢ +RMye — unreactive species

where I refers to the photoinitiator that produces radicals (R¢)
under the action of UV light, M refers to the monomer, RM
refers to a chain radical and RM,, refers to a polymer of n mon-
omers. The vinyl double bond (C=C) is converted into a single
bond during polymerization.*8%1 This allows the determina-
tion of the degree of polymerization by quantifying the amount
of double bonds that were converted. As a result, chemists use
the term double bond conversion while physicists tend to speak
of the degree of cure. The base acrylate resin can be modified
by changing the photoinitiator concentration, its nature, or even
by using different types of acrylate monomers. The resin for-
mulation directly modifies the resin reactivity.

To compare and evaluate the different formulations and resin
reactivity, P.F. Jacobs proposed a specific law in 1992 based on
energetic considerations. Jacobs used the Beer-Lambert law to
describe the exponential decrease of the light energy into the
resin with the depth z:

E(z) = Emaxexp(—z/Dp) (1)
where D, is the light penetration depth and E,,, is the total
light exposure dose at the resin surface. D, is inversely propor-
tional to the molar extinction coefficient of the initiator and its
concentration. To pass the gel point, E(z) must reach the criti-
cal threshold energy E_. This occurs when z=C, (cure depth).

At this point:

E(Cy) = Emaxexp(_cd/Dp) = Ec 2)
Finally, the commonly used Jacobs’ law can be obtained
from Eq. (2) and is written as follows*!):

E
Cq = Dp1n< Z‘”‘) 3)

c

Cg4: Cure depth (um)
D,: Light penetration depth in the resin (characteristic
length) (um).*!

e E, .. Exposure dose (mJ.cm 2); energy received at the resin
surface during the curing.

e E_: Critical exposure (mJ.cm ?); minimum amount of

energy needed to start the curing process and reach the gel
point.[23:2441-45]

Jacobs’ law is applicable in the range D, < Cd<4Dp.[41] The
semi logarithmic plotting of C; versus E_,, is a straight line
known as Jacobs’ working curve [Fig. 1(d)]. One important
point is that Jacobs’ law gives information on intrinsic resin
parameters (E; and D,) that do not depend on the printer or on
experimental conditions.[**! However, the control of the resin
reactivity is necessary to adjust the printing parameters.

Historically, Jacobs’ working curve applied for SLA print-
ing. The laser scans particular areas of the liquid resin at
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Figure 1. (a) Scheme of SLA apparatus. (b) DLP apparatus (c) LCD apparatus. (d) Example of a Jacobs’ curve from Hofstetter et al. repro-
duced with authorization® (e) Experimental methods to determine D, and E, for DLP or LCD printers.

different speeds. The higher the speed, the shorter the exposure
to UV and therefore, the thinner the final object is. The height
of the samples is directly measured with a caliper or a microm-
eter and corresponds to C4.[*! The exposure E,, is obtained
with the following formula:

Praser

E =
s = 55 @

where P, is the laser power, H; is the hatching (distance
between laser scan lines) and V is the laser speed.!>>#!44]

For DLP/LCD processes, D, and E values are also obtained
by exposing a pre-determined area with the same light power
for different times, as illustrated in [Fig. 1(e)]. C4 (sample
height) is also directly measured with a caliper or a micrometer,
but in this case, E_,, is obtained by multiplying the exposure
time with the light power [Fig. 1(e)].l404¢]

The large differences in reactivity between SLA, DLP and
LCD resins are due to resin formulations which have been
adapted to each process.[?441:47:48]

Thus, the reactivity of the resin is driven by its very compo-
sition, which directly influences the final mechanical proper-
ties of the printed part. For the rest of the study, we will focus
on results obtained with DLP printing. A few LCD and SLA
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studies are also treated, and we will precise for each case when
LCD or SLA printing is concerned.

