Skip to main content
Log in

Resonant X-ray scattering of biological assemblies

  • Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Understanding the relationship between structure and function for biological assemblies can guide identification of new therapeutics, design of biomaterials, and development of biotechnological processes. Resonant X-ray scattering provides a chemically-specific approach to characterize complex biological structures based on anomalous or resonant scattering from a specific element or chemical moiety. Anomalous or resonant diffraction can provide structural details with high atomic resolution, while resonant X-ray scattering can provide structural details with lower resolution through tender or soft X-rays. Here, we review applications, challenges, and opportunities for resonant X-ray scattering in the field of structural biology.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. G. Chiesa, S. Kiriakov, A.S. Khalil, Protein assembly systems in natural and synthetic biology. BMC Biol. 18, 35 (2020)

    Google Scholar 

  2. H. Ringsdorf, From molecules, macromolecules and supramolecular systems. Supramol. Sci. 1, 5 (1994)

    CAS  Google Scholar 

  3. M. Yang, W.J. Song, Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat. Commun. 10, 5545 (2019)

    CAS  Google Scholar 

  4. L.M. Gierasch, A. Gershenson, Post-reductionist protein science, or putting Humpty Dumpty back together again. Nat. Chem. Biol. 5, 774 (2009)

    CAS  Google Scholar 

  5. A. Klug, From macromolecules to biological assemblies (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 22, 565 (1983)

    Google Scholar 

  6. C.J. Wilson, A.S. Bommarius, J.A. Champion, Y.O. Chernoff, D.G. Lynn, A.K. Paravastu, C. Liang, M.-C. Hsieh, J.M. Heemstra, Biomolecular assemblies: moving from observation to predictive design. Chem. Rev. 118, 11519 (2018)

    CAS  Google Scholar 

  7. F. Herranz-Trillo, M. Groenning, A. van Maarschalkerweerd, R. Tauler, B. Vestergaard, P. Bernadó, Structural analysis of multi-component amyloid systems by chemometric SAXS data decomposition. Structure 25, 5 (2017)

    CAS  Google Scholar 

  8. M. Egli, Diffraction techniques in structural biology. Curr. Protoc. Nucleic Acid Chem. 65, 1 (2016)

    Google Scholar 

  9. D.I. Svergun, M.H.J. Koch, P.A. Timmins, R.P. May, Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules (Oxford University Press, Oxford, 2013).

    Google Scholar 

  10. A.T. Tuukkanen, A. Spilotros, D.I. Svergun, Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ 4, 518 (2017)

    CAS  Google Scholar 

  11. E. Gann, A.T. Young, B.A. Collins, H. Yan, J. Nasiatka, H.A. Padmore, H. Ade, A. Hexemer, C. Wang, Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. Rev. Sci. Instrum. 83, 045110 (2012)

    CAS  Google Scholar 

  12. F. Liu, M.A. Brady, C. Wang, Resonant soft X-ray scattering for polymer materials. Eur. Polym. J. 81, 555 (2016)

    CAS  Google Scholar 

  13. R.C. Lye, J.C. Phillips, D. Kaplan, S. Doniach, K.O. Hodgson, White lines in L-edge x-ray absorption spectra and their implications for anomalous diffraction studies of biological materials. Proc. Natl. Acad. Sci. USA 77, 5884 (1980)

    CAS  Google Scholar 

  14. M.M. Woolfson, An Introduction to X-Ray Crystallography (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  15. A.S. Rameseshan, Anomalous Scattering (Munksgaard, Copenhagen, 1974).

    Google Scholar 

  16. H. Stuhrmann, Resonant X-ray-scattering in biological structure research. Top. Curr. Phys. 145, 20 (1988)

    Google Scholar 

  17. J. Stamatoff, P. Eisenberger, J.K. Blasie, J.M. Pachence, A. Tavormina, M. Erecinska, P.L. Dutton, G. Brown, The location of redox centers in biological membranes determined by resonance X-ray diffraction. I. Observation of the resonance effect. Biochim. Biophys. Acta 679, 177 (1982)

    CAS  Google Scholar 

  18. M. Cianci, J.R. Helliwell, M. Helliwell, V. Kaucic, N.Z. Logar, G. Mali, N.N. Tusar, Anomalous scattering in structural chemistry and biology. Crystallogr. Rev. 11, 245 (2005)

    CAS  Google Scholar 

  19. M. Cianci, J. Helliwell, M. Yz, V. Helliwellz, N.Z. Kaucicx, G. Logarx, N.N. Malix, Anomalous scattering in structural chemistry and biology. Crystallogr. Rev. 11, 245–335 (2005)

    CAS  Google Scholar 

  20. W.A. Hendrickson, Anomalous diffraction in crystallographic phase evaluation. Q. Rev. Biophys. 47, 49 (2014)

    Google Scholar 

  21. L.M. Rice, T.N. Earnest, A.T. Brunger, Single-wavelength anomalous diffraction phasing revisited. Acta Crystallogr. Sect. D 56, 1413 (2000)

