Skip to main content
Log in

Exploring the Li2CuAlX6 (X = Cl, Br, I) lead-free double perovskites for energy harvesting applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the current investigation, we theoretically explored the halide-based double perovskites Li2CuAlX6 (X = Cl, Br, I), focusing on their structural, optoelectronic, and thermoelectric attributes. The computation of tolerance factor and enthalpy of formation confirms the thermodynamically stable cubic configuration of all the studied compositions. The study of the band structure reveals the direct bandgap nature with the reduction of bandgap value from visible to infrared region upon replacement of halogens in the compositions. It also enhances the absorption coefficient, dielectric function, refractive index, and reflectivity of Li2CuAlX6 (X = Cl, Br, I) highlighting their feasibility for solar cell industry. Employing semiclassical transport theory based BoltzTrap code, the temperature-dependent various transport parameters including electronic and thermal conductivities, Seebeck coefficient, and power factor are computed which enlightened the path of these materials for thermoelectric devices suitable to work at room temperature.

Graphical abstract

Left sided figure illustrates the atomic configuration within the unit cell of double perovskites Li2CuAlX6 (X = Cl, Br, I). The unit cell adopts a face-centered cubic structure with space group \(Fm\overline{3 }m\). According to the crystallographic perspective, the Li atom is situated at interstitial positions, having (0.25, 0.25, 0.25) fractional coordinates, whereas Cu, Al, and X atoms occupy (0, 0, 0), (0.5, 0.5, 0.5), and (x, 0, 0) positions, respectively. Notably, Li atoms are surrounded by 12 halogen ions, and Cu/Al atoms are surrounded by six halogen ions, giving them coordination numbers of 12 for Cu and 6 for Al. The Li and Cu atoms are represented as green and blue spheres, while Al and X atoms are depicted as grey and red spheres. The figure of merit (ZT) versus temperature is presented in right sided figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the authors.

References

  1. H. Albalawi, G.M. Mustafa, S. Saba, N.A. Kattan, Q. Mahmood, H.H. Somaily et al., Study of optical and thermoelectric properties of double perovskites Cs2KTlX6 (X = Cl, Br, I) for solar cell and energy harvesting. Mater. Today Commun. 32, 104083 (2022)

    Article  CAS  Google Scholar 

  2. A.U. Haq, G.M. Mustafa, M. Amin, S.M. Ramay, A. Mahmood, Ab-initio study of opto-electronic and thermoelectric properties of direct bandgap double perovskites Rb2XGaBr6 (X = Na, K). Int. J. Energy Res. 45(6), 9241–9251 (2021)

    Article  CAS  Google Scholar 

  3. W.B. Nader, Thermoelectric generator optimization for hybrid electric vehicles. Appl. Therm. Eng. 167, 114761 (2020)

    Article  Google Scholar 

  4. S.A. Khandy, D.C. Gupta, Magneto-electronic, mechanical, thermoelectric and thermodynamic properties of ductile perovskite Ba2SmNbO6. Mater. Chem. Phys. 239, 121983 (2020)

    Article  CAS  Google Scholar 

  5. F. Qian, M. Hu, J. Gong, C. Ge, Y. Zhou, J. Guo et al., Enhanced thermoelectric performance in lead-free inorganic CsSn1–xGexI3 perovskite semiconductors. J. Phys. Chem. C 124(22), 11749–11753 (2020)

    Article  CAS  Google Scholar 

  6. R.L. Medeiros, V.R. Melo, D.M. Melo, H.P. Macedo, G.T. Moure, I. Adánez-Rubio et al., Double perovskite (La2-xCa-Bax) NiO4 oxygen carriers for chemical looping reforming applications. Int. J. Hydrogen Energy 45(3), 1681–1696 (2020)

    Article  CAS  Google Scholar 

  7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. NREL, Best Research-Cell Efficiency Chart (2022)

  9. M. Sajjad, Q. Mahmood, N. Singh, J.A. Larsson, Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: a promising thermoelectric material. ACS Appl. Energy Mater. 3(11), 11293–11299 (2020)

    Article  CAS  Google Scholar 

  10. N.H. Alotaibi, G.M. Mustafa, N.A. Kattan, Q. Mahmood, H. Albalawi, M. Morsi et al., DFT study of double perovskites Cs2AgBiX6 (X = Cl, Br): an alternative of hybrid perovskites. J. Solid State Chem. 313, 123353 (2022)