Influence of the resin composition
on the mechanical properties
Monomer nature and functionality
The first step of the formulation is the selection of monomers
or a mixture of monomers and oligomers (Table IT). As for
all polymerization reactions, the choice of specific monomer
(size, molecular weight, and chain rigidity when polymerized)
directly affects the appearance of the printed object and its
properties and, among them, its mechanical properties.
Several approaches can be found in the literature to confirm
this direct relationship between the monomer structure and the
final polymer properties. For example, Pooput et al. evaluated
resin reactivity via Jacobs’ curves and mechanical properties
of their DLP-printed samples via tensile tests.[*”) They reported
that formulations with flexible chains presented lower mechani-
cal resistance (high strain and low tensile strength) whereas
the formulations that contained rigid chains, with aromat-
ics for example, were stiffer, due to the intrinsic structure of
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chains. Similarly, Zhu et al. worked on healable and recyclable
DLP-printed polymer and studied the mechanical properties
of resins composed of two monoacrylates: urethane monoacr-
ylate (UMA) and acrylic acid (AA) via tensile tests.[*”) They
demonstrated that mechanical properties such as the Young’s
modulus, the tensile strength and the glass transition tempera-
ture could be tuned with different monomer ratios. Chen et al.
also observed large changes in mechanical properties (e.g.,
Young’s modulus and ultimate tensile strength) depending on
the different monomer compositions and mixtures used.[*>
Indeed, increasing the proportion of harder oligomer increases
the Young’s modulus.

While commercial acrylate monomers are most commonly
used, some authors chemically grafted acrylate groups to
other types of monomers. For example, Field et al. modified a
poly(caprolactone) with methacrylate groups. They carried out
tensile tests and observed an increase of the Young’s modulus
from 0.7 to 4 MPa when the methacrylation substitution degree
doubled from 40 to 80%.!'>! Chen et al. also observed a strong
increase of Young’s modulus (from 0.1 to 5.1 MPa) and of ulti-
mate tensile strength when increasing the degree of acrylation
from 7 to 30% with poly(glycerol sebacate) acrylate (PGSA)
polymer printed with DLP.[**)

The crosslinking density is also an important factor that
influences mechanical properties. This crosslinking density is
directly related to the number of acrylate groups in the mono-
mer used, which is called functionality. For example, Miao
et al. investigated the storage modulus of bio-based acrylate
monomers with di- or tri-functionality (BHMP2 and BHMP3
respectively) printed via DLP method.*®! The authors observed
that the triacrylate presented a higher Young’s modulus due to
its compact and crosslinked structure. In the same way, Oezkan
et al. worked on LCD and found that the curing performance
increased with the amount of multifunctional oligomers in the
formulation.[*®! Therefore, the cross-linker, which is a multi-
functional acrylate, drives the network organization and thus
the mechanical properties.

Dietz et al. studied the influence of the chain length and of
pendant chains of di-, tri- and tetra-acrylate monomers. They
mention that for linear di-functional monomers, the longer and
softer the chain length, the higher the conversion degree.!*”)
Concerning branched multifunctional monomers, the authors
observed a decrease in the conversion degree for highly
branched monomers. They explained that the branches cause
steric hindrance, reducing the conversion degree.[ss] However,
no mechanical characterization was performed.

Finally, Borrello et al. worked on DLP and demonstrated
that according to the monomer/cross-linker ratio, a wide vari-
ety of Young’s moduli can be obtained.?*! They performed
tensile tests and observed experimentally that a high quantity
of 1,6-hexanediol diacrylate cross-linker (HDDA) strongly
increased the Young’s modulus. Additionally, the ultimate ten-
sile strength was also slightly increased. Similarly, Shi et al.

studied the impact of different amounts of HDDA (di-acrylate)
(Table II) on the mechanical properties via DMA studies.[>”!
The authors observed an increase in the glass transition tem-
perature, T, and an increase in the storage modulus as the pro-
portion of HDDA monomer increased. They explained their
observations by the fact that high HDDA content increases
crosslinking in the polymer network. As a result, T, increased
due to the hampering of chain movement, and the stiffness (E)
increased due to high chain crosslinking. Indeed, the authors
showed by X-ray Diffraction (XRD) that the chains were more
packed when the HDDA content increased.l*”! This might indi-
cate the occurrence of more intense crosslinking due to the
di-functional crosslinker (HDDA). This spatial arrangement
generates a packing of the chains and consequently, an increase
in stiffness.

These works demonstrate that the nature of the mono-
mer and the proportion of different compounds influence the
modulus, the ultimate tensile strength and the glass transition
temperature.

Photoinitiator

Another component of high importance for the photopolym-
erization reaction is the photoinitiator, which influences the
photopolymerization kinetics and printing parameters (e.g.,
rheology, layer thickness, exposure time). In addition to that,
its choice appears crucial to mechanical behavior.

