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Abstract
Low-energy X-rays have a predominant role in medical diagnostic applications, grown tremendously during recent Covid-19 pandemic times. Syn-
thesis of stable, PMMA/polystyrene-BiI3 composites has been done through a facile, low-cost, dry-tumble mixing technique for direct X-ray detector 
applications. Comparative analysis of structural, optical, and photocurrent responses upon irradiation with low-energy X-rays (30 and 60 kV) ensue 
that PS-BiI3 demonstrates high SNR 3300, sensitivity 189 µC  Gy−1  cm−3 and fast response time 30 ms, at dose rate 1.68 mGy  s−1, affirming the 
composite to be prospective candidate for low-energy, room-temperature, direct X-ray detectors under low bias conditions.

Introduction
Low-energy, pulsed X-rays are being used in many medical 
diagnostic applications like digital radiography, dental X-ray 
imaging, CT scan, and radiation therapy. In recent times of 
COVID-19 pandemic, X-ray-based imaging devices have been 
widely used for chest scans rendering the CT score value, a 
vital parameter for an early detection of deteriorating lung con-
dition that has helped doctors to give a timely treatment to the 
Covid-positive patients saving many lives.[1] These spectacular 
applications are appealing and have given a new surge in the 
research of X-ray detector materials. Although many semi-
conductor and perovskite materials have carved a niche in the 
commercial X-ray detector industry, still the X-ray interactions 
with the detector material pose challenges to obtain stable, high 
detector performance with repeated usage. Researchers need to 
envisage new generation, light weight, portable, economically 
viable, easy-to-synthesize, X-ray detector materials possess-
ing mechanical flexibility and capability of room-temperature 
operations with low power requirements. In this paper, we have 
synthesized polymer-BiI3 composite pellets using a facile, soft 
effective method and investigated their performance for poten-
tial usage in direct X-ray detectors, capable of operating at 
room temperature, under low bias conditions.

X-ray detectors are broadly classified on two operation 
mechanisms, direct and indirect. Traditional semiconduc-
tor detectors are based on direct x-ray detection mechanism 
wherein the incident X-rays radiations are absorbed by the 
detector material and directly converted to charge carriers, gen-
erating an electric signal unlike the indirect detectors where 
the incident radiations fall on a scintillator material producing 
scintillating photons which further generate an electric sig-
nal. Direct X-ray detectors possess better signal-to-noise ratio 

(SNR) and sensitivity and establish a stronger presence in the 
market. Compound semiconductors with wide bandgap show 
capability of room-temperature operations, notwithstanding the 
crystal defects and charge trapping that lead to performance 
deterioration. Direct conversion radiation detector materials 
should possess the following: (1) high density and high atomic 
number, since absorption coefficient (α) is proportional to  Z4/
E3, where Z and E denote the atomic number of material and 
radiation energy, respectively; (2) high µτ, product of charge 
carrier mobility, and lifetime for efficient charge collection; 
(3) high resistivity to suppress the noise current; and (4) good 
stability for long-term operation.[2]

α-Se is the most prevalent direct conversion material used 
commercially in X-ray imaging devices, but poses certain 
limitations such as requirement of high operational voltage 
(10,000 V  mm−1) and decrease in the attenuation coefficient 
beyond X-ray energies of 40 keV.[3] Gallium arsenide being 
robust and stable makes a strong choice for imaging detectors; 
however, it shows poor energy resolution.[4] Cd-based detector 
materials such as cadmium telluride and cadmium zinc telluride 
exhibit good energy resolution and higher detection efficiency 
at high x-ray energies, but the main challenges with these mate-
rials are inconsistent performance at high x-ray flux, lower sen-
sitivity, and high toxicity.[5] Recently, perovskite-based metal 
 halides[6–9] like  MAPbI3 (methyl ammonium lead iodide) and 
 Cs2AgBiBr6 (dicesium silver bismuth hexabromide) are also 
emerging as potential candidates for modern detectors as they 
successfully demonstrate low dark current, high sensitivity 
at low energy doses, and a stable output over prolonged long 
usage.[10, 10] They display a linear response to X-ray energy 
and applied bias; however, high defect density, ion migration at 
high voltages, and poor environmental stability are a hindrance 
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in their practical applications.  Cs3Bi2I9 is an excellent choice 
for x-ray detector due to its high sensitivity, low detection limit, 
dose rate linearity, and incredible detector properties;[12, 13] 
nevertheless, the detector performance parameters are highly 
dependent on the controlled synthesis method which is an 
expensive and sophisticated. Reliability and reproducibility of 
results with environmental stability are major challenge for 
these detectors in practical applications. Challenge still remains 
to find an economical, sturdy, non-toxic, and easy-to-synthesize 
material which demonstrates high-performance detector met-
rics.[14, 15]