    CAS  Google Scholar 

  22. L.M. Rice, A.T. Earnest, T. Fau-Brunger, A.T. Brunger, Single-wavelength anomalous diffraction phasing revisited. Acta Crsytallogr. 56, 1413–1420 (2000)

    CAS  Google Scholar 

  23. D. Ye, S.N. Kiemle, S. Rongpipi, X. Wang, C. Wang, D.J. Cosgrove, E.W. Gomez, E.D. Gomez, Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls. Sci. Rep. 8, 12449 (2018)

    Google Scholar 

  24. J. Fink, E. Schierle, E. Weschke, J. Geck, Resonant elastic soft x-ray scattering. Rep. Prog. Phys. 76, 056502 (2013)

    CAS  Google Scholar 

  25. H. Ade, Characterization of organic thin films with resonant soft X-ray scattering and reflectivity near the carbon and fluorine absorption edges. Eur. Phys. J. 208, 305 (2012)

    CAS  Google Scholar 

  26. H. Ade, A.P. Hitchcock, NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space. Polymer 49, 643 (2008)

    CAS  Google Scholar 

  27. C. Vettier, Resonant elastic X-ray scattering: Where from? Where to? Eur. Phys. J. 208, 3 (2012)

    CAS  Google Scholar 

  28. B. Collins, J. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C. McNeill, M. Chabinyc, Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536 (2012)

    CAS  Google Scholar 

  29. J.H. Litofsky, E.D. Gomez, Connecting soft x-ray anisotropy with local order in conjugated polymers. MRS Commun. 9, 1168 (2019)

    CAS  Google Scholar 

  30. J.H. Litofsky, Y. Lee, M.P. Aplan, B. Kuei, A. Hexemer, C. Wang, Q. Wang, E.D. Gomez, Polarized soft X-ray scattering reveals chain orientation within nanoscale polymer domains. Macromolecules 52, 2803 (2019)

    CAS  Google Scholar 

  31. K.H. Stone, J.B. Kortright, Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy. Phys. Rev. B 90, 104201 (2014)

    Google Scholar 

  32. K. Cowtan, Phase problem in X-ray crystallography, and its solution, in eLS (John Wiley & Sons Ltd, Chichester, UK, 2003). https://doi.org/10.1038/npg.els.0002722

    Article  Google Scholar 

  33. J.M. Bijvoet, Phase determination in direct Fourier-synthesis of crystal structures (Reprinted from Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, vol 52, pg 313–314, 1949). Proc. Koninklijke Nederlandse Akad. Wetenschappen 100, 49 (1997)

    Google Scholar 

  34. J.R. Helliwell, M. Helliwell, V. Kaucic, N.Z. Logar, Resonant elastic X-ray scattering in chemistry and materials science. Eur. Phys. J. 208, 245 (2012)

    CAS  Google Scholar 

  35. J.-L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo, J.-F. Berar, Resonant diffraction. Chem. Rev. 101, 1843 (2001)

    CAS  Google Scholar 

  36. W. Hendrickson, Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51 (1991)

    CAS  Google Scholar 

  37. L. Shapiro, A.M. Fannon, P.D. Kwong, A. Thompson, M.S. Lehmann, G. Grübel, J.-F. Legrand, J. Als-Nielsen, D.R. Colman, W.A. Hendrickson, Structural basis of cell-cell adhesion by cadherins. Nature 374, 327 (1995)

    CAS  Google Scholar 

  38. W.A. Hendrickson, J.L. Smith, R.P. Phizackerley, E.A. Merritt, Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation. Proteins 4, 77 (1988)

    CAS  Google Scholar 

  39. Y. Liu, C.M. Ogata, W.A. Hendrickson, Multiwavelength anomalous diffraction analysis at the M absorption edges of uranium. Proc. Natl. Acad. Sci. USA 98, 10648 (2001)

    CAS  Google Scholar 

  40. S.E. Ealick, Advances in multiple wavelength anomalous diffraction crystallography. Curr. Opin. Chem. Biol. 4, 495 (2000)

    CAS  Google Scholar 

  41. W.A. Hendrickson, J.L. Smith, S. Sheriff, Direct phase determination based on anomalous scattering. Methods Enzymol. 115, 41 (1985)

    CAS  Google Scholar 

  42. J. Karle, Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology, in Chemical Crystallography with Pulsed Neutrons and Synchroton X-rays. ed. by M.A. Carrondo, G.A. Jeffrey (Springer, Dordrech, 1988), p. 387

    Google Scholar 

  43. W. Hoppe, V. Jakubowski, The Determination of Phases of Erythrocruorin Using the Two-wavelength Method with Iron as Anomalous Scatterer, in Anomalous Scattering. (Munksgård, Copenhagen, 1971), p. 25

    Google Scholar 

  44. W.A. Hendrickson, M.M. Teeter, Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290, 107 (1981)

    CAS  Google Scholar 

  45. R. Kahn, R. Fourme, R. Bosshard, M. Chiadmi, J.L. Risler, O. Dideberg, J.P. Wery, Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 179, 133 (1985)