    Article  CAS  Google Scholar 

  11. H. Wang, W. Su, J. Liu, C. Wang, Recent development of n-type perovskite thermoelectrics. J. Materiomics 2(3), 225–236 (2016)

    Article  Google Scholar 

  12. D. Liu, H. Peng, H. Zeng, R. Sa, A promising all-inorganic double perovskite Rb2TiBr6 for photovoltaic applications: insight from first-principles calculations. J. Solid State Chem. 303, 122473 (2021)

    Article  CAS  Google Scholar 

  13. R. Sa, B. Luo, Z. Ma, D. Liu, The effect of the A-site cation on the stability and physical properties of vacancy-ordered double perovskites A2PtI6 (A = Tl, K, Rb, and Cs). J. Solid State Chem. 305, 122714 (2022)

    Article  CAS  Google Scholar 

  14. A. Bhorde, R. Waykar, S.R. Rondiya, S. Nair, G. Lonkar, A. Funde, N.Y. Dzade, Structural, electronic, and optical properties of lead-free halide double perovskite Rb2AgBiI6: a combined experimental and DFT study. ES Mater. Manuf. 12, 43–52 (2021)

    CAS  Google Scholar 

  15. Q. Mahmood, M. Hassan, T.H. Flemban, B.U. Haq, S. AlFaify, N.A. Kattan, A. Laref, Optoelectronic and thermoelectric properties of double perovskite Rb2PtX6 (X = Cl, Br) for energy harvesting: first-principles investigations. J. Phys. Chem. Solids 148, 109665 (2021)

    Article  CAS  Google Scholar 

  16. D. Wu, Y. Tao, Y. Huang, B. Huo, X. Zhao, J. Yang et al., High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. J. Catal. 397, 27–35 (2021)

    Article  CAS  Google Scholar 

  17. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. J. Kangsabanik, V. Sugathan, A. Yadav, A. Yella, A. Alam, Double perovskites overtaking the single perovskites: a set of new solar harvesting materials with much higher stability and efficiency. Phys. Rev. Mater. 2(5), 055401 (2018)

    Article  CAS  Google Scholar 

  20. S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta, S.G. Mhaisalkar, Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2(4), 837–845 (2017)

    Article  CAS  Google Scholar 

  21. H.H. Hegazy, G.M. Mustafa, A. Nawaz, N.A. Noor, A. Dahshan, I. Boukhris, Tuning of direct bandgap of Rb2ScTlX6 (X = Cl, Br, I) double perovskites through halide ion substitution for solar cell devices. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.05.082

    Article  Google Scholar 

  22. A. Mera, G. Nazir, Q. Mahmood, N.A. Kattan, T. Alshahrani, A. Rehman et al., The bandgap engineering of double perovskites Cs2CuSbX6 (X = Cl, Br, I) for solar cell and thermoelectric applications. Inorg. Chem. Commun. 148, 110303 (2023)

    Article  CAS  Google Scholar 

  23. M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, B-cation arrangements in double perovskites. Prog. Solid State Chem. 22(3), 197–233 (1993)

    Article  CAS  Google Scholar 

  24. E. Haque, M.A. Hossain, Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Comput. Condens. Matter 19, e00374 (2019)

    Article  Google Scholar 

  25. S.A. Abbas, W. Tanveer, N.A. Noor, M. Aslam, A. Mahmood, Investigating the physical properties of Li2AgGaX6 (X = Cl, Br, I) double perovskites using ab initio calculations. Phys. Scr. 99(2), 025970 (2024)

    Article  Google Scholar 

  26. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5(2), eaav0693 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. B.B. Karki, G.J. Ackland, J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations. J. Phys.: Condens. Matter 9(41), 8579 (1997)

    CAS  Google Scholar 

  29. M. Roknuzzaman, K.K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7(1), 1–8 (2017)

    Article  CAS  Google Scholar 

  30. Y.J. Hao, X.R. Chen, H.L. Cui, Y.L. Bai, First-principles calculations of elastic constants of c-BN. Phys. B: Condens. Matter 382, 118–122 (2006)

    Article  CAS  Google Scholar 

  31. R. Singh, G. Balasubramanian, Impeding phonon transport through superlattices of organic–inorganic halide perovskites. RSC Adv. 7(59), 37015–37020 (2017)