In the past, bismuth tri-iodide  (BiI3), a high density (5.78 g 
 cm−3), high atomic number (Bi:83, I:53) material offering high 
resistivity  (108 to  1013 Ω-cm) and high attenuation, has shown 
magnificent results for lead-free, X-ray and gamma-ray detec-
tion applications.[16, 17] However,  BiI3 has poor environmental 
stability and has a difficult growth process for defect free thick 
samples. In order to mitigate these shortcomings, we have, in 
our previous work, reported synthesis and preliminary inves-
tigations on polystyrene (PS)-BiI3 composites and our results 
were indicative of good stability and prospects of the new com-
posite for radiation detector.[18] The polymer matrix reinforces 
a level of stiffness in the otherwise easily cleavable layered 
pristine  BiI3 and further increases the overall resistivity of 
the resultant composite thereby augmenting its performance 
parameters with remarkable improvement in detector stability. 
These results were encouraging and actuated us to carry out 
more studies on polymer-BiI3 composites.

In the current work, we have synthesized and investigated 
the properties of poly-methyl methacrylate (PMMA)-BiI3 and 
polystyrene (PS)-BiI3 composites for being a radiation detec-
tor material and further compared its prospects vis a PS-BiI3 
samples. Photocurrent response of these composite pellets 
has been investigated with X-ray irradiation from two pulsed 
X-ray sources (60 kV and 30 kV) used in practical dental 
applications. PMMA-BiI3 composite pellets showed sensitiv-
ity and SNR as 94.6 µC  mGy−1  cm−3 and 1360, respectively, 
for dose rate of 1.68 mGy  s−1 at 100 V and 7.99 µC  Gy−1  cm−3 
and 495, respectively, at dose rate of 5.33 mGy  s−1 at voltage 
of 1.5 V. PS-BiI3 composite showed better sensitivity and 
SNR values of 189 µC  Gy−1  cm−3 and SNR 2300 for dose rate 
of 1.68 mGy  s−1 for irradiation with X-ray energy of 30 kV. A 
considerable improvement to 3300 SNR was achieved with 
increase in dose rate to 5.33 mGy  s−1 at 1.5 Volts though 
at a slightly compromised sensitivity of 3.48 µC  Gy−1  cm−3. 
It should be noted that this dose rate is the lowest for the 
X-ray source in our facility used for this work. As stated by 
the definition of the International Union of Pure and Applied 
Chemistry (IUPAC), detection limit of the device defined as 
the dose rate yielding an SNR value of 3 at a fixed bias which 
signifies that for prepared detector the actual detection rate is 
less than this value.[11] The photocurrent results demonstrated 
by polymer-BiI3 composites suggest them to be prospective 
material for X-ray detection, offering good SNR response in 
the dose rate of 3–5 µGy  s−1 at low voltage of 1.5 V as (most 

X-ray diagnostics for medical applications are done below 
5 mSv or 5.5 µGy  s−1[19]). Generally, such high SNR values 
are achieved at high bias voltage of the order of hundred volt-
age which reduces the stability of the detector. However, in 
our studies, we have successfully achieved high SNR at low 
voltage of 1.5 V.

