Skip to main content
Log in

Microstructural evolution at the interface of superconducting thin films and SiC substrate

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Given the importance of fabricating superconducting thin-film device heterostructures, studying material interfaces as a function of processing conditions is warranted. In this work, we assess the interfacial reactions and resulting microstructural evolution at the NbN/SiC interface after thermal annealing. Transmission electron microscopy revealed the diffusion of NbN into the SiC substrate and the formation of NbN nanocrystallites therein induced by the 1400°C treatment. Raman spectroscopy is also employed to gain an understanding of the interface lattices’ optical responses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Data presented herein are available from the corresponding author upon reasonable request.

References

  1. G. Aschermann, E. Friederich, E. Justi, J. Kramer, Supraleitfahige Verbindungen mit extrem hohen Springtemperaturen. Physik Z. 42, 349 (1941)

    CAS  Google Scholar 

  2. G.Y. Wang, Z. Zhu, X.Y. Yang, L. Dong, H.Y. Ma, H.H. Sun, A.M. Li, D.D. Guan, D. Qian, C. Liu, Y.Y. Li, J.F. Jia, Atomically flat superconducting NbN thin films grown on SrTiO3 (111) by plasma-assisted MBE. APL Mater. 5, 126107 (2017)

    Article  Google Scholar 

  3. Y. Nakamura, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions. Appl. Phys. Lett. 99, 212502 (2011)

    Article  Google Scholar 

  4. C.O. Bozler, Current prospects for the permeable base transistor. Surf. Sci. 174, 487 (1986)

    Article  CAS  Google Scholar 

  5. A.F. Rigosi, R.E. Elmquist, The quantum Hall effect in the era of the new SI. Semicond. Sci. Technol. 34, 093004 (2019)

    Article  CAS  Google Scholar 

  6. T. Oe, A.F. Rigosi, M. Kruskopf, B.Y. Wu, H.Y. Lee, Y. Yang, R.E. Elmquist, N.H. Kaneko, D.G. Jarrett, Comparison between NIST graphene and AIST GaAs quantized Hall devices. IEEE Trans. Instrum. Meas. 69, 3103–3108 (2019)

    Article  Google Scholar 

  7. R. Simmonds, K. Lang, D. Hite, S. Nam, D. Pappas, J. Martinis, Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)

    Article  CAS  Google Scholar 

  8. R. Yakimova, E. Janzén, Current status and advances in the growth of SiC. Diam. Relat. Mater. 9, 432–438 (2000)

    Article  CAS  Google Scholar 

  9. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzén, E. Pippel, J. Woltersdorf, V. Belitsky, Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications. Supercond. Sci. Technol. 24, 035016 (2011)

    Article  Google Scholar 

  10. B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Dev. Lett. 10, 455–457 (1989)

    Article  Google Scholar 

  11. T. Kimoto, J. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, Singapore, 2014). https://doi.org/10.1002/9781118313534

    Book  Google Scholar 

  12. W. Ching, Y.-N. Xu, P. Rulis, L. Ouyang, The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC. Mater. Sci. Eng. A 422, 147–156 (2006)

    Article  Google Scholar 

  13. M. Kruskopf, A.F. Rigosi, A.R. Panna, D.K. Patel, H. Jin, M. Marzano, M. Berilla, D.B. Newell, R.E. Elmquist, Two-terminal and multi-terminal designs for next-generation quantized Hall resistance standards: contact material and geometry. IEEE Trans. Electron Dev. 66, 3973–3977 (2019)

    Article  CAS  Google Scholar 

  14. M. Kruskopf, A.F. Rigosi, A.R. Panna, M. Marzano, D.K. Patel, H. Jin, D.B. Newell, R.E. Elmquist, Next-generation crossover-free quantum Hall arrays with superconducting interconnections. Metrologia 56, 065002 (2019)

    Article  CAS  Google Scholar 

  15. K. Senapati, N.K. Pandey, R. Nagar, R.C. Budhani, Normal-state transport and vortex dynamics in thin films of two structural polymorphs of superconducting NbN. Phys. Rev. B 74, 104514 (2006)

