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Abstract
In unconventional reservoirs, the pore space is hosted by a heterogeneous matrix with various minerals and organic components. This heterogene-
ity complicates petrophysical interpretation during hydrocarbon exploration. A digital rock physics study of thermal and electrical conductivity was 
conducted using high-resolution focused ion beam scanning electron microscopy images of carbonate-rich source rocks. Finite-volume simulation 
results are discussed in context of the sample heterogeneity and anisotropy and supported by comparisons to empirical equations and effective 
medium theory. The results show how the presence of organic matter, pyrite, and pore constrictions impacts application of empirical equations and 
simplified models to unconventional reservoirs.

Introduction
Source rocks are composed of a mixture of inorganic miner-
als and organic matter that create a composite rock structure 
with composition, texture, and pore sizes that vary at the nano- 
and microscales.[1,2] Chemical heterogeneity arises from the 
changing composition of the inorganic mineral matrix which 
may include calcite, dolomite, quartz, and clay minerals, in 
addition to various organic components (i.e., kerogen, bitumen, 
and pyrobitumen) that are the source of hydrocarbons.[1, 3,4] 
Carbonate-rich source rocks consist of a calcite framework that 
contains varying amounts of organic components and pores. 
The pores of reservoir rocks store and transport fluids and those 
found in source rocks can be contained within the inorganic 
(i.e., inorganic porosity) or organic phases (i.e., organic poros-
ity) where the organic porosity is developed as the organic mat-
ter is converted to hydrocarbons.

Characterizing reservoir and rock properties is a key step 
when assessing reservoir quality, estimating resources in place, 
and planning for field development. Determining porosity and 
permeability are essential to reservoir characterization because 
these properties affect reserves estimates and hydrocarbon pro-
duction. However, accurately measuring the permeability of 
ultra-low permeability rocks, such as source rocks, is challeng-
ing. In addition, thermal and electrical conductivity measure-
ments are also of interest, and each can be measured on bulk 
samples in the lab or measured in the field by logging tools 
or estimated from petrophysical logs.[5–8] Nevertheless, few 
techniques exist, which can measure thermal and electrical con-
ductivity at the micro- and nanoscale, the length scales of the 
source rock heterogeneity. Moreover, bulk measurements do 
not make it possible to study how the local rock structure and 
compositional heterogeneity impact these properties.

Scanning Electron Microscopy (SEM) is commonly used 
for source rock characterization.[9–12] High-resolution two-
dimensional (2D) images of the complex, nanometer-scale, 
heterogeneity of source rocks are taken at the length scale 
of the heterogeneity of the rock fabric and pore space. These 
high-resolution images provide important context to evaluate 
the potential of unconventional reservoirs. Focused Ion Beam 
SEM (FIB-SEM) imaging provides a means to move beyond 
2D imaging to provide three-dimensional (3D) image volumes 
to capture the rock complexity at high resolution. Image pro-
cessing methods are then applied to segment the various image 
components into separate label fields for quantitative analy-
ses. Thus, the amount of the various components (i.e., matrix, 
organics, and high-density components), porosity, and pore size 
distribution can be measured and compared with other data at 
the same scale or at a larger scale.

Digital rock physics (DRP) simulations utilize images to 
predict the physical properties of rocks. Thus, DRP can com-
plement challenging laboratory measurements or provide esti-
mated properties when accurate laboratory measurements are 
not available.[13–19] Labeled images from image segmentation 
are assigned physical properties of the known materials for 
advanced mathematical simulations of physical characteristics 
such as flow behavior, electrical and thermal conductivity, and 
elasticity.[13–17,19] The results of these simulations can then be 
reviewed in the context of the changing structural framework. 
A correlative simulation-based study of structural effects on 
mechanical, thermal, and electrical conductivity, and flow prop-
erties has been reported for nanoporous metals.[19] While DRP 
permeability prediction has been demonstrated for unconven-
tional reservoir rocks, the use of DRP to study the thermal and 
electrical conductivity is less reported in the literature.[10, 20–23] 
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In addition, most DRP studies of unconventional reservoir 
rocks focus on shales or tight carbonates which typically con-
tain limited organic matter (i.e., < 10%) and inorganic porosity. 
This is different from carbonate-rich source rocks which can 
contain upwards of 15% organic matter and mainly organic 
porosity. These structural and compositional differences limit 
application of prior literature to the study of nano- and micro-
scale behavior of carbonate-rich source rocks which are the 
focus this work.