    CAS  Google Scholar 

  46. W.A. Hendrickson, Analysis of protein structure from diffraction measurement at multiple wavelengths. Trans. Am. Crystallogr. Assoc. 21, 11 (1985)

    CAS  Google Scholar 

  47. J.M. Guss, E.A. Merritt, R.P. Phizackerley, B. Hedman, M. Murata, K.O. Hodgson, H.C. Freeman, Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic ’blue’ copper protein from cucumbers. Science 241, 806 (1988)

    CAS  Google Scholar 

  48. B.J. Graves, M.H. Hatada, W.A. Hendrickson, J.K. Miller, V.S. Madison, Y. Satow, Structure of interleukin 1 alpha at 2.7-ANG resolution. Biochemistry 29, 2679 (1990)

    CAS  Google Scholar 

  49. W. Yang, W.A. Hendrickson, R.J. Crouch, Y. Satow, Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science 249, 1398 (1990)

    CAS  Google Scholar 

  50. W.I. Weis, R. Kahn, R. Fourme, K. Drickamer, W.A. Hendrickson, Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608 (1991)

    CAS  Google Scholar 

  51. P.R. Kolatkar, S.R. Ernst, M.L. Hackert, C.M. Ogata, W.A. Hendrickson, E.A. Merritt, R.P. Phizackerley, Structure determination and refinement of homotetrameric hemoglobin from Urechis caupo at 2.5 A resolution. Acta Crystallogr. Sect. B 48, 191 (1992)

    Google Scholar 

  52. D.J. Leahy, W.A. Hendrickson, I. Aukhil, H.P. Erickson, Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987 (1992)

    CAS  Google Scholar 

  53. W. Hendrickson, Maturation of MAD phasing for the determination of macromolecular structures. J. Synchrotron Radiation 6, 845 (1999)

    CAS  Google Scholar 

  54. W.A. Hendrickson, J.R. Horton, D.M. LeMaster, Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9, 1665 (1990)

    CAS  Google Scholar 

  55. J.L. Martin, J.C.A. Bardwell, J. Kuriyan, Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464 (1993)

    CAS  Google Scholar 

  56. M. Newman, T. Strzelecka, L.F. Dorner, I. Schildkraut, A.K. Aggarwal, Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature 368, 660 (1994)

    CAS  Google Scholar 

  57. V. Ramakrishnan, J.T. Finch, V. Graziano, P.L. Lee, R.M. Sweet, Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219 (1993)

    CAS  Google Scholar 

  58. J.L. Staudenmann, W.A. Hendrickson, R. Abramowitz, Synchrotron resource of the Howard Hughes Medical Institute. Rev. Sci. Instrum. 60, 1939 (1989)

    Google Scholar 

  59. H. Wu, J.W. Lustbader, Y. Liu, R.E. Canfield, W.A. Hendrickson, Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2, 545 (1994)

    CAS  Google Scholar 

  60. Q. Liu, T. Dahmane, Z. Zhang, Z. Assur, J. Brasch, L. Shapiro, F. Mancia, W.A. Hendrickson, Structures from anomalous diffraction of native biological macromolecules. Science 336, 1033 (2012)

    CAS  Google Scholar 

  61. Q. Liu, Q. Liu, W.A. Hendrickson, Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr. Sect. D 69, 1314 (2013)

    CAS  Google Scholar 

  62. Q. Liu, Z. Zhang, W.A. Hendrickson, Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr. Sect. D 67, 45 (2011)

    CAS  Google Scholar 

  63. Z. Dauter, D.A. Adamiak, Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr. Sect. D 57, 990 (2001)

    CAS  Google Scholar 

  64. S. Basu, A. Finke, L. Vera, M. Wang, V. Olieric, Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr. Sect. D 75, 262 (2019)

    CAS  Google Scholar 

  65. Q. Liu, W.A. Hendrickson, Crystallographic phasing from weak anomalous signals. Curr. Opin. Struct. Biol. 34, 99 (2015)

    Google Scholar 

  66. V. Olieric, T. Weinert, A.D. Finke, C. Anders, D. Li, N. Olieric, C.N. Borca, M.O. Steinmetz, M. Caffrey, M. Jinek, M. Wang, Data-collection strategy for challenging native SAD phasing. Acta Crystallogr. Sect. D 72, 421 (2016)

    CAS  Google Scholar 

  67. T. Weinert, V. Olieric, S. Waltersperger, E. Panepucci, L. Chen, H. Zhang, D. Zhou, J. Rose, A. Ebihara, S. Kuramitsu, D. Li, N. Howe, G. Schnapp, A. Pautsch, K. Bargsten, A.E. Prota, P. Surana, J. Kottur, D.T. Nair, F. Basilico, V. Cecatiello, S. Pasqualato, A. Boland, O. Weichenrieder, B.-C. Wang, M.O. Steinmetz, M. Caffrey, M. Wang, Fast native-SAD phasing for routine macromolecular structure determination. Nat. Methods 12, 131 (2015)