For example Scherzer et al. demonstrated the different
effects of three photoinitiators at the same concentration in an
acrylate resin."! They shed light on the different induction
periods or conversion rates obtained depending on the nature
of the photoinitiator.°®6%6!) Moreover, not only the nature but
also the concentration of the photoinitiator influences the print-
ing parameters. Indeed, with a lower amount of photoinitia-
tor, longer exposure times are needed to reach the same layer
thickness.!*”) Gonzalez et al. observed very small variations in
average viscosity when increasing the photoinitiator (BAPO)
content in their formulations.’”) However, Zanon et al., used
camphorquinone as a photoinitiator and they observed differ-
ent rheological behaviors depending on the camphorquinone
content in their liquid resin (lower storage modulus with higher
camphorquinone content, obtained by photo-rheology tests).[®!

Additionally, several articles mention the existence of an
optimum concentration of photoinitiator. Beyond this opti-
mum, the further addition of photoinitiator does not improve
the mechanical properties due to increased radical recombina-
tion. This shows a direct link between the photoinitiator content
and mechanical properties.[:>4] Wang et al. tried to optimize
the concentration of the camphorquinone photoinitiator in their
acrylate-based resin to achieve the best mechanical proper-
ties.[] They observed that the degree of conversion (obtained
by near-infrared spectroscopy), the mechanical properties (elas-
tic modulus and hardness), as well as the curing depth D, (in
Jacobs’ law) were maximized for an optimum photoinitiator
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Table Il. Main components of a photopolymerization resin.

Resin component Role and definition Examples Structures
Monomer Contains one or several acrylate HDDA, TMPTA, PEGDA, (o]
groups will generate a polymer UDMA, Bis-GMA['3 \/\k o
composed of repetitive units AN O/\/\/\/ Y\
0
Oligomer Small polymer (less than 10 PEGDA (Mw=200, 500, L
repetitive units) containing one or 7000 g/mol), PEAAM™ 4! 1,6-hexanediol-diacrylate (HDDA)
several acrylate groups. Its longer
chain increases the viscosity of the
formulation
Crosslinker Monomer or oligomer that contain ~ TMPTA or HDDA (] /
multifunctional acrylate and can >\7/
crosslink monomers or oligomers 0
densel p¥
y A( 0 0 \'\A\
0 0
Photoinitiator Chemical compound able to gener-  Irgacure 819,121 TPO, ] Trimethylolpropane triacrylate (TMPTA)
ate radical species when excited at ~ BAPO,% DMPA*4]
a specific wavelength
Photoabsorber Dye or photo-absorbing compound ~ Sudan L' III, Tinuvin?) o
that consumes radical species and
favors the termination process of Z 0 o e
polymerization
)
Plasticizer and Addi- Long soft polymer chains, often PEGDA,P3 TEGMADP4 Poly(ethylene glycol) diacrylate (PEGDA)

tives functionalized with acrylates that
contributes to lowering the viscos-
ity to favor printing

concentration. This was also observed by Musanje et al. who
shed light on the fact that the excess of photoinitiator (cam-
phorquinone) could hamper the hardness.[*3) In the same way,
Steyrer et al. found an optimal concentration by carrying out
DMA and tensile tests to investigate the effect of three different
photoinitiators. ¥

As a result, these articles agree on the fact that the polym-
erization kinetics depends on the nature of the photoinitiator.
In reviewing the literature, a concentration around 1-3 wt%
of photoinitiator seems to be optimal in terms of mechanical
properties.

Photoabsorber
With the increase of photoinitiator concentration, polymeri-
zation quickly initiates and there is a risk of an uncontrolled
reaction. Such an uncontrolled propagation leads to a decrease
in printing resolution. To avoid that, photoabsorbers are intro-
duced in the system, in order to consume some of the radical
species and, thus, to regulate the reaction propagation. Unlike
photoinitiators that are consumed during the photopolymeriza-
tion process, photoabsorbers remain active and undestroyed.
Photoabsorbers are often dyes used to increase the printability
and decrease D, in Jacobs’ law, 1224521 but it is important to
determine their effect on the final properties of the material.
Bagheri Saed et al. studied the influence of a photoabsorber
(an orange dye) on the mechanical compression of their scaf-
fold printed by DLP.I°] They characterized their scaffold
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with compressive tests for different exposures and different
dye concentrations. The authors observed that the higher the
light absorber content, the lower the compressive strength,
whatever the exposure time [Fig. 2(a)]. They explained that
a high amount of absorber hampers light penetration and thus
decreases polymerization. The bonding between layers is weak-
ened, which results in a lower compressive resistance. Hofstet-
ter et al. presented a method to determine the best amount of
photoabsorber.**! However, they did not evaluate the impact
of the absorber on mechanical properties such as the Young’s
modulus.