This paper demonstrates the use of 3D FIB-SEM imaging 
and DRP to quantify thermal and electrical conductivity of car-
bonate-rich source rocks with varying composition and struc-
ture. Quantitative image processing provides insight into the 
compositional and porosity variations and measures the total 
versus connected (i.e., effective) porosity. Each voxel of the 
segmented images was assigned thermal and electrical conduc-
tivity of the bulk materials, and finite-volume simulations were 
performed on the full and sub-sectioned rock volumes to pro-
vide effective properties in all three directions. The effect of the 
changing organic content and porosity on the DRP-predicted 
composite properties is discussed, and the composite properties 
are compared with empirical correlations and effective medium 
theory calculations. For carbonate-rich source rocks with pores 
filled with high salinity water, the thermal conductivity corre-
lates with organic matter content while the electrical conduc-
tivity is controlled by the fluid-filled connected porosity rather 
than the total porosity.

Methods
Samples
Four carbonate-rich source rock samples from the Middle East 
were selected for this study. The details of the geographic loca-
tion, geology, and geochemistry can be reviewed in prior lit-
erature.[24] The four samples were selected from the same well 
covering a depth range of less than 250 ft.

Scanning electron microscopy and image 
processing
Carbonate-rich source rock samples from the Middle East 
were sub-sectioned and prepared for Focused Ion Beam Scan-
ning Electron Microscopy (FIB-SEM) (Zeiss Crossbeam 
540). For each sample (H1–H4), a series of 2D image slices 
were collected using a low accelerating voltage (0.85–1 kV) 
to reduce charging. Both secondary electron (SE) and back-
scatter electron (ESB) images were collected and the indi-
vidual SE and ESB slices are aligned, cropped, filtered, 
and combined to create a 3D gray-scale volume (Avizo® 
and PerGeos®, Thermo Fisher Scientific). Each 3D volume 
(~ 1000 × 1000 × 1000 pixels, 10 nm/pixel, see Table S1 for 
specific volume dimensions) was segmented using gray-
scale intensity ranges to separate four major components: 
pores, organics, high-density minerals (i.e., pyrite), and 
matrix minerals (i.e., calcite). To increase sampling, each 
full 3D volume was then sub-sectioned into eight equally 

sized sub-volumes (Fig. 1(b)). The volume fraction of each 
component in each full image volume and sub-volume was 
measured (Fig. 2(a)). The pores were separated from each 
segmented image volume and filtered for corner connectivity 
(i.e., neighborhood = 26) to measure the total and connected 
porosity (Figs. 1(c), 2(b)). While not the topic of this paper, 
accurate alignment and component segmentation are a highly 
important step to this process. Figure S1 shows example SE, 
ESB, and segmented images from a few slices from H1 and 
H4 to demonstrate the segmentation results. All data pre-
sented are obtained from the segmented volumes including 
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Figure 1.   Representative SEM images of carbonate-rich source 
rocks. (a) Gray-scale SEM slice showing pores (black), organics 
(dark gray), matrix (light gray), and high-density minerals (white). 
The inset scale bar shows 5 µm. (b) Segmented 3D FIB-SEM 
volume showing pores (dark gray), organics (light gray), and matrix 
(blue). (c) Total pores and connected pores from the segmented 
3D volume shown in (b). Note the labeled dimension on the vol-
umes in 1b and 1c.
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composition, total and connected porosity, and simulated 
data. 

Finite‑volume method simulations
Finite-volume method simulations of the effective thermal and 
electrical conductivity of the composite carbonate-rich source 
rock volumes in the X-, Y-, and Z-directions were performed 
using the ConductoDict module in GeoDict® (Math2Market). 
The thermal and electrical conductivity of the constituent mate-
rials and pore-filling high salinity water were assigned from 
bulk materials properties from the literature (Table S2). Thermal 
conductivity simulations solve Fourier’s law with a temperature 
gradient of 2°C assuming pure diffusion and local thermal equi-
librium, and electrical conductivity simulations solve Ohm’s law 
with a potential difference of 1 V. The effective thermal and elec-
trical conductivities in all three directions are compared to the 
composition and porosity variations and used to assess microscale 
anisotropy.

