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Abstract
The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and 
artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. 
Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further 
material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo 
in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion.

Introduction
Throughout history, we have been mostly dependent on trial 
and error and  serendipity[1] for alloy design and discovery. 
Identifying new materials with specific property requirements 
is challenging. Although no computational approach can dis-
place the ground truth of experiments, the time and cost asso-
ciated with only experimental studies to guide us toward best 
alloy composition can retard significant progress. With the 
exponential increase in demand for new materials, data-driven 
modeling based on experimental dataset coupled with expert 
domain knowledge has flourished in the last decade,[2] primar-
ily from academic research. Although data-driven modeling 
(based on compositional features) has been applied to predict 
a variety of mechanical properties,[3–6] corrosion and oxidation 
behavior are often considered a challenging problem due to the 
inherent complexity of these physical processes.[7,8]

Although a consistent emphasis was allocated toward build-
ing models with high accuracy using ML models such as neural 
network,  NN[9–11] for different applications, interpretability of 
these models remains as a consistent limitation. One of the 
challenges of using data-driven modeling in material science is 
the scarcity of data which will be persistent until high-through-
put experimental methods become ubiquitous. Therefore, along 
with building a good model for prediction, explainability of the 
results (even with smaller datasets) is essential to extract useful 
information to overcome the engineering challenges in materi-
als discovery. The domain of explainable artificial intelligence 
(XAI) and interpretable ML (IML)[9] was conceived to resolve 
this challenge. Methods and tools, such as SHapley Additive 
exPlanations (SHAP)[5,12–15] and local interpretable model-
agnostic explanations (LIME),[11] were developed to extend 
predictive modeling to possess local level interpretability, so 
that the models can be verified, studied, and analyzed with 

the support of domain knowledge. For this work, the SHAP 
approach is applied as the XAI tool to provide explainability 
to a black-box NN model. The NN model is chosen because of 
its effective predictive ability,[16–18] properties like universal 
approximation theorem,[19] and good compatibility with SHAP 
XAI tools. However, the primary focus of this paper is to boost 
the understanding of experimental data using XAI, but not to 
build best predictive modeling. SHAP applications have helped 
material scientists infer or recommend design rules, optimal 
compositions, and experimental parameters in alloy design and 
discovery. For example, Yan et al.[19] used SHAP for design-
ing high fatigue strength alloys, where SHAP analysis recom-
mended increasing Cr and Mo concentration and decreasing 
tempering and normalizing temperature to achieve high fatigue 
strength. Additionally, both Xiong et al.[5] and Yang et al.[16] 
used SHAP to find important parameters for improving hard-
ness of the high-entropy alloys (HEAs).

One such industrial goal is to optimize the elemental compo-
sition of FeCrAl alloys for its applications in nuclear environ-
ments. Because of the limitations of Zr-based alloys in loss of 
coolant accident (LOCA) scenarios, FeCrAl is being developed 
as nuclear fuel cladding material. In a nuclear reactor, the clad-
ding material has to combat low temperature (~ 300–400°C) 
normal boiling water reactor (BWR) chemistry water and steam 
for long (> 100 h) periods of time during normal operation con-
ditions. Additionally, accident tolerant fuel cladding must have 
good resistance to high temperature (~ 1200°C) oxidation for 
short (~ 2–4 h) thermal excursions due to LOCA event.[17] This 
poses the challenge of designing alloys with both high and 
low temperature oxidation resistance for short and long expo-
sure, respectively. In the past, a consistent experimental effort, 
especially at high temperature,[12,18,20,21] has been noticed to 
optimize FeCrAl composition for nuclear applications, but 
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a computational predictive modeling is rare. Previously, we 
have built predicative models for oxidation mass gain based on 
FeCrAl alloy composition and oxidation conditions.[13] While 
performing such predications, one of the challenges faced was 
skewness or scarcity of the dataset. One approach to encounter 
such difficulty is to use classification instead of regression to 
understand oxidation behaviors. A material scientist can clas-
sify an alloy to be a good or bad oxidation-resistant alloy based 
on the amount of mass gained per unit surface area. Here, we 
apply NN classifier to segregate FeCrAl based on composition 
and oxidation condition, e.g., temperature and duration. On 
top of that, a black-box model such as a NN is augmented with 
the explainability of machine learning methods. We apply XAI 
which is still under development in computer science commu-
nity and surely new to material science, to further extract useful 
material insights about FeCrAl oxidation.