    CAS  Google Scholar 

  68. J.K. Blasie, J.M. Pachence, A. Tavormina, M. Erecinska, P.L. Dutton, J. Stamatoff, P. Eisenberger, G. Brown, The location of redox centers in biological membranes determined by resonance X-ray diffraction. II. Analysis of the resonance diffraction data. Biochim. Biophys. Acta 679, 188 (1982)

    CAS  Google Scholar 

  69. W. Liu, T.Y. Teng, Y. Wu, H.W. Huang, Phase determination for membrane diffraction by anomalous dispersion. Acta Crystallogr. Sect. A 47, 553 (1991)

    Google Scholar 

  70. G. Pabst, N. Kučerka, M.P. Nieh, M.C. Rheinstädter, J. Katsaras, Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem. Phys. Lipid. 163, 460 (2010)

    CAS  Google Scholar 

  71. D. Pan, W. Wang, W. Liu, L. Yang, H.W. Huang, Chain packing in the inverted hexagonal phase of phospholipids: a study by X-ray anomalous diffraction on bromine-labeled chains. J. Am. Chem. Soc. 128, 3800 (2006)

    CAS  Google Scholar 

  72. W. Wang, D. Pan, Y. Song, W. Liu, L. Yang, H.W. Huang, Method of x-ray anomalous diffraction for lipid structures. Biophys. J. 91, 736 (2006)

    CAS  Google Scholar 

  73. A.L. Patterson, A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372 (1934)

    CAS  Google Scholar 

  74. G.A. Olah, H.W. Huang, W. Liu, Y. Wu, Location of ion-binding sites in the gramicidin channel by X-ray diffraction. J. Mol. Biol. 218, 847 (1991)

    CAS  Google Scholar 

  75. J. Torbet, M.H.F. Wilkins, X-ray diffraction studies of lecithin bilayers. J. Theor. Biol. 62, 447 (1976)

    CAS  Google Scholar 

  76. A.E. Blaurock, Structure of the nerve myelin membrane: proof of the low-resolution profile. J. Mol. Biol. 56, 35 (1971)

    CAS  Google Scholar 

  77. V. Luzzati, A. Tardieu, D. Taupin, A pattern-recognition approach to the phase problem: application to the X-ray diffraction study of biological membranes and model systems. J. Mol. Biol. 64, 269 (1972)

    CAS  Google Scholar 

  78. P. Mariani, V. Luzzati, H. Delacroix, Cubic phases of lipid-containing systems: structure analysis and biological implications. J. Mol. Biol. 204, 165 (1988)

    CAS  Google Scholar 

  79. P.E. Harper, S.M. Gruner, Electron density modeling and reconstruction of infinite periodic minimal surfaces (IPMS) based phases in lipid-water systems. I. Modeling IPMS-based phases. Eur. Phys. J. E 2, 217 (2000)

    CAS  Google Scholar 

  80. P.E. Harper, S.M. Gruner, R.N.A.H. Lewis, R.N. McElhaney, Electron density modeling and reconstruction of infinite periodic minimal surfaces (IPMS) based phases in lipid-water systems. II. Reconstruction of D surface based phases. Eur. Phys. J. E 2, 229 (2000)

    CAS  Google Scholar 

  81. M.-T. Lee, T.-L. Sun, W.-C. Hung, H.W. Huang, Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA 110, 14243 (2013)

    CAS  Google Scholar 

  82. S. Qian, W. Wang, L. Yang, H.W. Huang, Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc. Natl. Acad. Sci. USA 105, 17379 (2008)

    CAS  Google Scholar 

  83. S. Qian, W. Wang, L. Yang, H.W. Huang, Structure of the alamethicin pore reconstructed by X-ray diffraction analysis. Biophys. J. 94, 3512 (2008)

    CAS  Google Scholar 

  84. T. Zettl, R.S. Mathew, S. Seifert, S. Doniach, P.A.B. Harbury, J. Lipfert, Absolute intramolecular distance measurements with Angstrom-resolution using anomalous small-angle X-ray scattering. Nano Lett. 16, 5353 (2016)

    CAS  Google Scholar 

  85. L. Makowski, J. Bardhan, D. Gore, D.J. Rodi, R.F. Fischetti, Multi-wavelength anomalous diffraction using medium-angle X-ray solution scattering (MADMAX). Biophys. J. 102, 927 (2012)

    CAS  Google Scholar 

  86. R.C. Miake-Lye, S. Doniach, K.O. Hodgson, Anomalous X-ray scattering from terbium-labeled parvalbumin in solution. Biophys. J. 41, 287 (1983)

    CAS  Google Scholar 

  87. H.B. Stuhrmann, H. Notbohm, Configuration of the four iron atoms in dissolved human hemoglobin as studied by anomalous dispersion. Proc. Natl. Acad. Sci. USA 78, 6216 (1981)

    CAS  Google Scholar 

  88. V.J. Pinfield, D.J. Scott, Anomalous small angle X-ray scattering simulations: proof of concept for distance measurements for nanoparticle-labelled biomacromolecules in solution. PLoS ONE 9, e95664 (2014)