As a result, photoabsorbers are mostly used to improve the
printability and resolution of DLP/LCD printed objects, but
tend to decrease the stiffness of materials. Nonetheless, few
studies compare mechanical properties with and without pho-
toabsorbers, and this is area deserves additional research.

Plasticizers and additives
Plasticizers decrease the viscosity of resins to ease the print-
ing (Table II); they can also increase the resolution. However,
they also have a negative impact on the mechanical properties.
For example, Yang et al. added a plasticizer (PEG300) to an
acrylate formulation (based on PEGDA), and compared both
the printability and mechanical properties via tensile tests.>)
The authors observed an increase in strain and a decrease
in ultimate tensile strength with the addition of a plasticizer
[Fig. 2(b)]. Thus, if a small amount of plasticizer is helpful for
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the printability, it also lowers the mechanical strength, and this
must be considered in the design of the formulation.

Oezkan et al. investigated the effect of the content of HDDA
as a diluent on the tensile properties of their LCD-printed
objects.[*8] As the viscosity is a key parameter for the print-
ability of resins, some diluents are added, such as TEGMA,
to significantly increase printability.’*! However, Lin et al.
observed an increase in shrinkage with the diluent content.[>*!
Shrinkage is the reduction of volume occupied by the resin
during the polymerization process. Excessive shrinkage can
cause the delamination of different printed layers. Further-
more, according to Yang et al. diluents like water can induce a
decrease in hardness.!**)

Thus, the use of plasticizers is interesting for highly vis-
cous resins. However, improvements in the printability must
be balanced against decreases in the Young’s modulus due to
plasticization.

Effect of printing parameters

Printing atmosphere: oxygen inhibition

As explained by Yamada and Goto: “Oxygen inhibition causes
numerous undesirable effects on free radically cured products,
including slow polymerization rate, long induction periods, low
reaction conversion and tacky surface properties”.[®8 There-
fore, when it comes to acrylate photopolymerization, the con-
sumption of radicals by oxygen can drastically influence the
final material.

More precisely, an excess of oxygen leads to the incomplete
polymerization of acrylate systems. Indeed, oxygen consumes
the radicals and hinders the radical polymerization. Resulting
materials are tacky and not completely polymerized [Fig. 2(c)
under oxygen]. Even when the exposition time is increased,
the problem persists.

On the other hand, a lack of oxygen leads to very strong
and uncontrolled polymerization at the bottom of the vat. It
can also lead to delamination between layers and difficulties in
detaching the object. Deng et al. worked illustrated this in their
DLP study by purging the resin of oxygen with argon, which
led to uncontrolled curing due to total absence of inhibition
[Fig. 2(c)]. To avoid these consequences, some solutions were
found by manufacturers. Most often, the bottom of the vat is
permeable to oxygen. This limits the polymerization of the part
at the bottom of the vat. Thus, the force needed to lift-off the
piece at the end of a layer printing is reduced. However, for
LCD printers, where the vat is in direct contact with the screen,
this solution is not applicable. Another possibility is the addi-
tion of a rake that mixes the resin between each layer. Finally,
there is the tilt solution, which displaces the object laterally
before uplifting the plate, limiting the suction forces.!*"]

As a result, the amount of oxygen in the resin must be con-
trolled because it has direct consequences on the printability
and on the interlayer adhesion. The presence of a dead zone
or permanent liquid interface is favorable for good adhesion

between layers.”!7?! Finally, the degree of oxygen inhibition
is dependent of the resin formulation itself.l”*]

Curing temperature

The curing temperature is a very important parameter insofar
as it directly influences the resin viscosity. The temperature is
driven by the illumination system of the process (e.g., diode,
laser, LED) and by the polymerization itself, which is exother-
mic. A few studies indicate that increasing the temperature can
make printing easier and increase the conversion rate. How-
ever, the consequences on the mechanical properties are not
well known.

According to Lu et al., using low temperatures might be
interesting to reduce polymer shrinkage.!”* Scherzer et al. com-
pared an epoxy-acrylate and a trifunctional acrylate photopoly-
merization at different temperatures from ambient to 90°C.1"3]
They observed an important increase in the acrylate conversion
rate (obtained by real-time ATR-FTIR) with temperature.[*"!
Sekmen et al. also made this observation in their DLP study.[’®!
This result is attributed to a decrease in viscosity, which allows
the faster diffusion of species in the medium.!”>) Moreover, the
authors proved that increasing the temperature decreases the
amount of dissolved oxygen in the resin. Therefore, a high cur-
ing temperature favors the initiation of the reaction. However,
the authors did not link these results to mechanical properties.
Steyrer et al. investigated the effect of curing temperature from
23 to 70°C for DLP photopolymerization of acrylate resins.>")
They also concluded that the differences obtained were linked
to the decrease in viscosity. The authors demonstrated the
decrease of E in Jacobs’ law when increasing the temperature:
the polymerization could start at lower exposure.*”!