Data and modeling
The experimental dataset used in this work is produced on 
FeCrAl alloy both from literature and ongoing experimental 
effort in GRC. In this work, only experiments from steam oxi-
dation condition are included in model building and valida-
tion, due to the limited amount of data from air and prototypic 
hydrothermal corrosion conditions in BWRs. New steam data 
used in these studies were from model alloys that were first 
vacuum induction cast, then spin cast into water cooled Cu 
molds. Steam oxidation studies were carried out in Ar purged 
tube furnaces, and samples were brought up to the test tem-
perature prior to adding steam. The details of the experimental 
test condition were provided in Ref.[21]. The wt% of Fe, Cr, 
Al, Mo, and Ni are selected as input features for predictive 
model building along with oxidation temperature and test 
duration. In addition, instead of formulating the problem as 
a regression problem to predict the experimental mass gain 
of alloys in our previous paper,[8] the experimental data are 
categorized into three classes, spallation (mass gain < 0 g/cm2 
or mass loss), good oxidation resistance (mass gain between 0 
and 5.0 ×  10−4 g/cm2), and non-oxidation resistance (mass gain 
greater than 5.0 ×  10−4 g/cm2). The reasons of having the clas-
sification problem are (1) the goal of the paper is to use XAI to 
explain what factors drive the FeCrAl alloys to have good/bad 
corrosion resistance, not to derive a predictive modeling; (2) 
the dataset is highly skewed and scarce, with the absolute val-
ues of mass gain/loss concentrate in the order of 0 to ~  10−4 g/
cm2 and ~  10−1 g/cm2. This distribution of mass gain can be 
naturally treated as a classification problem and better for XAI 
purpose. For the choice of the threshold, it was decided to bal-
ance of the number of data points (for training and testing) 
in each class. In the end, by an 80–20% split of dataset, the 
training set contains 66 data points (9 spallation, 42 good, and 
15 non-oxidation), and the test set contains 17 data points (5 
spallation, 9 good, and 3 non-oxidation).

In addition, a 2-layer NN with 20 hidden unit and ReLu 
activation function in each layer is used to build the predictive 

modeling using PyTorch.[14] L2 norm is used to reduce overfit-
ting because of the scarcity of data. The hyperparameters are 
chosen to attempt to reduce the number of weights to be trained, 
as well as to reduce overfitting, through cross validation, so that 
the model trained can have good training and testing accuracy, 
because of the limitation of number of available experimen-
tal data points. On the other hand, to build ML models in the 
materials science domain, a certain level of overfitting is fine, 
as every experimental result is important and time-consuming 
to obtain, and the model is expected to understand as much of 
the data distribution as possible. Especially for XAI purpose, 
reasonable level of overfitting can help the model to understand 
the trend of data distribution and explain our scarce data better. 
For deriving XAI explanation, Python SHAP package is used, 
which is naturally compatible with PyTorch model.

Results and discussion
The prediction accuracies of the NN model are 100% for train-
ing set and 88.2% (15/17) for test set. The confusion matrix 
of the test set is [[4, 1, 0], [0, 9, 0], [0, 1, 2]]. The F1 scores 
for spallation, good, and non-projective oxidation are 88.9%, 
90%, and 80%. It is important to note that although a certain 
level of overfitting is expected, the test set accuracy is good, 
as only two data points are incorrectly classified. From the test 
set confusion matrix, 1 out of 5 spallation cases and 1 out of 3 
non-oxidation resistances are classified incorrectly, which can 
be due to lack of training data for those two specific classes.