Materials and methods
Synthesis of polymer‑BiI3 composite 
pellets
BiI3 (purity > 99.9%), PMMA , and PS granules were purchased 
from Sigma-Aldrich and polymer-BiI3 composites were syn-
thesized by simple dry-tumble technique with hot compression 
method. PMMA and PS granules were ground separately to fine 
powder in a liquid nitrogen environment using a grinder. Homo-
geneous composites were prepared by dry mixing the micron-
sized crushed polymer powder with same-sized  BiI3 powder at 
different weight percentage ratio of PMMA:BiI3 (70:30, 60:40, 
50:50, 40:60) and PS:  BiI3 (50:50) and the nomenclature of 
the samples has been adopted accordingly as shown in Table I. 
The dry mixing was done without any solvent with constant 
stirring on a magnetic stirrer for 1 h at 400–500 rpm speed at 
room temperature. The solvent-free method prevents traces of 
any impurities due to no solvent residue left in the composite. 
The composite mixture was put into a stainless-steel dye in a 
hot compression press and slowly heated to temperatures just 
below the softening temperature of the polymer 120 °C and 
95 °C for PMMA and PS, respectively, maintaining the tem-
perature for 15 min to achieve uniform heating and mixing of 
the composite powder. The mixture was then pressed with a 
pressure of 50–60 kg  cm−2 to form a 1.2–1.5 mm thick com-
pact pellet and let the composite gradually cool down to room 
temperature. The gradual heating and cooling process assists 
in the synthesis of a uniform and homogeneous composite with 
better crystallinity (Fig. 4 supplementary data). The as-prepared 
20 × 10 × 1.5  mm3 pellets were cut into different rectangular 
dimensions for further characterization.

Characterization and measurements
The X-ray diffraction studies of the samples were done 
using CuKα1 radiation in the 2θ range of 10°–50°. The 
optical studies of the samples were done using Double 

Table I.  Nomenclature of samples according to weight % composi-
tion of PMMA, PS, and  BiI3.

Sample name BiI3 wt% Polymer wt%

PMMA-70 30% PMMA 70%
PMMA-60 40% PMMA 60%
PMMA-50 50% PMMA 50%
PMMA-40 60% PMMA 40%
PS-50 50% PS 50%



 

360        MRS COMMUNICATIONS · VOLUME 12 · ISSUE 3 · www.mrs.org/mrc

Beam Cary 100 UV–Vis spectrometer within the spectral 
range of 200–800 nm. The morphology of the surface as 
well as cross-sectional and top view across the thickness 
of the pellet have been performed by ICM-7000 Jeol Scan-
ning Electrode Microscope with an EDAX. To study the 
X-ray detection response, the composite pellets were placed 
at 15 cm from the X-ray source and were irradiated using 
two different pulsed, DC X-ray sources operating at 30 kV 
(tube current 10 mA, pulse width 4 s, 1.68 mGy  s−1 dose 
rate) and 60 kV (tube current 8 mA, pulse width 1.5 s, dose 
rate of 5.33 mGy  s−1) in on/off states. The X-rays are made 
to exit from the source through 1.5 mm thick Al foil filters. 
The dose rate (D) for the source is calculated by formula (1) 
in supplementary data.

The photocurrent measurements were done using an 
Keithley-6485 Picometer with silver electrodes deposited on 
the 1.5 mm thick detectors in perpendicular configuration. 
The interaction of X-rays with detector material strongly 
depends on the stopping power or the attenuation coefficient 
of the material. The mass attenuation coefficient of the com-
posite at a particular energy was calculated by NistXcom 
software (https:// physi cs. nist. gov/ PhysR efData/ Xcom/ html/ 
xcom1. html) and was multiplied by the weighted average 
density of the composite to obtain linear attenuation coef-
ficient of the material. The absorbance/attenuation of radia-
tion as calculated from Eq. (2) in supplementary was upto 
95% for our samples.

