Skip to main content
Log in

First-principles study of the structural and elastic properties of orthorhombic rare-earth aluminates RAlO3 (R = Sm–Lu)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rare-earth aluminates perovskites (RAlO3) with excellent physical properties and thermodynamic stability have attracted great research interest. We systematically studied the structural, electronic, elastic, and thermal properties of the orthorhombic rare-earth aluminates RAlO3 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by means of density-functional theory (DFT). The optimized lattice parameters and elastic moduli are in agreement with available experimental data. The oxygen octahedral rotation of RAlO3 is found to be effectively controlled by the R3+ ionic radius. The directional elastic parameters, including Young’s modulus, bulk modulus, and shear modulus, as well as Poisson’s ratio, are determined for each of the single crystals. Their theoretical polycrystalline elastic properties, hardness, Debye temperatures, and sound velocities are also discussed. Elastic anisotropy has been explored by various elastic anisotropic indices in both single-crystal and polycrystalline forms. Our results will be beneficial for the practical applications based on RAlO3 perovskites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data availability

Data are made available on reasonable request.

References

  1. R. Diehl, G. Brandt, Crystal structure refinement of YAlO3, a promising laser material. Mater. Res. Bull. 10, 85–90 (1975)

    Article  CAS  Google Scholar 

  2. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku, A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389, 49–52 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Z. Shen, H. Su, H. Liu, D. Zhao, Y. Liu, Y. Guo, G. Fan, M. Yu, J. Chen, M. Guo, J. Zhang, L. Liu, H. Fu, Directly fabricated Al2O3/GdAlO3 eutectic ceramic with large smooth surface by selective laser melting: rapid solidification behavior and thermal field simulation. J. Eur. Ceram. Soc. 42, 1088–1101 (2022)

    Article  CAS  Google Scholar 

  4. N. Nakagawa, H. Ohtsubo, A. Mitani, K. Shimizu, Y. Waku, High temperature strength and thermal stability for melt growth composite. J. Eur. Ceram. Soc. 25, 1251–1257 (2005)

    Article  CAS  Google Scholar 

  5. Y.-H. Ma, Z.-G. Wang, J.-H. Ouyang, S.J. Dillon, L. Feng, Y.-J. Wang, In-situ microcantilever deflection to evaluate the interfacial fracture properties of binary Al2O3/SmAlO3 eutectic. J. Eur. Ceram. Soc. 39, 3277–3282 (2019)

    Article  CAS  Google Scholar 

  6. K. Hirano, Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700°C. J. Eur. Ceram. Soc. 25, 1191–1199 (2005)

    Article  CAS  Google Scholar 

  7. T. Usman, G. Murtaza, H. Luo, A. Mahmood, GGA and GGA + U study of rare earth-based Perovskites in cubic phase. J. Supercond. Novel Magn. 30, 1389–1396 (2016)

    Article  Google Scholar 

  8. J.D. Bass, Elasticity of single-crystal SmAlO3, GdAlO3 and ScAlO3 perovskites. Phys. Earth Planet. Inter. 36, 145–156 (1984)

    Article  ADS  CAS  Google Scholar 

  9. K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Investigations on indentation induced hardness and fracture mechanism in flux grown DyAlO3 crystals. Appl. Surf. Sci. 133, 195–204 (1998)

    Article  ADS  CAS  Google Scholar 

  10. L. Vasylechko, D. Trots, A. Senyshyn, T. Lukasiewicz, Low-temperature structural properties of LuAlO3 and TbAlO3. HASYLAB Annual Report Part 1, 605 (2006)

    Google Scholar 

  11. S. Geller, V.B. Bala, Crystallographic studies of perovskite-like compounds. II. Rare earth alluminates. Acta Crystallogr. A 9, 1019–1025 (1956)

    Article  CAS  Google Scholar 

  12. T. Shishido, S. Nojima, M. Tanaka, H. Horiuchi, T. Fukuda, Flux growth of perovskite-type RAlO3 single crystals. J. Alloy. Compd. 227, 175–179 (1995)

    Article  CAS  Google Scholar 

  13. S. Shang, Y. Wang, Z.-K. Liu, First-principles elastic constants of α- and θ-Al2O3. Appl. Phys. Lett. 90, 101909 (2007). https://doi.org/10.1063/1.2711762