    Google Scholar 

  89. R.S. Mathew-Fenn, R. Das, J.A. Silverman, P.A. Walker, P.A.B. Harbury, A molecular ruler for measuring quantitative distance distributions. PLoS ONE 3, e3229 (2008)

    Google Scholar 

  90. K.A. Sharp, B. Honig, Salt effects on nucleic acids. Curr. Opin. Struct. Biol. 5, 323 (1995)

    CAS  Google Scholar 

  91. S.A. Woodson, Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104 (2005)

    CAS  Google Scholar 

  92. S.A. Pabit, K.D. Finkelstein, L. Pollack, Chapter 19: Using Anomalous Small Angle X-Ray Scattering to Probe the Ion Atmosphere Around Nucleic Acids, in Methods in Enzymology (Academic Press, New York, 2009), p. 391

    Google Scholar 

  93. S.A. Pabit, S.P. Meisburger, L. Li, J.M. Blose, C.D. Jones, L. Pollack, Counting ions around DNA with anomalous small-angle X-ray scattering. J. Am. Chem. Soc. 132, 16334 (2010)

    CAS  Google Scholar 

  94. S.A. Pabit, X. Qiu, J.S. Lamb, L. Li, S.P. Meisburger, L. Pollack, Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res. 37, 3887 (2009)

    CAS  Google Scholar 

  95. K. Andresen, R. Das, H.Y. Park, H. Smith, L.W. Kwok, J.S. Lamb, E.J. Kirkland, D. Herschlag, K.D. Finkelstein, L. Pollack, Spatial distribution of competing ions around DNA in solution. Phys. Rev. Lett. 93, 248103 (2004)

    CAS  Google Scholar 

  96. K. Andresen, X. Qiu, S.A. Pabit, J.S. Lamb, H.Y. Park, L.W. Kwok, L. Pollack, Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions. Biophys. J. 95, 287 (2008)

    CAS  Google Scholar 

  97. L. Pollack, SAXS studies of ion-nucleic acid interactions. Ann. Rev. Biophys. 40, 225 (2011)

    CAS  Google Scholar 

  98. M. Sztucki, E. Di Cola, T. Narayanan, Anomalous small-angle X-ray scattering from charged soft matter. Eur. Phys. J. 208, 319 (2012)

    CAS  Google Scholar 

  99. S.L. Chang, S.H. Chen, R.L. Rill, J.S. Lin, Measurements of monovalent and divalent counterion distributions around persistence length DNA fragments in solution. J. Phys. Chem. 94, 8025 (1990)

    CAS  Google Scholar 

  100. R. Das, T.T. Mills, L.W. Kwok, G.S. Maskel, I.S. Millett, S. Doniach, K.D. Finkelstein, D. Herschlag, L. Pollack, Counterion distribution around DNA probed by solution X-ray scattering. Phys. Rev. Lett. 90, 188103 (2003)

    CAS  Google Scholar 

  101. S.P. Meisburger, S.A. Pabit, L. Pollack, Determining the locations of ions and water around DNA from X-ray scattering measurements. Biophys. Rev. 108, 2886 (2015)

    CAS  Google Scholar 

  102. I. Morfin, F. Horkay, P.J. Basser, F. Bley, A.-M. Hecht, C. Rochas, E. Geissler, Adsorption of divalent cations on DNA. Biophys. Rev. 87, 2897 (2004)

    CAS  Google Scholar 

  103. J.M. Tokuda, S.A. Pabit, L. Pollack, Protein-DNA and ion-DNA interactions revealed through contrast variation SAXS. Biophys. Rev. 8, 139 (2016)

    CAS  Google Scholar 

  104. F. Zhang, M.W.A. Skoda, R.M.J. Jacobs, S. Zorn, R.A. Martin, C.M. Martin, G.F. Clark, S. Weggler, A. Hildebrandt, O. Kohlbacher, F. Schreiber, Reentrant condensation of proteins in solution induced by multivalent counterions. Phys. Rev. Lett. 101, 148101 (2008)

  105. P. Northrup, A. Leri, R. Tappero, Applications of “Tender” energy (1–5 keV) X-ray absorption spectroscopy in life sciences. Protein Pept. Lett. 23, 1875 (2016)

    Google Scholar 

  106. B. Akabayov, C.J. Doonan, I.J. Pickering, G.N. George, I. Sagi, Using softer X-ray absorption spectroscopy to probe biological systems. J. Synchrotron Radiation 12, 392 (2005)

    CAS  Google Scholar 

  107. H.B. Stuhrmann, Anomalous dispersion of small-angle scattering of horse-spleen ferritin at the iron K absorption edge. Acta Crystallogr. Sect. A A36, 996 (1980)

    CAS  Google Scholar 

  108. J.M. Pachence, R.F. Fischetti, J.K. Blasie, Location of the heme-Fe atoms within the profile structure of a monolayer of cytochrome c bound to the surface of an ultrathin lipid multilayer film. Biophys. J. 56, 327 (1989)