Empirical correlations and effective 
medium theory models
Simulation results are fit with empirical correlations and com-
pared to effective medium theory (EMT) models. For layered 
materials, the Voigt and Reuss bounds[25,26] are used to define the 
upper and lower bounds of the effective thermal (λ) and electri-
cal (σ) conductivity.[8] The upper bound (λ|| or σ||) of the effective 
conductivity can be modeled as a parallel layering as shown in 
Eq. 1 where λi or σi and Vi are the conductivity and volume frac-
tion of each component.
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The lower bound (λ⊥) can be modeled as a perpendicular 
layering as shown in Eq. 2.

The Krischer-Esdorn equation[27] can be used to model the 
effective thermal conductivity between these two bounds as 
shown in Eq. 3 where x is related to how much of the sys-
tem resembles the perpendicular- or parallel-layered models[8] 
(Eqs. 1a and 2a).

The Lichtenecker and Rother equation[28] can also be used 
to model the effective conductivity between the two bounds 
as shown for effective electrical conductivity in Eq. 4 where α 
similar to x in Eq. 3 is related to rock texture.[8,29]
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Figure 2.   Composition of full and sub-sectioned from segmented 3D FIB-SEM rock volumes. (a) Volume fraction of total pores (i.e., 
pores), organic matter, pyrite, and matrix components. (b) Total porosity (ϕt, phi_t) and connected porosity (ϕc, phi_c).
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Conventional reservoir rocks are modeled as two-compo-
nent systems with the matrix minerals as the high thermal and 
zero electrical conductivity component and high salinity water 
as the low thermal and high electrical conductivity component.

Archie’s equation[30] (Eq. 5), originally developed for clean 
sands, relates the conductivity of a fluid-saturated rock (σ0) to 
the conductivity of the fluid (σw), porosity (ϕt), and complex-
ity of the pore structure which is captured in the cementation 
exponent, m, and pre-factor, a.

When Eq.  4 is applied to water saturated clean sands, 
m = 1/α. In clean sands, the porosity (ϕt) is well connected and 
the high salinity fluid saturating the rock is the most conductive 
component and, thus, provides the conductive pathway.

In unconventional reservoir rocks, such as the carbonate-
rich mudstones sampled for this study, the connectivity of the 
pores can vary significantly. Thus, the electrical conductivity 
is related to the connected porosity (ϕc) rather than the total 
porosity (ϕt) as shown in Eq. 6.[29]

Results
Figure 1 shows representative images of the samples used for 
this study. Figure 1(a) shows a single 2D SEM image with 
each component type identified. The gray-scale variations 
in the images are used to identify intensity ranges for image 
segmentation to digitally separate the pores, organics, high-
density minerals (i.e., pyrite), and matrix minerals (i.e., calcium 
carbonate). Figure 1(b) shows a representative segmented and 
labeled 3D image volume. The segmented 3D volumes and sub-
volumes were used as the input for the finite-volume method 
simulations. Finally, Fig. 1(c) shows the total and connected 
pores present in the volumes shown in Fig. 1(b). These images 
show that there is a significant difference between the total and 
connected porosity in these samples.

Each full rock volume has calcite with varying amounts of 
organic matter, pores, and pyrite which is the high-density min-
eral (Table S1). Figure 2(a) shows the composition of the full 
rock volumes and sub-volumes, all of which are referred to as 
samples moving forward. From the individual sample compo-
sitions, it can be seen that generating sub-volumes increases 
the number of samples and improves the heterogeneity of the 
sampled volumes. The H1 and H4 samples contained 20–40% 
organic matter, while the H2 and H3 samples contained con-
siderably more organic matter, ranging from 30% to as high as 
60% of the total rock volume. The H2 samples contain minor 
amounts of pyrite, while the H4 samples contained more pyrite, 
almost 20% in one case. Figure 2(b) compares the total porosity 
to connected porosity for all samples. All showed less than 15% 
total porosity and 8% or less connected porosity. About half of 
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the samples did not contain connected porosity observable at 
this resolution.