As aresult, increasing temperature permits not only a reduc-
tion in the printing time but also an increase in conversion
rate. T, is also increased, but the precise mechanisms are still
not perfectly understood.*®7”] The increase of the curing tem-
perature might improve the mechanical properties such as the
Young’s modulus, but no clear demonstration has been made
yet. More work is needed to confirm these trends and elucidate
the mechanisms.

Exposure time
The exposure time and light power are of the utmost impor-
tance because they determine the conversion degree. Aznarte
et al. observed a decrease of the elastic modulus with lower
exposure times for DLP printed samples.[’®! The authors ration-
alized the result by the curing degree of the resin: lower curing
time results in lower material stiffness, due to a lower conver-
sion of acrylate groups.

On the contrary, for longer exposures, layers are exposed to
a higher amount of light energy, thus, the conversion is higher
and the interlayer zone is reinforced. This generates better
adhesion between the layers and a higher Young’s modulus (or
stiffness). Bagheri Saed et al. also observed an increase in com-
pressive strength with increasing exposure time for DLP.[%]
Similarly, Pyo et al. observed an increase in the stiffness of
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their Digital micromirror device (DMD)-printed green chem-
istry-derived polyurethane with longer light exposures.[79] Yang
et al. investigated the effect of the exposure time of acrylate
resin in DLP on the printability and the hardness.”>*] Concern-
ing the mechanical properties, a strong increase in hardness
was observed, which went from 0 to 107.2 N as the exposure
was varied from 2 to 8 s. In the same way, Yao et al. generated
microneedles for medical applications through DLP polymeri-
zation and evaluated the effect of exposure time on the mechan-
ical performance in compression.[®”) They observed an increase
in stiffness with the increase of exposure time, but a decrease
in the resolution.

Thus, if the exposure time increases, the conversion degree
and the stiffness increase, but the resolution decreases. High
exposures also increase the force needed to raise the object
from the vat, which might cause delamination issues. As a
result, compromises must be achieved between accurate print-
ing and good mechanical properties, insofar as an excess of
exposure time leads to very long processes and over-cured scaf-
folds. It is also important to note that “dark polymerization”
exists, and that the reaction continues even after turning off
the UV light.??)

Layer thickness and sample size

Small layer thicknesses generate more cohesion and thus
increase material stiffness. Indeed, Yang et al. mentioned that
“reduced layer height was beneficial to printing accuracy but
adverse to printing efficiency” due to the increase in printing
time when using small layers.[**! However, they did not study
the consequences on mechanical properties. However, as men-
tioned by Kepler et al., small layer thicknesses increase the
risk of printing error or void inclusion insofar as voids tend to
appear in the interlayer area.8!]

According to Kowalska, high layer thickness are det-
rimental because they increase polymer stress shrinkage
during polymerization.!'’! This is in agreement with the
results obtained by Wu et al. who observed higher distortion
stress and higher bending curvatures for high layer height
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samples.!®”) Nevertheless, anisotropy is reduced with higher
layer thickness.

Concerning the sample size, most studies focus on the
printer resolution, which reaches about 100 pm for the best
performances.!®”-”!] However, very few works focused on the
size effect of bigger parts for DLP and LCD printing. Staffova
et al. worked on DLP and studied the evolution of the network
density obtained via DMA, depending on the sample thick-
ness. They observed that “the deformation, glass transition
temperature, molecular weight between entanglements and
network density” were unchanged with the different sample
thicknesses.[*”) However, no study observed the influence of
the layer area on the mechanical properties.