    CAS  Google Scholar 

  109. M. Li, Y.-S. Huang, U.S. Jeng, I.J. Hsu, Y. Sermon Wu, Y.-H. Lai, C.-H. Su, J.-F. Lee, Y. Wang, C.-C. Chang, Resonant X-ray scattering and absorption for the global and local structures of Cu-modified metallothioneins in solution. Biophys. J. 97, 609 (2009)

    CAS  Google Scholar 

  110. P.S. Langan, V.G. Vandavasi, K.L. Weiss, P.V. Afonine, K. el Omari, R. Duman, A. Wagner, L. Coates, Anomalous X-ray diffraction studies of ion transport in K+ channels. Nat. Commun. 9, 4540 (2018)

    Google Scholar 

  111. F. Ren, B.L. Logeman, X. Zhang, Y. Liu, D.J. Thiele, P. Yuan, X-ray structures of the high-affinity copper transporter Ctr1. Nat. Commun. 10, 1386 (2019)

    Google Scholar 

  112. J. Als-Nielsen, K. Kjær, X-ray reflectivity and diffraction studies of liquid surfaces and surfactant monolayers, in Phase Transitions in Soft Condensed Matter. ed. by T. Riste, D. Sherrington (Springer, Boston, 1989), p. 113

    Google Scholar 

  113. I. Koltover, T. Salditt, J.L. Rigaud, C.R. Safinya, Stacked 2D crystalline sheets of the membrane-protein bacteriorhodopsin: a specular and diffuse reflectivity study. Phys. Rev. Lett. 81, 2494 (1998)

    CAS  Google Scholar 

  114. C.E. Miller, J. Majewski, T. Gog, T.L. Kuhl, Characterization of biological thin films at the solid-liquid interface by X-ray reflectivity. Phys. Rev. Lett. 94, 238104 (2005)

    CAS  Google Scholar 

  115. A. Johs, L. Shi, T. Droubay, J.F. Ankner, L. Liang, Characterization of the decaheme c-type cytochrome OmcA in solution and on hematite surfaces by small angle X-ray scattering and neutron reflectometry. Biophys. J. 98, 3035 (2010)

    CAS  Google Scholar 

  116. B.W. Koenig, S. Krueger, W.J. Orts, C.F. Majkrzak, N.F. Berk, J.V. Silverton, K. Gawrisch, Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal. Langmuir 12, 1343 (1996)

    CAS  Google Scholar 

  117. C.W. Meuse, S. Krueger, C.F. Majkrzak, J.A. Dura, J. Fu, J.T. Connor, A.L. Plant, Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies. Biophys. J. 74, 1388 (1998)

    CAS  Google Scholar 

  118. G. Fragneto-Cusani, Neutron reflectivity at the solid/liquid interface: examples of applications in biophysics. J. Phys.: Condens. Matter 13, 4973 (2001)

    CAS  Google Scholar 

  119. I. Burgess, M. Li, S.L. Horswell, G. Szymanski, J. Lipkowski, J. Majewski, S. Satija, Electric field-driven transformations of a supported model biological membrane: an electrochemical and neutron reflectivity study. Biophys. J. 86, 1763 (2004)

    CAS  Google Scholar 

  120. J.H. Lakey, Recent advances in neutron reflectivity studies of biological membranes. Curr. Opin. Colloid Interface Sci. 42, 33 (2019)

    CAS  Google Scholar 

  121. D. Vaknin, P. Krüger, M. Lösche, Anomalous X-ray reflectivity characterization of ion distribution at biomimetic membranes. Phys. Rev. Lett. 90, 178102 (2003)

    Google Scholar 

  122. T.E. Culp, D. Ye, M. Paul, A. Roy, M.J. Behr, S. Jons, S. Rosenberg, C. Wang, E.W. Gomez, M. Kumar, E.D. Gomez, Probing the internal microstructure of polyamide thin-film composite membranes using resonant soft X-ray scattering. ACS Macro Lett. 7, 927 (2018)

    CAS  Google Scholar 

  123. C. Guo, D.R. Kozub, S. Vajjala Kesava, C. Wang, A. Hexemer, E.D. Gomez, Signatures of multiphase formation in the active layer of organic solar cells from resonant soft X-ray ascattering. ACS Macro Lett. 2, 185 (2013)

    CAS  Google Scholar 

  124. T. Pham, A.P. Goldstein, J.P. Lewicki, S.O. Kucheyev, C. Wang, T.P. Russell, M.A. Worsley, L. Woo, W. Mickelson, A. Zettl, Nanoscale structure and superhydrophobicity of sp2-bonded boron nitride aerogels. Nanoscale 7, 10449 (2015)

    CAS  Google Scholar 

  125. G.M. Su, W. White, L.A. Renna, J. Feng, S. Ardo, C. Wang, Photoacid-modified nafion membrane morphology determined by resonant X-ray scattering and spectroscopy. ACS Macro Lett. 8, 1353 (2019)

    CAS  Google Scholar 

  126. N.P. Young, D. Devaux, R. Khurana, G.W. Coates, N.P. Balsara, Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ionics 263, 87 (2014)