    Article  Google Scholar 

  16. D.S. Katzer, N. Nepal, M.T. Hardy, B.P. Downey, D.F. Storm, E.N. Jin, R. Yan, G. Khalsa, J. Wright, A.C. Lang, T.A. Growden, V. Gokhale, V.D. Wheeler, A.R. Kramer, J.E. Yater, H.G. Xing, D. Jena, D.J. Meyer, Molecular beam epitaxy of transition metal nitrides for superconducting device applications. Phys. Status Solidi A 217, 1900675 (2020)

    Article  CAS  Google Scholar 

  17. X.-G. Lu, M. Selleby, B. Sundman, Calculations of thermophysical proper-ties of cubic carbides and nitrides using the Debye–Gruneisen model. Acta Mater. 55, 1215–1226 (2007)

    Article  CAS  Google Scholar 

  18. F. Mercier, S. Coindeau, S. Lay, A. Crisci, M. Benz, T. Encinas, R. Boichot, A. Mantoux, C. Jimenez, F. Weiss, E. Blanquet, Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surf. Coat. Technol. 260, 126–132 (2014)

    Article  CAS  Google Scholar 

  19. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés, F. Lévy, Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films. Surf. Coat. Technol. 180, 178–183 (2004)

    Article  Google Scholar 

  20. F. Fromm, P. Wehrfritz, M. Hundhausen, T. Seyller, Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate. New J. Phys. 15, 113006 (2013)

    Article  Google Scholar 

  21. A.F. Rigosi, D. Patel, M. Marzano, M. Kruskopf, H.M. Hill, H. Jin, J. Hu, A.R.H. Walker, M. Ortolano, L. Callegaro, C.T. Liang, Atypical quantized resistances in millimeter-scale epitaxial graphene pn junctions. Carbon 154, 230–237 (2019)

    Article  CAS  Google Scholar 

  22. H.M. Hill, A.F. Rigosi, S. Chowdhury, Y. Yang, N.V. Nguyen, F. Tavazza, R.E. Elmquist, D.B. Newell, A.R.H. Walker, Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy. Phys. Rev. B 96, 195437 (2017)

    Article  Google Scholar 

  23. F. Fromm, M.H. Oliveira, A. Molina-Sánchez, M. Hundhausen, J.M.J. Lopes, H. Riechert, L. Wirtz, T. Seyller, Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001). New J. Phys. 15, 043031 (2013)

    Article  CAS  Google Scholar 

  24. A. Tolosa, B. Krüner, S. Fleischmann, N. Jäckel, M. Zeiger, M. Aslan, I. Grobelsek, V. Presser, Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes. J. Mater. Chem. A 4, 16003–16016 (2016)

    Article  CAS  Google Scholar 

  25. I. AlShibane, J.S. Hargreaves, A.L. Hector, W. Levason, A. McFarlane, Synthesis and methane cracking activity of a silicon nitride supported vanadium nitride nanoparticle composite. Dalton Trans. 46, 8782 (2017)

    Article  CAS  Google Scholar 

  26. J.Z. Jiang, K. Ståhl, R.W. Berg, D.J. Frost, T.J. Zhou, P.X. Shi, Structural characterization of cubic silicon nitride. EPL 51, 62 (2000)

    Article  CAS  Google Scholar 

  27. A.R. Panna, I. Hu, M. Kruskopf, D.K. Patel, D.G. Jarrett, C. Liu, S.U. Payagala, D. Saha, A.F. Rigosi, D.B. Newell, C.-T. Liang, R.E. Elmquist, Graphene quantum Hall effect parallel resistance arrays. Phys. Rev. B 103, 075408 (2021). https://doi.org/10.1103/PhysRevB.103.075408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank D. B. Newell, S. Payagala, G. Fitzpatrick, A. L. Levy, and E. C. Benck for assistance with the internal NIST review process. Commercial equipment, instruments, and materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology or the United States government nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Funding

Work presented herein was performed, for a subset of the authors, as part of their official duties for the United States Government. Funding is hence appropriated by the United States Congress directly.

Author information

Authors and Affiliations

Authors

Contributions

C-IL, REE, and MK prepared samples. MBK performed electron microscopy measurements and analysis. AVD performed x-ray diffraction and analysis. AFR, AHW, REE, and AVD assisted with the analyses, support, and general project oversight. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Albert V. Davydov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, M.B., Liu, CI., Kruskopf, M. et al. Microstructural evolution at the interface of superconducting thin films and SiC substrate. MRS Communications 12, 1168–1173 (2022). https://doi.org/10.1557/s43579-022-00284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00284-4

Keywords

Navigation