Layer orientation

The layer-by-layer printing process generates anisotropy in
the material and influences the stiffness as well as the frac-
ture resistance. Steyrer et al. investigated the effect of orienta-
tion on the stiffness, measured by DMA and tensile testing for
DLP printed samples.’*®! They observed that the green parts
presented different behaviors depending on the printing direc-
tion. This was also observed by Kepler et al.®!] Aznarte et al.
observed that specimens printed by DLP in the Z direction (per-
pendicular to the tensile test direction) presented a lower tensile
modulus and a lower ultimate tensile stress valuel”®! [Fig. 3(a)].
This is due to the anisotropy generated by the process as well as
the orientation of the tensile test itself. However, unexpectedly,
the specimen printed in X and Y directions (both parallel to the
tensile test direction) presented different moduli, stresses and
strains, although there should be theoretically no difference (the
layer is always printed in the XY plan). As a result, this might
come from the printing parameters, an influence which is not
fully understood yet. Thus, the orientation of layers during the
printing process affects the Young’s modulus. Studies agree on
the fact that higher moduli seem to be obtained when layers are
oriented in the same direction as the tensile test.
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This anisotropy is also observed in compression tests. For
example, Wang et al. used DLP printing and demonstrated the
existence of different behaviors of polyurethane acrylate resins
in response to compression and tensile tests, depending on the
orientation of the load.[**! Indeed, they observed that compres-
sion of the samples led to less anisotropy.

On the contrary, in fracture studies, higher resistance is
observed when the layers are perpendicular to the fracture
stress. Staffova et al. studied via DLP the effect of the ori-
entation of the layer on the fracture resistance of samples
[Fig. 3(b)].1*! They observed important differences in the
fracture resistance. With a stress applied in the Z direction,
specimens printed with layers in the X direction presented the
highest resistance to failure (layers perpendicular to the fracture
stress) while samples with layers in the Z direction were less
resistant. This might be due to weak interlayer bonding, which
favors fracture propagation along the interlayer zone. The crack
must go through every layer to break the whole material, which
requires much more energy than the propagation along a weak
interface [Fig. 3(c)]. Moreover, Kepler et al. observed by SEM
microscopy fracture specimens printed by DLP in the Z direc-
tion and noted the presence of voids between two consecutive
layers [Fig. 3(d)]. These voids might behave as weak points
initiating fracture. The authors supposed these voids might
be reduced by a better atmosphere and humidity control.[34
Wang et al. analyzed the fracture morphology of the samples
submitted to parallel and vertical tension as well as the crack
formation of samples submitted to compression (both verti-
cally and horizontally).[**! The authors observed flatter tensile
fracture morphology for samples submitted to vertical tension
(perpendicular to the layers) while samples submitted to hori-
zontal tension presented rougher crack surface. Thus, fracture
resistance is highly anisotropic. However, fracture toughness is
only defined for isotropic materials, i.e., materials that present
the same properties in all directions. It is not the case here due
to the anisotropy of the printing process (layer-by-layer). Wang
et al. showed that the orientation has an influence on fracture
resistance, but it might not be accurate enough to employ the
term fracture toughness as defined by linear elastic fracture
mechanics.

As a result, layer orientation drives the mechanical proper-
ties and the anisotropy of the final material. Process parameters
are still not well understood and the differences in directions
might come from the process itself. Furthermore, little attention
is given to process defects like voids and inclusions that might
induce interlayer weakness.

It is important to state that few studies include statistical
analysis although many exploit the tensile test (Table III). This
highly empirical method must be accompanied by statistical
studies. In addition, repeatability studies concerning the print-
ing are required to better understand the disparity and defects
of the printed materials.

Other printing parameters

As showed in the review by Al Rashid et al. dedicated to com-
posites, the main parameters investigated for increasing the
Young’s modulus, tensile strength, flexural strength, hardness
and compressive strength have been the layer thickness, the
exposure time, the concentration of acrylate oligomer and the
light intensity.[®®) However, other printing parameters remain
unexplored such as the effect of the retracting speed. Indeed,
after the printing of each layer, the plate on which the object
is fixed goes up to allow the printing of the next layer. To our
current knowledge, the speed at which the plate moves is not
studied in the literature although it generates a lot of stress on
the resin. Its local viscosity might be changed depending on the
applied speed, which might result in different layer thicknesses
for different rising speeds. Additionally, printing parameters
such as the local heating of the screen and the pixel resolution
are rarely studied. Zinelis et al. printed the same resin with
different 3D printers (LCD and DLP) and observed significant
dispersions in some mechanical measurements (hardness and
indentation modulus for example).[® This emphasizes the
importance of device-specific parameters.

As aresult, the printing parameters are still not completely
mastered due to their high number and the intrinsic correlations
between them. This is also because they are not always acces-
sible to users. The exploration of the various printing param-
eters is intrinsically made difficult by the printers themselves
because not all parameters can be modified. As presented in
Table III, many parameters have been investigated, but the cor-
responding chemical characterization is often missing to fully
understand the changes at the molecular or mesoscopic scale.
Additionally, another processing step: the post-treatment, also
strongly determines the mechanical properties.