    Article  CAS  Google Scholar 

  32. M. Marathe, A. Grünebohm, T. Nishimatsu, P. Entel, C. Ederer, First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys. Rev. B 93(5), 054110 (2016)

    Article  Google Scholar 

  33. M. Hu, J. He, Q. Wang, Q. Huang, D. Yu, Y. Tian, B. Xu, Covalent-bonded graphyne polymers with high hardness. J. Superhard Mater. 36(4), 257–269 (2014)

    Article  CAS  Google Scholar 

  34. S. Tariq, M.I. Jamil, A. Sharif, S.M. Ramay, H. Ahmad, B. Tahir, Exploring structural, electronic and thermo-elastic properties of metallic AMoO3 (A = Pb, Ba, Sr) molybdates. Appl. Phys. A 124(1), 1–8 (2018)

    Article  CAS  Google Scholar 

  35. R. Anbarasan, M. Srinivasan, R. Suriakarthick, H. Albalawi, J.K. Sundar, P. Ramasamy, Q. Mahmood, Exploring the structural, mechanical, electronic, and optical properties of double perovskites of Cs2AgInX6 (X = Cl, Br, I) by first-principles calculations. J. Solid State Chem. 310, 123025 (2022)

    Article  CAS  Google Scholar 

  36. N.A. Noor, Q. Mahmood, M. Hassan, A. Laref, M. Rashid, Physical properties of cubic BaGeO3 perovskite at various pressure using first-principle calculations for energy renewable devices. J. Mol. Graph. Model. 84, 152–159 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. Q. Mahmood, M.H. Alhossainy, M.S. Rashid, T.H. Flemban, H. Althib, T. Alshahrani et al., First-principles study of lead-free double perovskites Rb2TeX6 (X = Cl, Br, and I) for solar cells and renewable energy. Mater. Sci. Eng. B 266, 115064 (2021)

    Article  CAS  Google Scholar 

  38. N.A. Noor, Q. Mahmood, M. Rashid, B.U. Haq, A. Laref, The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram. Int. 44(12), 13750–13756 (2018)

    Article  CAS  Google Scholar 

  39. W. Li, S. Lin, X. Zhang, Z. Chen, X. Xu, Y. Pei, Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chem. Mater. 28(17), 6227–6232 (2016)

    Article  CAS  Google Scholar 

  40. H.A. Alburaih, N.A. Noor, A. Laref, Investigation of mechanical, optoelectronic, and thermoelectric properties of double perovksites Li2CuBiZ6 (Z = Cl, Br, I) for solar cell applications. Sol. Energy 264, 112079 (2023)

    Article  CAS  Google Scholar 

  41. H.C. Wang, P. Pistor, M.A. Marques, S. Botti, Double perovskites as p-type conducting transparent semiconductors: a high-throughput search. J. Mater. Chem. A 7(24), 14705–14711 (2019)

    Article  CAS  Google Scholar 

  42. M. Sajjad, N. Singh, S. Sattar, S. De Wolf, U. Schwingenschlögl, Ultralow lattice thermal conductivity and thermoelectric properties of monolayer Tl2O. ACS Appl. Energy Mater. 2(5), 3004–3008 (2019)

    Article  CAS  Google Scholar 

  43. A.H. Reshak, S. Auluck, Thermoelectric properties of Nowotny-Juza NaZnX (X = P, As and Sb) compounds. Comput. Mater. Sci. 96, 90–95 (2015)

    Article  CAS  Google Scholar 

  44. X. Ji, Y. Yu, J. Ji, J. Long, J. Chen, D. Liu, Theoretical studies of the pressure-induced phase transition and elastic properties of BeS. J. Alloys Compd. 623, 304–310 (2015)

    Article  CAS  Google Scholar 

  45. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013)

    Article  CAS  Google Scholar 

  46. C.W. Ahn, J.H. Jo, J.C. Kim, H. Ullah, S. Ryu, Y. Hwang et al., Highly ordered lead-free double perovskite halides by design. J. Materiomics 6(4), 651–660 (2020)

    Article  Google Scholar 

  47. K.M. Wong, M. Irfan, A. Mahmood, G. Murtaza, First principles study of the structural and optoelectronic properties of the A2InSbO6 (A = Ca, Sr, Ba) compounds. Optik 130, 517–524 (2017)