The average SHAP contribution of all the features is pro-
vided in Fig. 1(a). As mentioned earlier, SHAP values explain 
how each of the features locally impact the selection of three 
classes of oxidation resistance (both directionally and quanti-
tatively). The SHAP value of each of the feature quantifies the 
numerical influence on the final prediction. A positive SHAP 
value indicates that the feature pushes the prediction toward 
the particular class and negative value deters the selection of 
the class. Apart from the directional information, the quanti-
tative estimation of the SHAP values can precisely estimate 
how much the positive or negative influence is. Mo has the 
highest contribution in classifying a composition as a good 
oxidation-resistant alloy, while Al has the most influence on 
spallation and non-oxidation-resistant alloys. This may come 
as counter-intuitive if analyzed from a stable oxide forming 
element perspective. As the feature importance plot provides 
very little directional information, one gets no indication about 
the explainability of results from such plot. A scatter plot for 
the data points for all the classes is shown in Fig. 1(b–d) which 
indicate the directional feature importance. For good oxidation-
resistant alloys, Mo concentration always contributes nega-
tively, while Al primarily contributes positively, i.e., increases 
the chance of forming oxidation-resistant alloy [Fig. 1(b)]. As 
the blue and red dots are intertwined for Cr in Fig. 1(b), its con-
tribution is inconclusive. Figure 1(c) clearly demonstrates the 
effect of Cr and Al in predicting non-oxidation-resistant alloy. 
Alloys with low Al and Cr wt% (blue dots) increase the chances 
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of forming non-oxidation-resistant alloy, e.g., alloys with thick 
oxide scale. On the other hand, high Mo-containing alloys have 
higher chances of forming thick oxide scale as the red dots lie 
toward the right side in Fig. 1(c). In the experimental literature 
of FeCrAl oxidation, the addition of Al and Cr has been proven 
to form thin oxide scale at both high and low temperatures.[21] 
If Mo is present, it forms a thick oxide scale at low temperature, 
making the alloy unprotective of oxidation.[21] Such under-
standings are drawn from expensive experimental characteriza-
tion like scanning electron microscopy (SEM) and transmission 
electron microscopy (TEM) of different FeCrAl compositions. 
Gaining similar insight from specific mass change data only is 
new to the community and can provide meaningful insight from 
inexpensive and high-throughput tests if XAI is used correctly. 
In terms of spallation [Fig. 1(d)], the absence of Mo (blue dots) 

increases the change of oxide layer falling off. This is mildly 
contradictive, and no such direct evidence is obtained so far 
in the literature. That being said, FeCrAl alloys in the absence 
of reactive elements and Mo, especially with zero to very low 
Al content, are susceptible to spallation at high temperature 
oxidation as reported in Ref. [21]. The presence of high Ni con-
centration in FeCrAl will generally encourage low oxidation 
resistance and more changes of spallation, therefore, will not 
form good oxidation-resistant alloys. Ni is kinetically favored 
to form an oxide, but NiO is not a passivating layer as shown 
in the previous literature.[15] Table I lists a summary of SHAP 
elemental contribution. 

Next, we pull two alloys, one predicted correctly by the 
model [Fig. 2(a)], while the other was an incorrect prediction 
[Fig. 2(b)] to further analyze the SHAP contributions for each 

(a) (b )

(c ) (d)

Non-Protective Oxide

Protective Oxide

Spallation

Figure 1.  (a) Feature importance from SHAP values for good or protective, non-oxidation resistant (unprotective), and spallation classifica-
tion, and (b–d) SHAP contribution of all features for every data point in the dataset.

Table I.  Summary of SHAP 
contributions for elements of 
interest shown in Fig. 1.

Element of 
interest

Elemental concen-
tration

Protective oxide 
contribution

Non-protective oxide 
contribution

Spallation of 
oxide contribu-
tion

Al High Positive Positive Positive/Neutral
Low Positive Negative Negative

Cr High Positive Negative Positive/Neutral
Low Positive Positive Negative

Mo High Negative Positive Neutral/Negative
Low Negative Negative/Neutral Positive

Ni High Negative Positive No Trend
Low Positive Negative/Neutral No Trend
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deeply. According to the original dataset and the threshold of 
good oxidation-resistant alloy, they both form thin oxide scale 
as the mass gain is small (below 5.0 ×  10−4 g/cm2). Steam oxi-
dation of Fe–21Cr–5Al–3Mo at 900°C after 4 h is predicted 
correctly with 84.9% chance for forming protective scale, 
while the same compassion tested at 1000°C for 2 h is pre-
dicted incorrectly with 78.8% chance of forming thick oxide 
scale. The SHAP contribution of all the components remains 
within ± 10% except for Mo. Mo reduces the chances for 
both the cases. For the high temperature short duration test 
[Fig. 2(b)], SHAP negative contribution of Mo increases by 
30%, but it has not decreased high enough to classify it as good 
oxidation material. Looking back at the experimental specific 
mass gain data [i.e., 5.75 ×  10−4 g/cm2] for the wrong classifica-
tion, we found it to be very close to the threshold [5.0 ×  10−4 g/
cm2] as well. For the other wrongly classified case, although 
the ground truth class is spallation that is classified to be good, 
the mass change is a small negative value [− 5.2 ×  10−6 g/cm2], 
which is very close to the threshold (0 g/cm2). This empha-
sizes the importance of careful selection of threshold and care 
should be taken to select the threshold if a problem statement 
is changed from regression to classification.