Effect of post-processing

Layer-by-layer printing generates a raw printed object called
the “green part”. This green part is always subjected to post-
treatments including washing steps and insolation with UV
light to achieve total polymer conversion®”! (Table IV).

Washing steps

Printing is followed by a washing step (mostly with isopropanol
for acrylates) to eliminate the residual uncured monomers from
the object surface. This washing step seems to influence the
mechanical performance; to some extent, it depends on the sol-
vent. This was observed by Bardelcik et al., who printed poly-
methyl methacrylate (PMMA) resin with SLA. They observed
variations in Young’s modulus with the solvents used (e.g., iso-
propanol, detergent, hydrogen peroxide).[®®! They observed an
increase of the strain of the samples loaded via tensile test due
to the plasticization induced by the solvent washing. Jang et al.
investigated the effect of washing conditions on the flexural
strength and conversion degree of objects printed by DLP.[*”!
No significant difference in surface roughness for the different
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conditions was observed, whereas a significant difference in
conversion degrees was obtained (via FTIR measurements).
The authors explained that inefficient washings might result in
over-curing during post-treatment while highly washed samples
present suspended solid particles that could be responsible for
the roughness. In the same way, Lambart et al. investigated the
flexural strength in three point bending tests of dental acrylate-
based resins printed in DLP submitted to different washing
treatments and report similar observations.>"]

Concerning fracture resistance, Hargreaves mentioned the
ability of solvents like ethanol or soap solutions to initiate
cracks in PMMA with more damage than water.”> Indeed,
according to Staffova et al., isopropanol washing can lead to
the initiation of cracks in their DLP printed material "]

As a result, the washing steps generate swelling and weaken
the inter-layer zones, decreasing the ultimate tensile strength
and Young’s modulus (Table IV). There is still a lack of knowl-
edge on the washing of DLP and LCD printed objects: what is
the best washing protocol for each resin? Is it preferable to use
one long wash or several shorter washes per sample?

Post-curing

Post-curing consists of insolating and exposing to UV-light
the freshly printed samples, also called green parts. During
this crucial step, the polymerization continues, redefining the
mechanical properties. However, the amount of light received,
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the post-curing temperature, the post-curing duration and even
the post-curing methods, drastically affects the final properties
(Table IV).

Staffova et al. observed via SEM analysis that a 30-min post-
treatment with UV further polymerized the interlayer zones
[Fig. 3(b)].1*%! The post-treatment resulted in an increase in
failure temperature, T, and storage modulus obtained via DMA
measurements. Similarly, Steyrer et al. observed that the UV
post-treatment applied to their DLP samples and observed that
the Young’s modulus and tensile strength of the green samples
were significantly increased after the post-treatment.**! The
increase of modulus after UV post-treatment is due to the den-
sification of the polymer network as observed by an increase
in the material rigidity. The increase of post-treatment time
increases the network density and T, in the same way, tending
to an asymptotic limit. Thus, UV post-treatment increases the
Young’s modulus, double bond conversion, and T,

But a major problem with post-curing, whatever the 3D
printing method, is the distortion of the objects, as described
by Wu et al..[%2] The authors analyzed the shape of the samples
during UV exposure (post-treatment) with a camera to estimate
the curvature. They tried to link it to the post-treatment process
and other printing parameters. They observed a UV-induced
bending (a final distortion) amplified for low thicknesses.'*!!
Nevertheless, uncertainties and disagreements remain concern-
ing the post-curing kinetics. Besides, one legitimate question
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Table V. Final table of the consequences of resin and printing parameters on mechanical properties.

Parameter

Mechanical consequences

Reference

Increase the ratio of rigid monomer/oligomer

Addition of an acrylate cross-linker

Increase of the methacrylation degree
Increase of functionality (from -di, to -tri acrylates

Photoinitiator

Photoabsorber
Plasticizers

Printing atmosphere
Printing T°C

Layer thickness

Layer orientation

Washing step

UV Post-treatment

Modulus increase by a factor 8, Tensile strength increase by
a factor 5, Hardness increase by a factor 3 (for the specific for-
mulations compared)

Possible increase of Young’s modulusby a factor 3

Increase of Tg (of 50°C)

Can increase the Young’s modulus from 1 to 30 MPa

Can increase the Tg up to 56%

Increase of the Young’s modulus from 0,7 to 4 MPa when the
methacrylation degree doubled from 40 to 80%