    CAS  Google Scholar 

  127. B. Ingham, G.D. Erlangga, A. Smialowska, N.M. Kirby, C. Wang, L. Matia-Merino, R.G. Haverkamp, A.J. Carr, Solving the mystery of the internal structure of casein micelles. Soft Matter 11, 2723 (2015)

    CAS  Google Scholar 

  128. B. Ingham, A. Smialowska, G.D. Erlangga, L. Matia-Merino, N.M. Kirby, C. Wang, R.G. Haverkamp, A.J. Carr, Revisiting the interpretation of casein micelle SAXS data. Soft Matter 12, 6937 (2016)

    CAS  Google Scholar 

  129. B. Ingham, A. Smialowska, N.M. Kirby, C. Wang, A.J. Carr, A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter 14, 3336 (2018)

    CAS  Google Scholar 

  130. B. Ingham, N. Kirby, C. Wang, M. Brady, A. Carr, Elemental fingerprinting of mineral species in iron-fortified milk: anomalous small-angle X-ray scattering and resonant soft X-ray scattering studies. J. Synchrotron Radiation 25, 1106 (2018)

    CAS  Google Scholar 

  131. B.A. Collins, Z. Li, J.R. Tumbleston, E. Gann, C.R. McNeill, H. Ade, Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells. Adv. Energy Mater. 3, 65 (2013)

    Google Scholar 

  132. R.P. Rambo, J.A. Tainer, Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477 (2013)

    CAS  Google Scholar 

  133. D. Ye, T.P. Le, B. Kuei, C. Zhu, P.H. Zwart, C. Wang, E.D. Gomez, E.W. Gomez, Resonant soft X-ray scattering provides protein structure with chemical specificity. Structure 26, 1513 (2018)

    CAS  Google Scholar 

  134. H. Liu, W. Lee, The XFEL protein crystallography: developments and perspectives. Int J Mol Sci 20, 3421 (2019)

    CAS  Google Scholar 

  135. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752 (2000)

    CAS  Google Scholar 

  136. J.C.H. Spence, XFELs for structure and dynamics in biology. IUCrJ 4, 322 (2017)

    CAS  Google Scholar 

  137. C. Caleman, A.V. Martin, When Diffraction Stops and Destruction Begins, in X-ray Free Electron Lasers: A Revolution in Structural Biology. ed. by S. Boutet, P. Fromme, M.S. Hunter (Springer, Cham, 2018), p. 185

    Google Scholar 

  138. H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, M.S. Hunter, J. Schulz, D.P. DePonte, U. Weierstall, R.B. Doak, F.R.N.C. Maia, A.V. Martin, I. Schlichting, L. Lomb, N. Coppola, R.L. Shoeman, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M.J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, M. Messerschmidt, J.D. Bozek, S.P. Hau-Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Hajdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schröter, F. Krasniqi, M. Bott, K.E. Schmidt, X. Wang, I. Grotjohann, J.M. Holton, T.R.M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, J.C.H. Spence, Femtosecond X-ray protein nanocrystallography. Nature 470, 73 (2011)

    CAS  Google Scholar 

  139. L.C. Johansson, B. Stauch, A. Ishchenko, V. Cherezov, A bright future for serial femtosecond crystallography with XFELs. Trends Biochem Sci 42, 749 (2017)

    CAS  Google Scholar 

  140. T.R.M. Barends, L. Foucar, S. Botha, R.B. Doak, R.L. Shoeman, K. Nass, J.E. Koglin, G.J. Williams, S. Boutet, M. Messerschmidt, I. Schlichting, De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505, 244 (2014)

    CAS  Google Scholar 

  141. K. Yamashita, D. Pan, T. Okuda, M. Sugahara, A. Kodan, T. Yamaguchi, T. Murai, K. Gomi, N. Kajiyama, E. Mizohata, M. Suzuki, E. Nango, K. Tono, Y. Joti, T. Kameshima, J. Park, C. Song, T. Hatsui, M. Yabashi, S. Iwata, H. Kato, H. Ago, M. Yamamoto, T. Nakatsu, An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Sci. Rep. 5, 14017 (2015)

    Google Scholar 

  142. J.-P. Colletier, M.R. Sawaya, M. Gingery, J.A. Rodriguez, D. Cascio, A.S. Brewster, T. Michels-Clark, R.H. Hice, N. Coquelle, S. Boutet, G.J. Williams, M. Messerschmidt, D.P. DePonte, R.G. Sierra, H. Laksmono, J.E. Koglin, M.S. Hunter, H.-W. Park, M. Uervirojnangkoorn, D.K. Bideshi, A.T. Brunger, B.A. Federici, N.K. Sauter, D.S. Eisenberg, De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 539, 43 (2016)