Results and discussion
UV spectroscopy, X‑ray diffraction 
and SEM studies
The UV absorption spectra of the samples PMMA-40 and 
PMMA-70 as depicted in Fig. 1(a) were recorded after dis-
solving the pellet in acetone solvent. The polymer PMMA 
functional OH-group formed bond with Iodine (I) in  BiI3 in 
solid pellet matrix but when we dissolve the pellet in solvent, 
the OH-I bond weakened and got two different peaks.[20] These 
two are very similar to the pristine  BiI3 absorption peaks (Fig. 2 
supplementary data) with a blue shift that indicates the forma-
tion of composite. The spectra show onset of absorption in the 
range of 450–480 nm with a broad peak and another sharp 
transition edge at 350 nm which progresses to peak at 330 nm. 
There is an I-OH bond formation in our composite samples. 
An increase in  BiI3 weight percentage from 30 to 60% leads 
to a decreased concentration of I–OH bonding. This leads to 
changes in the nature of intermolecular bands within the spec-
trum which may act as defect or trap states thereby leading to 
the difference in the onset of absorption leading to the peak 
shift. The bandgap for the PMMA-BiI3 composites as calcu-
lated from Tau plot [inset in Fig. 1(a)] is 2.44 eV which lies 
between the bandgap values of its constituents  (BiI3, 2.0 eV, 
and PMMA, 4.8 eV) and is also the desired bandgap for X-ray 
detector materials. An increase in the concentration of PMMA 
from 40 to 70% leads to a substantial increase in the absorp-
tion peak intensity at 390 nm and furthermore, the onset of 
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Figure 1.  (a) UV–Vis absorption spectra of PMMA-70 and PMMA-40 samples, inset: tauc plot for band gap (b) XRD pattern of polymer-BiI3 
composites at varied ratios for PMMA-40,50,60,70.
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Figure 2.  Photocurrent studies for PMMA and PS composite samples for X-ray irradiation at 60 kV and 30 kV. (a) Photocurrent versus time 
response (inset depicts the rise and fall time of the response curve for PMMA-50), (b, c, d, and e) Leakage current density and photocur-
rent density versus bias voltage for polymer-BiI3 composites. (f, g) Sensitivity and NED response of best results PMMA-50 and PS-50 
samples at 60 kV and 30 kV, respectively (solid lines represent sensitivity and dotted lines represent NED).
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absorption gets slight red shifted from 470 to 480 nm. The 
broad band from 350 to 480 nm may be attributed to the pres-
ence of defects, color-centeres, and vacancies leading to trap-
ping of electrons and holes.[21]

X-ray diffraction patterns of the composite samples syn-
thesized with varied compositional ratios depicted in Fig. 1(b) 
show multiple peaks corresponding to PMMA and  BiI3. Pure 
PMMA gives two broad peaks at around 14° and 21.6°, which 
is seen shifted at around 15.5° and 22.5° in our samples, sug-
gestive of compressive stress induced during the composite 
formation.[22] The peak at around 35.1° is a merged peak of 
(025) and (202)  BiI3 planes and is clearly evident as a shoulder 
in the pattern for PMMA-70. This peak along with (300) peak 
corresponds to the tetragonal phase with space group P3/m 
of  BiI3 (compared with JPCDS card no. #76-1742). Further, 
the (0110) and (009) peaks represent hexagonal phase of  BiI3 
asserting mixed phases in our samples (JPCDS card no. #48-
1795). It is worth mentioning here that with increasing polymer 
content, the  BiI3 peaks diminish and there is a gradual progres-
sion toward amorphous nature in the composite formation. The 
PMMA-50, 60 patterns expose well-defined crystalline peaks 
for both PMMA and  BiI3 evincing the fact that  BiI3 crystallites 
are homogeneously embedded near the surface in the PMMA 
matrix. These samples pre-eminently show well-balanced prop-
erties of both  BiI3 and PMMA, ensuing better charge collection 
efficiency for a wider range of voltages as can be corroborated 
with our results later.

The surface morphology of the PMMA-50 sample given 
in Fig. 3 (supplementary data) showed a homogeneous com-
posite with a sheet structure rolled in at the edges correspond-
ing of PMMA with small  BiI3 crystallites sparsely spread all 
over the surface of the sheet and at the boundaries of the folds. 
Cross-sectional micrograph gives the average thickness of the 
sample as 1.5 mm. The energy-dispersive X-ray analysis of the 
sample portion marked in red as SPC001showed the presence 
of bismuth and iodine peaks thereby corroborating our XRD 
results. Further, SEM study of the sample revealed no structural 
changes after continuous sun exposure of the sample for over 
60 min, and more so no impairment in the features was found 
even after being kept under high humidity (RH 70–90%) and 
high temperature (30–35°C) conditions for 2 months asserting 
the environmental stability of the samples. EDAX studies con-
fine homogenous composite across sample and its cross-section 
(Fig. 4 in supplementary data).

Photocurrent and performance metrics 
analysis
We have investigated the detector performance parameters like 
photocurrent, leakage/dark current, SNR, sensitivity, and noise-
equivalent dose (NED) for PMMA-BiI3 and PS-BiI3 compos-
ites synthesized with different ratios. However, analysis of PS 
composite results conclusively declared PS-50 to be the best 
sample in terms of low leakage current, high photocurrent, and 
high SNR. Therefore, to maintain brevity of the manuscript, 
comparative results for PMMA composites vis a vis PS-50 have 