    Article  Google Scholar 

  14. V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033

    Article  CAS  Google Scholar 

  15. W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), BG Teubner (1910)

  16. D. Chung, W. Buessem, The elastic anisotropy of crystals. J. Appl. Phys. 38, 2010–2012 (1967)

    Article  ADS  CAS  Google Scholar 

  17. C.M. Kube, Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016)

    Article  ADS  Google Scholar 

  18. H.J. Zhao, W. Ren, X.M. Chen, L. Bellaiche, Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates. J. Phys. Condens. Matter 25, 385604 (2013)

    Article  PubMed  Google Scholar 

  19. H.J. Zhao, W. Ren, Y. Yang, X.M. Chen, L. Bellaiche, Effect of chemical and hydrostatic pressures on structural and magnetic properties of rare-earth orthoferrites: a first-principles study. J. Phys. Condens. Matter 25, 466002 (2013)

    Article  ADS  PubMed  Google Scholar 

  20. V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926)

    Article  ADS  CAS  Google Scholar 

  21. G. Lopez-Candales, Z. Tang, W. Xia, F. Jia, P. Zhang, Quasiparticle band structure of SrTiO3 and BaTiO3: a combined LDA+ U and G0W0 approach. Phys. Rev. B 103, 035128 (2021)

    Article  ADS  CAS  Google Scholar 

  22. G. Lopez-Candales, Z. Tang, G.J. Cruz, W. Xia, F. Jia, P. Zhang, Quasiparticle band structures of the 4d perovskite oxides SrZrO3 and BaZrO3. Phys. Rev. B 104, 195129 (2021)

    Article  ADS  CAS  Google Scholar 

  23. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  ADS  CAS  Google Scholar 

  24. C.W. Huang, W. Ren, V.C. Nguyen, Z. Chen, J. Wang, T. Sritharan, L. Chen, Abnormal Poisson’s ratio and linear compressibility in Perovskite materials. Adv. Mater. 24, 4170–4174 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. A. Marmier, Z.A.D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, K.E. Evans, ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 181, 2102–2115 (2010)

    Article  ADS  CAS  Google Scholar 

  26. D. Connétable, O. Thomas, First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys. Rev. B 79, 094101 (2009). https://doi.org/10.1103/PhysRevB.79.094101

    Article  ADS  CAS  Google Scholar 

  27. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  28. S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45, 823–843 (1954)

    Article  CAS  Google Scholar 

  29. X.-Q. Chen, H. Niu, D. Li, Y.J.I. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)

    Article  CAS  Google Scholar 

  30. C. Zener, Elasticity and anelasticity of metals. University of Chicago Press (1948)

  31. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)

    Article  ADS  CAS  Google Scholar 

  32. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  PubMed  Google Scholar 

  33. X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, J. Meng, Elastic anisotropy of OsB2 and RuB2 from first-principles study. J. Alloy. Compd. 453, 413–417 (2008)

    Article  CAS  Google Scholar 

  34. T.L. Hill, An introduction to statistical thermodynamics, Courier Corporation (1986)

  35. E. Schreiber, O.L. Anderson, N. Soga, J.F. Bell, Elastic constants and their measurement. J. Appl. Mech. 42, 747–748 (1975)

    Article  ADS  Google Scholar 

  36. S. Yan, Y. Wang, F. Tao, J. Ren, High-throughput estimation of phonon thermal conductivity from first-principles calculations of elasticity. J. Phys. Chem. A 126, 8771–8780 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251–14269 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52130204, 12074241, 11929401, 12311530675), Science and Technology Commission of Shanghai Municipality (Grant Nos. 22XD1400900, 20501130600, 21JC1402700, 21JC1402600), Key Research Project of Zhejiang Lab (Grant No. 2021PE0AC02), China Postdoctoral Science Foundation (Grant No. 2022M722035), and High-Performance Computing Center, Shanghai Technical Service Center of Science and Engineering Computing, Shanghai University.

Author information

Authors and Affiliations

Authors

Contributions

ZY contributed to conceptualization, data curation, and writing of the original draft. FHJ contributed to visualization, data curation, and writing, reviewing, & editing of the manuscript. SWX contributed to methodology. DE contributed to writing, reviewing, & editing of the manuscript. HJS contributed to funding acquisition. WR contributed to conceptualization, writing, reviewing, & editing of the manuscript, funding acquisition, and project administration.

Corresponding authors

Correspondence to Fanhao Jia or Wei Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42704 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Jia, F., Xu, S. et al. First-principles study of the structural and elastic properties of orthorhombic rare-earth aluminates RAlO3 (R = Sm–Lu). Journal of Materials Research 39, 903–912 (2024). https://doi.org/10.1557/s43578-023-01279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01279-0

Keywords

Navigation