    CAS  Google Scholar 

  143. T. Nakane, S. Hanashima, M. Suzuki, H. Saiki, T. Hayashi, K. Kakinouchi, S. Sugiyama, S. Kawatake, S. Matsuoka, N. Matsumori, E. Nango, J. Kobayashi, T. Shimamura, K. Kimura, C. Mori, N. Kunishima, M. Sugahara, Y. Takakyu, S. Inoue, T. Masuda, T. Hosaka, K. Tono, Y. Joti, T. Kameshima, T. Hatsui, M. Yabashi, T. Inoue, O. Nureki, S. Iwata, M. Murata, E. Mizohata, Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proc. Natl. Acad. Sci. USA 113, 13039 (2016)

    CAS  Google Scholar 

  144. T. Nakane, C. Song, M. Suzuki, E. Nango, J. Kobayashi, T. Masuda, S. Inoue, E. Mizohata, T. Nakatsu, T. Tanaka, R. Tanaka, T. Shimamura, K. Tono, Y. Joti, T. Kameshima, T. Hatsui, M. Yabashi, O. Nureki, S. Iwata, M. Sugahara, Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr 71, 2519 (2015)

    CAS  Google Scholar 

  145. K. Nass, A. Meinhart, T.R.M. Barends, L. Foucar, A. Gorel, A. Aquila, S. Botha, R.B. Doak, J. Koglin, M. Liang, R.L. Shoeman, G. Williams, S. Boutet, I. Schlichting, Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3, 180 (2016)

    CAS  Google Scholar 

  146. A. Batyuk, L. Galli, A. Ishchenko, G.W. Han, C. Gati, P.A. Popov, M.-Y. Lee, B. Stauch, T.A. White, A. Barty, A. Aquila, M.S. Hunter, M. Liang, S. Boutet, M. Pu, Z.-J. Liu, G. Nelson, D. James, C. Li, Y. Zhao, J.C.H. Spence, W. Liu, P. Fromme, V. Katritch, U. Weierstall, R.C. Stevens, V. Cherezov, Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Sci. Adv. 2, e1600292 (2016)

    Google Scholar 

  147. A. Gorel, K. Motomura, H. Fukuzawa, R.B. Doak, M.L. Grünbein, M. Hilpert, I. Inoue, M. Kloos, G. Kovácsová, E. Nango, K. Nass, C.M. Roome, R.L. Shoeman, R. Tanaka, K. Tono, Y. Joti, M. Yabashi, S. Iwata, L. Foucar, K. Ueda, T.R.M. Barends, I. Schlichting, Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat. Commun. 8, 1170 (2017)

    Google Scholar 

  148. A. Gorel, K. Motomura, H. Fukuzawa, R.B. Doak, M.L. Grünbein, M. Hilpert, I. Inoue, M. Kloos, G. Nass Kovács, E. Nango, K. Nass, C.M. Roome, R.L. Shoeman, R. Tanaka, K. Tono, L. Foucar, Y. Joti, M. Yabashi, S. Iwata, K. Ueda, T.R.M. Barends, I. Schlichting, Two-colour serial femtosecond crystallography dataset from gadoteridol-derivatized lysozyme for MAD phasing. Sci. Data 4, 170188 (2017)

    CAS  Google Scholar 

  149. D. Ye, S. Rongpipi, J.H. Litofsky, Y. Lee, T.E. Culp, S.H. Yoo, T.N. Jackson, C. Wang, E.W. Gomez, E.D. Gomez, Aluminum oxide free-standing thin films to enable nitrogen edge soft x-ray scattering. MRS Commun. 9, 224 (2019)

    CAS  Google Scholar 

  150. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, H. Ade, Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536 (2012)

    CAS  Google Scholar 

  151. C.-Y. Lee, P.-C.T. Nguyen, D.W. Grainger, L.J. Gamble, D.G. Castner, Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers. Anal Chem 79, 4390 (2007)

    CAS  Google Scholar 

  152. X. Liu, C.-H. Jang, F. Zheng, A. Jürgensen, J.D. Denlinger, K.A. Dickson, R.T. Raines, N.L. Abbott, F.J. Himpsel, Characterization of protein immobilization at silver surfaces by near edge X-ray absorption fine structure spectroscopy. Langmuir 22, 7719 (2006)

    CAS  Google Scholar 

  153. G. Polzonetti, C. Battocchio, G. Iucci, M. Dettin, R. Gambaretto, C. Di Bello, V. Carravetta, Thin films of a self-assembling peptide on TiO2 and Au studied by NEXAFS, XPS and IR spectroscopies. Mater. Sci. Eng. C 26, 929 (2006)

    CAS  Google Scholar 

  154. J.J. Yan, T. Kroll, M.L. Baker, S.A. Wilson, R. Decréau, M. Lundberg, D. Sokaras, P. Glatzel, B. Hedman, K.O. Hodgson, E.I. Solomon, Resonant inelastic X-ray scattering determination of the electronic structure of oxyhemoglobin and its model complex. Proc. Natl. Acad. Sci. USA 116, 2854 (2019)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther W. Gomez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rongpipi, S., Del Mundo, J.T., Gomez, E.D. et al. Resonant X-ray scattering of biological assemblies. MRS Communications 11, 1–17 (2021). https://doi.org/10.1557/s43579-021-00020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00020-4

Keywords

Navigation