been cited. The photocurrent and dark-current responses upon 
irradiation with two different X-ray sources (60 kV, 8 mA) 
and (30 kV, 10 mA) at different bias voltages are depicted in 
Fig. 2(a–f). Photocurrent time response of PMMA-50 sample 
shows a sharp rise and fall with switching on/off of the X-ray 
source in Fig. 2(a) [photo-response for 30 kV of PMMA-50 
sample is included in supplementary data Fig. 5(b)] and cal-
culations yield a fast response time of around 30 ms (inset 
Fig. 2a). Fast response/recovery time is highly desired in medi-
cal applications for improved image resolution and reduced 
X-ray exposure. A point worth mentioning here as an advantage 
of our results is the requirement of low bias voltage (1–10 V) to 
achieve substantial photocurrent values at X-ray energy, 60 kV. 
High bias conditions adversely affect the photocurrent signal 
due to polarization effects induced in the sample. Figure 2(b–e) 
displays a nearly linear response between the photocurrent and 
dark-current signals versus bias voltage in our samples and 
further reveals reduction in the signals by an order of 1 to 2 
with increase in X-ray energy from 30 to 60 kV. For an ideal 
detector, high photocurrent and low leakage current are key 
parameters to appraise the detector performance, and PMMA-
40 and PMMA-60 samples demonstrated a high photocurrent, 
but on the flipside showed unfavorably high leakage current. 
PMMA-50 exhibited minimum leakage-current density, 1.17 
×  10–11 A  cm−2 (at 0.8 V, 60 kV) and 3.68 ×  10–11 A  cm−2 (at 
13 V, 30 kV) bias voltage. The photocurrent signals recorded 
for PMMA-50 was of the order of 7 ×  10–10 A  cm−2 (at 0.8 V, 
60 kV) and 3.13 ×  10–09 A  cm−2 (at 50 V, 30 kV). Although 
PMMA-50 offers low photocurrent densities, smaller standard 
deviation, low leakage current, and better SNR that are reason-
able trade-off in detector performance parameters, consequently 
making PMMA-50, the optimal sample in the PMMA series. 
However, comparison between PMMA-50 and PS-50 rendered 
better results for the latter, with PS-50 displaying lower leakage 
current, 8.21 ×  10–12 A  cm−2 (at 0.8 V, 60 kV) and comparable 
photocurrent densities, 7.2 ×  10–10 A  cm−2 (at 0.8 V, 60 kV) and 
3.66 ×  10–09 A  cm−2 (at 50 V, 30 kV). High photocurrent and 
low leakage currents offered by PS-50 make it a prospective 
choice for the detector. PS-50 photocurrent response for 60 kV 
is given in supplementary data (Fig. 5). Signal-to-noise ratio 
(SNR), sensitivity, and noise-equivalent dose rate (NED) are 
crucial assessment parameters for a detector and are calculated 
with formulas given in supplementary data.

A detector should possess a low NED value for better qual-
ity, high contrast imaging, which is an important parameter 
for practical medical applications.[21] Calculations for sen-
sitivity, SNR, and NED have been done for dose rates, (D) 
of 5.33 mGy  s−1 (60 keV source) and 1.68 mGy  s−1 (30 kV 
source). Highest achieved sensitivity and SNR for differ-
ent dose rates and bias conditions by PMMA composites in 
our work are mentioned in sequence as follows: (94.6 µC 
 mGy−1  cm−3, 1360 for dose rate 1.68 mGy  s−1, at 100 V) and 
(7.99 µC  Gy−1  cm−3, 495, for dose rate of 5.33 mGy  s−1, at 
1.5 V). PS-50 composites showed best sensitivity and SNR 
values as (189 µC  Gy−1  cm−3, 2300 for dose rate of 1.68 mGy 
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 s−1, at 100 V) and (3.48 µC  Gy−1  cm−3, 3300, for dose rate 
of 5.33 mGy  s−1, at 1.5 V) indicating an exceptionally high 
SNR of 3300, though at a slightly compromised sensitivity 
of 3.48 µC  Gy−1  cm−3. The highest sensitivity accomplished 
in our work surpasses that of commercially available α-Se 
detectors, which is 20 µGy−1  cm−2 at 10,000 V. Sensitivity and 
NED values for PMMA-50 and PS-50 are (3.26 µGy−1  cm−3, 
1.10 ×  10–8  Gys−1  Hz−0.5) and (3.48 µGy−1  cm−3, 7.42 ×  10–9 
 Gys−1  Hz−0.5), respectively, The sensitivity in our samples is 
much higher than the reported relative sensitivity value of 23.2 
µC  Gys−1 for β-Ga2O3 MSM detector at 800 V bias voltage and 
also better than the value, 21.8 nC  Gy−1, reported for β-Ga2O3 
SBD detector at 10 V. Enumerating further, the NED values 
of PMMA-50 and PS-50 samples are lower by an order of 2 
and outperform the reported NED values for β-Ga2O3 MSM 
detector (4.13 ×  10−7  Gys−1  Hz−0.5) and β-Ga2O3 SBD detector 
(8.69 ×  10−7  Gys−1  Hz−0.5).[23] A comparative table with sensi-
tivity values for our samples vis a vis those reported in recent 
literature reports is given in Table II.