The two-way interaction plot of two variables is important to 
understand the interaction of features, as shown for Al and tem-
perature of steam oxidation in Fig. 3. Alloys without Al at high 
temperature tend to be poor oxidation resistant as the absence 
of Al contributes positively toward classification of unprotec-
tive oxide formation which can be observed from Fig. 3(e). 
As our dataset is not well distributed in the temperature and 
Aluminum range, we stay away from drawing further conclu-
sive information. The purpose is to demonstrate the ability of 
SHAP to inform what the model is doing and not treat it as a 
black box.

Provided all the features remaining unaltered, effect of one 
parameter change is helpful to understand the effect of sin-
gle feature. The effect of Al wt% changes from 0 to 7% for 
Fe–21Cr alloy for oxidation at 1300°C for 4 h, e.g., regular 
operating scenario [Fig. 4(a)] and 600°C for 100 h, e.g., acci-
dental scenario [Fig. 4(b)]. At 600°C, all the alloys fall into 

good oxidation-resistant alloy category, primarily due to the 
presence of high Cr (21 wt%) forming protective oxide. At 
high temperature, however, low Al alloys form thick oxide 
scale, and more than 6 wt% Al alloys tend to indicate spal-
lation. At high temperature (> 1000°C), only Al oxide is pro-
tective, and its absence will create thick oxide scale, hence 
oxidation non-protective alloy. On the other hand, as the model 
alloy does not have Mo or any other reactive element, high 
Al-containing alloys are susceptible to spallation which has 
been experimentally reported.[21] The optimal performance is 
seen for 3.5 to 6 wt% of Al. At low temperature, the Cr oxide 
is protective enough to make the alloy oxidation resistant even 
in the absence of Al.

Conclusion
Understanding the effect of alloy composition and environmen-
tal condition on oxidation behavior of alloys is a difficult prob-
lem. Given the large compositional space of FeCrAl alloys and 
its effectiveness as nuclear cladding materials over Zr-based 
alloys, data-driven modeling can guide material scientists to 
the optimized composition. The small number of experimental 
data points of target specific mass gain dataset, to begin with, 
poses a challenge that has been tackled with changing the prob-
lem into a classification model instead of a regression one. The 
proposed NN predicts the classes correctly for 15 alloys among 
17 test cases. Using XAI, we explored the fundamental under-
standing that can only be obtained from expensive material 
characterization experiments. We found XAI to be extremely 
powerful in terms of understanding the basic physics if inter-
preted correctly. For the discussion before, the important con-
clusions drawn from XAI are proposed in Table II.

This is the first work of applying XAI to understand cor-
rosion in any alloy system. Along with building predictive 
models, explaining the inner workings of the model is needed 
to understand the influence of different material features into 
the target property prediction. We understand that there are 
challenges about skewness or scarcity of the dataset, but the 
goal of this paper is to show the capability of XAI in terms 

(a) (b )

Classified asClassified as

Figure 2.  SHAP contribution of the features of Fe–21Cr–5Al–3Mo alloy after oxidation at (a) 900°C after 4 h classified correctly and (b) 
1000°C after 2 h classified incorrectly.
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Figure 3.  Effect of (a, c, e) Al wt% and (b, d, f) temperature (°C) on classifying FeCrAl as (a, b) spallation, (c, d) protective, and (e, f) non-
protective scale forming alloy. The blue line indicates the zero SHAP contribution, above and below the line SHAP values are positive and 
negative, respectively.
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Figure 4.  Prediction of Fe–21Cr–xAl (where x varies from 0 to 7 wt%) ability to resist oxidation at (a) 1300°C for 4 h and (b) 600°C 100 h.
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of understanding experimental data and help the design and 
discovery of new alloys. Once new experiments are available 
based on the study of XAI, new data will be incorporated to 
update the ML model and the XAI understanding of experi-
mental data will be updated, and new experiments can be 
proposed, which the idea of active learning.
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