The electrical and thermal conductivity of the components 
and the pore-filling fluids (Table S2) impact composite prop-
erties measured at any scale including those predicted by 
DRP simulation. The simulation results included in this study 
assume high salinity water as the pore-filling fluid; our previ-
ous work demonstrates the impact of changing fluid properties 
on the electrical conductivity.[20,23] Figure 3(a) and (b) shows 
the simulation results for thermal and electrical conductivity 
in each direction, showing that both properties vary across the 
samples and with orientation. The thermal conductivity of the 
H4 samples is highest while that of the H2 and H3 samples 
tends to be lower. The H1 samples have the highest electrical 
conductivity while the H3 and H4 are the least conductive apart 
from few instances where the electrical conductivity in a single 
direction is similar to that of the H1 samples. These thermal and 
electrical conductivity variations are discussed next.

For porous metamorphic and sedimentary rocks, empirical 
relationships have been developed showing that the thermal 
conductivity decreases linearly with increasing porosity.[8] 
Figure S2a shows the DRP-predicted thermal conductivity 
versus porosity for these carbonate-rich source rocks. For 
total porosity greater than 5%, the thermal conductivity did 
decrease linearly with increasing porosity, but this trend did 
not hold for porosity less than 5%. Figure S2a also shows that 
these data violate the upper and lower EMT bounds (Eqs. 1, 2) 
when approximating these samples as a calcite matrix contain-
ing pores filled with high salinity fluid as would be common 
for conventional reservoir rocks. In these samples, however, 
the porosity development is strongly correlated with organic 
content and the organic matter is the least conductive com-
ponent. Figure S2b shows that, for these samples, the thermal 
conductivity linearly decreases with increasing organic mat-
ter content. Thus, the effective medium theory model can be 
applied by substituting organic matter content for the fluid-
filled porosity. Figure 3c shows the thermal conductivity versus 
organic matter content with the EMT bounds and mixing rela-
tionships from Eqns. 1, 2, and 3. When represented this way, 
the EMT bounds are not violated and a simplified model can 
be developed using Eq. 3 to estimate the thermal conductivity 
from organic matter content. This shows that lower organic 
content tends toward lower values of the textural parameter, x, 
implying closer structural behavior to a parallel-layered model, 
while those with more organic matter where the parameter is 
closer to 0.5 implying mixed behavior. In all cases, the thermal 
conductivity in the Y- and Z-directions is similar, while the 
difference between these data and the values in the X-direc-
tion increases with increasing organic content. One sample, at 
21.4% organic content, does not follow the behavior and does 
violate the bounds. Upon further examination, this was found 
to be sample H4_3 which contains the highest pyrite fraction, 
16.1%, which has 4 × higher thermal conductivity than calcite 
making the overall matrix thermal conductivity higher than that 
of the other samples.
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Archie’s equation[30] (Eq. 5) was developed for clean sands to 
describe the relationship between the electrical conductivity of 
the rock and the porosity in relation to the electrical conductivity 
of the pore-filling fluid.[8] Figure S3a shows the DRP-predicted 
electrical conductivity versus total porosity in all three directions 
showing that an Archie-like dependence on total porosity is not 
observed. For clean sands, however, the total porosity is typically 
well connected and in the case of electrical conductivity, the high 
salinity water filling these connected pores provides the conduc-
tive pathway. Figure S3b shows the electrical conductivity in all 
three directions versus connected porosity. A trend is observed 
in the higher electrical conductivity data (i.e., σ0 > 1E−05), but 
significant scatter is present in the samples with lower connected 

porosity. Note that comparable connectivity in all directions is 
not common in these samples. When considering that the con-
nected porosity calculation is not direction specific, it is evi-
dent that these lower electrical conductivity data are related to 
constricted or non-existent connected porosity in the specified 
direction. In addition, some samples can be well connected in 
a single direction while others are well connected in two direc-
tions. Figure 3(d) shows the maximum electrical conductivity 
versus connected porosity for each sample. The solid lines show 
variations in the cementation exponent, m, with the pre-factor a 
equal to 1 using Eq. 6. The inset shows the data and a fit to Eq. 6 
with a good correlation, R2 = 0.884. The observed scatter in those 
data with the least and no connected porosity is related to the 

