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This article discusses the physical and mathematical background of phase contrast imaging with in‑line 
electron holography from a physics rather than a microscopy perspective and showcases the strength 
of non‑iterative and iterative approaches by application to magnetism research. A comprehensive 
derivation of magnetic and electric phase shift due to electromagnetic interaction with matter and 
electron wave propagation is presented as the foundation for phase retrieval algorithms based on 
the transport‑of‑intensity equation and Gerchberg–Saxton—an iterative exit wave reconstruction 
algorithm. The strength and potential of both algorithms are highlighted by experimental and 
numerical quantitative comparison using non‑collinear spin textures. Although the focus of this work 
is on magnetism research, the indifference of the exit wave reconstruction to the origin of the phase 
shift ensures applicability to study spatial variations in both electric and spin distributions in quantum, 
energy, and magnetic materials.

Introduction
Image-forming x-ray and electron tools are beautiful demon-
strations of leveraging the particle-wave dualism with ramifica-
tions to basic and applied sciences of, e.g., energy, quantum, 
and magnetic materials and enable a seamless integration of 
arts with sciences. The latter has been proposed by the National 
Academies of Sciences, Engineering, and Medicine [1, 2] to 
broaden science literacy and foster a diverse science, technol-
ogy, engineering, and mathematics (STEM) workforce. Choos-
ing appropriate approximations and the correct formalisms is 
critical for solving scientific questions and overcoming tech-
nological challenges and strongly dependent on the problem at 
hand. One contemporary example is the emergent field of three-
dimensional (3D) nanomagnetism [3–5] that has stimulated the 
development of advanced characterization techniques, including 
x-ray [6–8] and electron vector field tomography [9–15]. These 
techniques leverage the wave character of x-rays and electrons, 
respectively, to probe the electromagnetic interaction with mat-
ter and visualize the 3D magnetization configuration. They rely 
on phase contrast imaging techniques, such as ptychography 
[16–19] and holography [20–22], which combine high sensitiv-
ity and high spatial resolution as well as, upon resonant excita-
tion, element and chemical specificity. The inherently long data 

acquisition of vector field tomography and required long-term 
thermal and mechanical stability combined with challenges with 
in-operando measurements guarantee the continued success and 
development of versatile two-dimensional (2D) phase contrast 
imaging.

Since the first demonstration using an electric wire as 
biprism [22], nearly seven decades ago, off-axis electron holog-
raphy [23, 24] has become a powerful tool to visualize topologi-
cal magnetic states [25–28]. The need for a reference beam typi-
cally limits these investigations to confined structures [Fig. 1(a)]. 
The high spatial resolution and sensitivity provided by the plane 
wave interference pattern requires a similar degree of mechani-
cal stability as known from atomic-resolution transmission 
electron microscopy that makes cryogenic measurements chal-
lenging, although not impossible. In contrast, in-line electron 
holography is based on Fresnel mode imaging, first proposed 
seventy years ago [20, 21, 29] and a quantitative non-interfero-
metric phase determination that takes advantage of the super-
imposition of coherent scattered and unscattered waves along 
the same optical axis and in the same focal plane [Fig. 1(a)]. 
The results are characteristic interference patterns observable 
with conventional microscopy [Fig. 1(b), (c)] that change as they 
propagate through space [Fig. 2(a)]. To ensure clean interference 
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fringes, the sample thickness should be, as typical for transmis-
sion electron microscopy, < 100 nm to limit multiple scatter-
ing events that reduce spatial resolution and sensitivity and 
potentially cause partial incoherence due to inelastic scattering. 
Unintended changes with time due to charging or degradation 
under the beam should be prevented by, e.g., grounding non-
metallic materials or freezing organic compounds. The experi-
mental implementation of in-line holography is feasible without 
the need for physical modifications to the transmission elec-
tron microscope that is particularly appealing to user facilities. 
Retrieving the electron phase from the electron intensity taken 
at different focal planes requires advanced data analysis. The 
most common phase retrieval is the transport-of-intensity equa-
tion (TIE) [30–33] approach that relates the change of inten-
sity along the electron trajectory to the electron intensity and 
phase in different focal planes. Despite distinct implementation, 
the underlying physics remain the same making a quantitative 
comparison between off-axis and in-line holography possible 
[34–36]. There are numerous advantages of using in-line holog-
raphy: the phase error is less than with off-axis holography [34]; 
less stringent requirements on mechanical stability; and imag-
ing is possible anywhere in the sample, including particularly 

extended films and device architectures. As a result, TIE-based 
Lorentz microscopy has extensively been used to study magnetic 
phases, thermal excitations, and phase transitions in materials 
systems hosting topological spin textures [37–40].

