Skip to main content
Log in

Defect analysis of crystalline Si solar cells by learning radiation-induced defects in Si

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This paper presents analytical results for improving crystalline Si solar cells, analyzed using our knowledge in radiation-induced defects in Si. This study suggests that key issues for realizing higher performance Si solar cells are decrease in carbon concentration of less than 1 × 1014 cm−3. Defect introduction rates of Bi–O2i center induced by light illumination are compared with those of Bi–Oi center induced by 1-MeV electron irradiations in this study. Surface recombination velocity degradation of Si solar cells due to 1-MeV electron irradiations is compared with surface degradation of Si solar cells under light illumination by considering Pb center generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanemitsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell withinterdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 21, 17032 (2017)

    Article  Google Scholar 

  2. A. Richter, M. Hermle, S.W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184 (2013)

    Article  Google Scholar 

  3. M. Yamaguchi, K.-H. Lee, K. Araki, N. Kojima, Y. Ohshita, Analysis for efficiency potential of crystalline Si solar cells. J. Mater. Res. 33, 2621 (2018)

    Article  CAS  Google Scholar 

  4. M. Yamaguchi, A. Khan, S.J. Taylor, K. Ando, T. Yamaguchi, S. Matsuda, T. Aburaya, J. Appl. Phys. 86, 217 (1999)

    Article  CAS  Google Scholar 

  5. G.D. Watkins, J.W. Corbett, Phys. Rev. 138, 543 (1965)

    Article  CAS  Google Scholar 

  6. J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett. 51, 1103 (1987)

    Article  CAS  Google Scholar 

  7. P.M. Mooney, L.J. Cheng, N. Suli, J.D. Gerson, J.W. Corbett, Phys. Rev. B 15, 3836 (1977)

    Article  CAS  Google Scholar 

  8. A. Wang, High efficiency PERC and PERL silicon solar cells, PhD. Thesis. (UNSW, Sydney, 1992)

  9. M. Yamaguchi, K.-H. Lee, K. Araki, N. Kojima, Y. Okuno, M. Imaizumi, Analysis for nonradiative recombination loss and radiation degradation of Si space solar cells. Prog. Photovolt. 29, 98 (2021)

    Article  CAS  Google Scholar 

  10. E.H. Snow, A.S. Grove, D.J. Fitzgerald, Effects of ionizing radiation on oxidized silicon surfaces and planar devices. Proc. IEEE. 55, 1168–1185 (1967)

    Article  CAS  Google Scholar 

  11. R.K. Ahrenkiel, Minority-carrier lifetime in III–V semiconductors, in Semiconductors and Semimetsals, Chapter 2, vol. 39, ed. by R.K. Ahrenkiel, M.S. Lundstrom (Academic Press, Boston, 1993), p. 58

    Google Scholar 

  12. J. Dziewior, W. Schmid, Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977)

    Article  CAS  Google Scholar 

  13. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012)

    Article  Google Scholar 

  14. M. Higasa, Y. Nagai, S Nakagawa, K. Kasima, Effect of low carbon concentration on bulk carrier lifetime in MCZ silicon crystal, Abstract of the 73rd Annual Meeting of the Japan Society of Applied Physics, 20a-A20–3 (2014)

  15. K. Arafune, T. Sasaki, F. Wakabayashi, Y. Terada, Y. Ohshita, M. Yamaguchi, Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells. Phys. B 376–377, 236 (2006)

    Article  Google Scholar 

  16. J. Osaka, N. Inoue, K. Wada, Homogeneous nucleation of oxide precipitates in Czochralski-grown silicon. Appl. Phys. Lett. 36, 288 (1980)

    Article  CAS  Google Scholar 

  17. S. Shinoyama, M. Hasebe, T. Yamauchi, Defect formation in the cooling process after CZ-Si growth. Oyo Buturi 60, 766 (1991). (in Japanese)

    CAS  Google Scholar 

  18. I. Masada, Optimization of solar cell material quality and characterization of crystalline defects in Si, NEDO 2017 Symposium P4–7, Yokohama, Japan, Sep. 22, 2017

  19. M. Tajima, H. Kiuchi, F. Higuchi, A. Ogura, Quantificatio of C in Si by photoluminescence at liquid N temperature after electron irradiation. Appl. Phys. Express 10, 046602 (2017)

    Article  Google Scholar 

  20. H. Fischer and W. Pschunder, Proc. 10th IEEE Photovoltaic Specialists Conference, (IEEE, New York, 1973) p.404

  21. J.W. Corbett, A. Jaworowski, R.L. Kleinhenz, C.B. Pierce, N.D. Wilsey, Solar Cells 2, 11 (1980)

    Article  CAS  Google Scholar 

  22. J. Schmidt, A.G. Aberle, and R. Hezel, Proc. 26th IEEE Photovolt. Spec. Conf. (IEEE, New York, 1997), p. 13

  23. S. W. Glunz, S. Rein, W. Warta, J. Knobloch, and W. Wettling, Proc. 2nd World Conference on Photovoltaic Energy Conversion, (WIP, Munich, 1998), pp. 1343–1346

  24. S. Rein, S. Glunz, Appl. Phys. Lett. 82, 1054 (2003)

    Article  CAS  Google Scholar 

  25. T.K. Vu, Y. Ohshita, K. Araki, M. Yamaguchi, Generation and annihilation of boron- oxygen related defects in boron-doped Czochralski-grown Si solar cells. J. Appl. Phys. 91, 4853–4856 (2002)

    Article  CAS  Google Scholar 

  26. M.K. Stodolnya, G.J.M. Janssena, B.B. Van Akena, K.C.J.J. Toola, M.W.P.E. Lamersa, I.G. Romijna, P.R. Venemab, M.R. Renesb, O. Siarheyevac, E.H.A. Grannemanc, J. Wangd, J. Mad, J. Cuid, F. Langd, Z. Hud, J. Löffler, PID- and UVID-free n-type solar cells and modules. Energy Procedia 92, 609–616 (2016)

    Article  Google Scholar 

  27. D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn, Degradation of surface passivation on crystalline silicon and its impact on light-induced degradation experiments. IEEE J. Photovolt. 7, 1627–1634 (2017)

    Article  Google Scholar 

  28. E.H. Poindexter, P.J. Caplan, B.E. Deal, R.R. Razouk, Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J. Appl. Phys. 52, 879 (1981)

    Article  CAS  Google Scholar 

  29. C. Jorgensen, C. Svensson, K.-H. Ryden, Interface trap behavior in irradiated metaloxide- silicon structure. J. Appl. Phys. 56, 1093–1096 (1984)

    Article  Google Scholar 

  30. P.M. Lenahan, P.V. Dressendorfer, An electron spin resonance study of radiation- induced electrically active paramagnetic centers at the Si/SiO2 interface. J. Appl. Phys. 54, 1457–1460 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NEDO. The author thanks members in the NEDO and METI, and to Dr., H. Yamada, NEDO, Dr. Y. Hayashi, Dr. K. Nakamura and Dr. H. Lee, Toyota Tech. Inst., Prof. K. Arafune, Kobe Univ., Dr. H. Sai, AIST, Prof. K. Kakimoto, Kyushu Univ., Prof. A. Ogura and Prof. M. Tajima, Meiji Univ., Dr. T. Kojima, Nagoya Univ., Dr. K. Kashima, Global Wafers Japan for their cooperation and providing fruitful information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M., Kamioka, T., Kojima, N. et al. Defect analysis of crystalline Si solar cells by learning radiation-induced defects in Si. MRS Communications 11, 272–277 (2021). https://doi.org/10.1557/s43579-021-00043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00043-x

Keywords

Navigation