Figure 3.   Results and property correlations. (a, b) DRP-predicted thermal and electrical conductivity in the X-, Y-, and Z-directions for 
each total and sub-sectioned rock volume. (c) Thermal conductivity versus organic matter content (Vorg) comparison showing data for all 
samples in each direction and EMT models from Eqs. 1–3. (d) Electrical conductivity versus connected porosity fraction in the direction of 
highest conductivity including Archie’s model from Eq. 5 with a = 1. Inset highlights the low connected porosity region and includes a fit to 
the data.
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heterogeneity of the surrounding matrix as well as the structure 
of the connected pathway. For example, samples with limited 
connected porosity would contain varying amounts of organic 
matter and pyrite in addition to varying pore sizes and tortuosity. 
The values of pre-factor, a, and the cementation exponent, m, are 
typically related to the complexity of the pore structure. The pre-
factor, a, from these data is 5.7, while the cementation exponent, 
m, is 2.9, both of which indicate complex pore structures.[8,29]

Structural anisotropy was not readily obvious in the 3D 
images of these samples due to the relatively small field of view. 
Given that the source rock samples used in this study are col-
lected from a laminated system, anisotropy in the properties 
measured at the larger scales are ubiquitous. The anisotropy is 
calculated for each direction combination (i.e., XY, XZ, YZ) to 
test whether the effects of anisotropy on the measured proper-
ties are evident at this scale. Figure 4 shows the maximum ani-
sotropy calculated in the DRP-predicted thermal and electrical 
conductivity for each sample. While the thermal conductivity of 
all samples shown in Fig. 3(a) is of similar scale in all directions, 
the results in Fig. 4(a) show some anisotropy is present even at 
this scale. The samples with the highest organic content (see 
Fig. 2(a), H3_6 and H3_8 for example) tend to have the high-
est anisotropy which would be expected given the depositional 
process and subsequent compaction that creates the reservoir 
environment. This can be seen in Fig. 3(c) and Fig. S2 where the 
samples with the highest organic content (i.e., Vorg > 0.3) tend to 
have similar thermal conductivity in the Y- and Z-directions and 
lower thermal conductivity in the X-direction. In addition, the 
x-value (Eq. 3) in the Y- and Z-directions tends toward lower val-
ues indicating parallel layering behavior while in the X-direction, 
the x-value (Eq. 3) tends toward 0.5 indicating mixed behavior. 
This process also impacts the connectivity of the pores at this 

scale since most of the porosity is developed in the organic mat-
ter during hydrocarbon generation. The electrical conductivity is 
correlated with the connected porosity when saturated with high 
salinity water. Figure 4(b) shows the maximum anisotropy of the 
electrical conductivity, where most samples show considerable 
anisotropy. Three of the four samples with the highest anisotropy 
H1_1, H3_3, and H3_7 have differing amounts of total and con-
nected porosity but have high ratios of connected to total poros-
ity. Interestingly, sample H4_3 has similarly high anisotropy but 
does not show connected pores at this resolution. This sample, 
however, has a large fraction of pyrite which constitutes a higher 
conductivity in the Z-direction (Fig. 4(b)). Samples with low 
connected porosity or significant constrictions along the con-
nected pores tend to show low overall electrical conductivity due 
to the low conductivity of the organic and calcite components 
and lack of a continuous conductive pathway.

Conclusion
This work demonstrates the use of DRP to predict electri-
cal and thermal conductivity of carbonate-rich source rocks 
from the Middle East using the same image volumes. While 
EMT and empirical correlations can be applied to these data, 
it is important to account for the appropriate materials and 
structural features. The relatively large amount of organic 
matter with low thermal conductivity controls the rock ther-
mal conductivity as opposed to the fluid thermal conductivity 
as would be commonly assumed based on learnings from 
conventional rock systems. Similarly, the results show that 
Archie’s equation can be applied to these samples by account-
ing for the direction and amount of connected porosity, 

Figure 4.   Maximum anisotropy for thermal conductivity (a) and electrical conductivity (b).
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especially when similar rock types are used. Results such 
as these help improve our understanding of how nanoscale 
heterogeneity can affect larger-scale measurements.
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