Tensile strength increase of 20 MPa and Young’s modulus increase
by a factor 5 (for the specific di and tri acrylate used)

Existence of an optimum amount of photoinitiator that maximizes
flexural modulus and Young’s modulus (photoinitiator depend-
ant)

Existence of an optimum amount of photoinitiator that maximizes
hardness

Nature and concentration of photoinitiator influences yield strength.
Maximum yield strength obtained for 1.18 wt % TPO-L

Decrease in compression strength (2.2 MPa to 0.1 MPa with a dye
concentration from 0.025 to 0.075 wt%)

Decrease in tensile strength from 7.0 to 5.5 MPa as PEG300 con-
tent increased from 10 to 40%

Mostly studies on the resin reactivity—lack of mechanical charac-
terizations

Increase of Young’s modulus and Tg with high curing temperature
(70°C instead of 20°C)

Small layers increase Young’s modulus (increase layers from 10
to 50 um decreased Young’s modulus from 1000 to 600 MPa)

Small layers increase Young’s modulus (increase layers from 50
to 200 um decreased Young’s modulus from 900 to 300 MPa)

X direction presents higher failure resistance (when stress perpen-
dicular to layers)

Z direction presents lower Young’s modulus and tensile strength
(when stress perpendicular to layers)

Decrease of Young’s modulus (from 800 MPa to about 500 MPa
and 400 MPa for some solvent)

Decrease of flexural strength for some solvent

Increase of Young’s modulus, tensile strength (factor 2) and T,
with post-treatment

Pooput et al.[*%]

Chen et al.l>”]
Zhu et al.?7]
Borrello et al.l>
Shi et al.>"]
Field et al.l'?!

Miao et al.[*%

Lima et al.l°!]

Musanje et al.[%]

Steyrer et al.[*

Bagheri Saed et al.l®!

Yang et al.[*%!
Scherzer et al.[®
Steyrer et al.’%!
Park et al.l*!
Aznarte et al.l”®]
Staffova et al.*¥]
Aznarte et al.l”®]
Bardelcik et al.®%]

Lambart et al.l’"

Steyrer et al.l*”!

concerns the post-treatment of porous and cellular materials of
precise architecture: which one should be chosen? Should it be
adapted to the density? Is there a gradient of polymerization
from the surface to the core of post-treated objects?

As explained by Jang et al., research concerning the influence
of the post-treatment is very scarce whereas numerous studies
focus on improving the printing resolution.!®”) However, the
post-treatment drives the mechanical properties (Table IV) and
should be further studied especially with DLP/LCD technology.

Summary and perspectives

This review revealed the numerous challenges in DLP and LCD
3D printing. While literature is still scarce for LCD printing,
DLP studies reveal that this new process is quite complex,
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with many distinct parameters (summarized Table V). From
a chemistry viewpoint, the components of the resin control
both the reactivity and the final properties such as the stiffness.
The amount and nature of photoinitiator or monomer used can
drastically change the resin properties, and thus the properties
of the printed material. Besides, not only the resin but also
the numerous parameters (atmosphere, temperature, exposure
time, layer thickness and orientation....) of the layer-by-layer
printing have to be considered. Indeed, they strongly influence
both printability and the final mechanical stiffness. Finally, the
post-treatment plays an important role in the determination of
final mechanical properties and should be further studied.
Therefore, while many advances in understanding the links
between the resin materials and the final mechanical proper-
ties of 3D printed objects have been achieved, many questions
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remain unsolved. New models and parameters might be nec-
essary to better understand the processes.[*®] Concerning the
chemistry of the resin, the liquid state is often well-described,
but more research needs to be done concerning the final green
part. More mechanical and thermomechanical analysis should
be performed to evaluate the influence of the photoabsorber on
mechanical properties and interlayer cohesion. Furthermore,
statistical analysis should be employed more systematically in
these different studies. Indeed, uncertainties are multiplied not
only by the characterization techniques themselves, but also
by the printing, which has not been proven to be absolutely
repeatable. Additionally, the role of defects, and more pre-
cisely at the interlayer zone, must be studied further. Besides,
these 3D printing processes generate intrinsic residual stress,
mostly due to shrinkage of the final materials.[*!*4! Further
work is needed first to characterize and quantify this mechani-
cal residual stress and then to control and reduce it via heat
post-treatments, for example. More generally, increased
knowledge of the different printing parameters is needed and
could allow the conception of new devices and optimized
processes.
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