    Article  CAS  Google Scholar 

  48. U.G. Jong, C.J. Yu, Y.H. Kye, Computational prediction of structural, electronic, and optical properties and phase stability of double perovskites K2SnX6 (X = I, Br, Cl). RSC Adv. 10(1), 201–209 (2020)

    Article  CAS  Google Scholar 

  49. M.W. Iqbal, M. Asghar, N.A. Noor, H. Ullah, T. Zahid, S. Aftab, A. Mahmood, Analysis of ternary AlGaX2 (X = As, Sb) compounds for opto-electronic and renewable energy devices using density functional theory. Phys. Scr. 96(12), 125706 (2021)

    Article  Google Scholar 

  50. M. Huma, M. Rashid, Q. Mahmood, E. Algrafy, N.A. Kattan, A. Laref, A.S. Bhatti, Physical properties of lead-free double perovskites A2SnI6 (A = Cs, Rb) using ab-initio calculations for solar cell applications. Mater. Sci. Semicond. Process. 121, 105313 (2021)

    Article  CAS  Google Scholar 

  51. Q. Mahmood, G.M. Mustafa, M. Morsi, H. Albalawi, T.H. Flemban, M. Hassan et al., Theoretical investigations of optoelectronic and thermoelectric properties of halide based double perovskite halides: K2TeX6. Phys. Scr. 96(7), 075703 (2021)

    Article  Google Scholar 

  52. F. Aslam, B. Sabir, M. Hassan, Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X = Cl, Br, I) for energy applications. Appl. Phys. A 127, 1–12 (2021)

    Article  Google Scholar 

  53. H. Albalawi, G.M. Mustafa, S. Saba, N.A. Kattan, Q. Mahmood, H.H. Somaily et al., Study of optical and thermoelectric properties of double perovskites Cs2KTlX6 (X = Cl, Br, I) for solar cell and energy harvesting. Mater. Today Commun. 32, 104083 (2022)

    Article  CAS  Google Scholar 

  54. U.G. Jong, C.J. Yu, Y.H. Kye, S.H. Choe, J.S. Kim, Y.G. Choe, Anharmonic phonons and phase transitions in the vacancy-ordered double perovskite Cs2SnI6 from first-principles predictions. Phys. Rev. B 99(18), 184105 (2019)

    Article  CAS  Google Scholar 

  55. V.B. Bobrov, S.A. Trigger, On the problem of universal density functional. Bull. Lebedev Phys. Inst. 45(4), 127–130 (2018)

    Article  Google Scholar 

  56. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks, WIEN2k: an APW+ lo program for calculating the properties of solids. J. Chem. Phys. 152(7), 074101 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  PubMed  Google Scholar 

  58. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  PubMed  Google Scholar 

  59. T.I. Al-Muhimeed, A.I. Aljameel, A. Mera, S. Saad, G. Nazir, H. Albalawi et al., First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6 (X = Cl, Br, I). J. Taibah Univ. Sci. 16(1), 155–162 (2022)

    Article  Google Scholar 

  60. G.A. Mersal, H. Alkhaldi, G.M. Mustafa, Q. Mahmood, A. Mera, S. Bouzgarrou et al., Study of half metallic ferromagnetism and thermoelectric properties of spinel chalcogenides BaCr2X4 (X = S, Se, Te) for spintronic and energy harvesting. J. Market. Res. Technol. 18, 2831–2841 (2022)

    CAS  Google Scholar 

  61. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185(6), 1747–1758 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Researchers Supporting Project Number (RSP2024R43), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors would like to acknowledge the Researchers Supporting Project Number (RSP2024R43), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Ghulam M. Mustafa: conceptualization, methodology, Insaf Shahid: visualization, investigation, and graph plotting, Sadaf Saba: software, data curation, Mehdi Ali: reviewing and editing, Zahid Farooq: proofreading and finalizing, Asif Mahmood: visualization, investigation, and graph plotting, N.A. Noor: supervision, reviewing, and editing, Mehran Amin: revision preparation.

Corresponding authors

Correspondence to Ghulam M. Mustafa or N. A. Noor.

Ethics declarations

Conflict of interest

In behalf of all authors, it is stated that no author has any conflict of interest in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, G.M., Shahid, I., Saba, S. et al. Exploring the Li2CuAlX6 (X = Cl, Br, I) lead-free double perovskites for energy harvesting applications. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01334-4

Keywords

Navigation