High SNR, better sensitivity, and low NED, more so at 
low bias conditions, all together make polymer-BiI3 compos-
ites, the preferred choice for high imaging X-ray detectors in 
medical diagnostics. PS composites that have an edge over 
PMMA composites exhibiting better response for 60 kV X-ray 
source such as high sensitivity, SNR, low dark current, and 
NED for response. On the contrary, PMMAcomposite with a 
higher mass attenuation for low energies showed faster rise and 
fall response at low voltages. Further, the standard deviation 
of photocurrent of optimized composite samples was found 
0.21% for PMMA-50 and 0.02% for PS, which is way less 
than the standard value (10%). PS-BiI3 samples proved to be 
more environmentally stable with longer operational life as the 
 OH− group in the PMMA samples causes rusting under ambi-
ent and humid conditions arising the need for surface cleaning 
before doing photocurrent measurements. Also, these polymers 
being thermostatic can be reused over repeated cycles with reli-
ability which is a problem with halide-based detectors.

Conclusion
To conclude, a low-cost solvent-free method has been used to 
prepare lead-free, PMMA/PS-  BiI3 composite pellets of thick-
ness 1.5 mm, which displays attenuation upto 95% of incident 
X-rays. Both polymer composites showed promising results 
for room-temperature X-ray detector operation under low bias 
conditions with good environmental stability. But among both, 
PS-50 showed outstanding results of x-ray response for both 
30 and 60 kV X-rays with better environmental stability. The 
sensitivity achieved for PS-50 was 189 µC  Gy−1  cm−3 which is 
nine times better than the commercially available α-Se (20 µC 
 Gy−1  cm−2). Also, the SNR, 3300 demonstrated by the PS-50 
composite at 1.5 V biased voltage holds great promise for fab-
rication of a good X-ray imaging device with high resolution 
at low bias voltages. The response and recovery time of the 
detector is fast around 30 ms. The reliability of these materials 
is high owing to smaller standard deviation in photocurrent as 
well as noise current measurements. These results suggest that 
the PMMA/PS -BiI3 composites, exhibiting fabulous proper-
ties, are a fantastic candidate for room-temperature, low-volt-
age, radiation detector devices. Yet, sensitivity of the sample 
further needs to be improved, which can be achieved by using 
conductive fillers to increase the photocurrent.
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Table II.  Comparison of sensitivity results for PMMA and PS composites in this work with other published data.

Material Sensitivity (µC  Gy−1  cm−3) X-ray tube  
voltage (kV)

Dose rate
(mGy  s−1)

Voltage/electric field Ref.

CsPbI3: PVDF-HFP 4.7 70 2.5 2 V [24]

BiI3 0.053 70 2.5 2 V [25]

Bi5O7I 1.926 70 2.5 2 V [26]

TMCM-CdCl3 128.9 ± 4.64 µC  Gy−1  cm−2 40 1.06 µGy−1  s−1 10 V [27]

ω-Bi2O3 3.077 μCGy−1  cm−2 60 56.95 μGy−1  s−1 20 V [28]

CsPbI3 83.6 μC  Gy−1  cm−2 60 1.7 0.17 V μm−1 [29]

Y2O3 (high temp.) 0.143 70 2.5 2 V [30]

Fe doped β-Ga2O3 23.2 nC  Gy−1 30 0.383 Gy  s−1 800 V [23]

PMMA-BiI3 94.6 30 1.68 200 V This work
PMMA-BiI3 7.99 60 5.33 10 V This work
PS-BiI3 189 30 1.68 200 V This work
PS-BiI3 3.48 60 5.33 10 V This work
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