Throughout the years, several alternatives have been pro-
posed using, e.g., differential phase contrast [41] and exit wave 
reconstruction [42–46] to enhance the spatial resolution and 
sensitivity of in-line holography, which are critical for investiga-
tions of inhomogeneous specimens, i.e., materials under investi-
gation, where structural imperfections can disturb the magnetic 
and electronic properties and reconstruction. This includes bulk 
( � 100 nm) and interfaces/surfaces governing, e.g., topological 
magnetism, superconductivity, topological surface states, charge 
and spin density waves, and magneto-electricity—all of which 
are key to next-generation microelectronics. In addition, the 
unambiguous identification of complex metastable states [27, 
39, 47], topological knots [48, 49], and magnetization configura-
tions with thickness profile dependence [50] or differentiation 
between magnetic stray fields and magnetization contributions 
[51, 52] would undoubtedly benefit from a more sophisticated 
phase retrieval algorithm. Phase contrast imaging with exit wave 

Figure 1:  Contrast formation with electron holography. (a) Comparison 
between off-axis and in-line holography using coherent (unscattered) 
incident wave (gray) and scattered wave (purple). Both schematics 
and real-world application of off-axis holography neglect in-line 
holography contributions and consider planar incident waves. The 
position of sample, detector, or focal plane (via Lorentz lens) can be 
changed to record intensities in Fresnel imaging mode. Interference 
fringes originating from (b) one-dimensional and (c) two-dimensional 
distributions of the electromagnetic potentials (phase shift φ).

Figure 2:  Principle of in-line holography: electron wave propagation. (a) 
Information about the electromagnetic interaction within the specimen 
(materials properties), stored in the electron phase shift φ , is transferred 
into the electron amplitude ψ , which is accessible as intensity |ψ |2 in 
conventional microscopy. The electron wave propagation is modeled 
for a polar phase shift due to, e.g., structural defects, voids, grains, or 
magnetic vortices, demonstrating sensitivity and contrast enhancement 
at the expense of a reduced spatial resolution. (b) Selection of electron 
phase shifts associated with non-collinear topological spin textures 
illustrating sensitivity to spin chirality and topology. The phase shift 
is caused by the in-plane magnetic induction components, which 
generally coincides with the magnetization. Bright (dark) contrast refer 
to positive (negative) phase shift.
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reconstruction has allowed for, e.g., compensating aberrations 
[19] and transformed atomic-resolution and sub-ångström-
resolution microscopy [17]. Although widely used in scalar 
microscopy and tomography, the implementation of exit wave 
reconstruction for phase contrast imaging of magnetic and elec-
tronic properties has been slow. A recent numerical compari-
son [53] between the transport-of-intensity equation [30, 54] 
and the Gerchberg–Saxton algorithm [55]—one representative 
exit wave reconstruction algorithm—substantially undervalues 
the latter whose potential was experimentally demonstrated 
[51, 56]. These works debunked earlier belief that the success-
ful application of “Gerchberg and Saxton [...] depends on the 
availability of a good initial estimate of the form of the induction 
distribution” [57].

This article gives an experimental and numerical quantita-
tive comparison between the non-iterative transport-of-inten-
sity equation and the iterative Gerchberg–Saxton algorithm to 
highlight the strength and potential of each. The physical and 
mathematical background of phase contrast imaging with in-
line electron holography is derived step by step in Sect. 2 from 
a physics rather than a microscopy perspective. Discussing the 
magnetic and electric phase shift due to electromagnetic interac-
tion with matter, electron wave propagation, and phase retrieval 
algorithms will empower the reader to model and reconstruct 
the electron phase shift and electron wave propagation for 
arbitrary magnetization configurations based on a profound 
understanding of the underlying mechanisms. In this process, 
measurement artifacts due to beam aberration, astigmatism, 
divergence, and incoherence are addressed. Experimental dem-
onstration is given in Sect. 3 by application to inhomogeneous 
magnetic films, i.e., domain wall imaging in amorphous ferri-
magnets [51] and visualizing topological states and helical spins 
alongside structural defects in amorphous thick films [56]. This 
includes specifically the dependence of the exit wave reconstruc-
tion on the number of iterations that enable a differentiation 
between structural features, magnetization, and magnetic stray 
field. The numerical analysis leverages experimental data, i.e., 
focal planes, published in and available from these references. 
The reader is encouraged to consult these original works for 
information about synthesis, complementary characterization, 
and scientific conclusions.

Theory
The propagation of free electrons through space can be 
described in either particle or wave picture. For virtually all sce-
narios where spatial resolution or interference are of no concern, 
the default setting is the particle picture. This pertains to particle 
acceleration, electron optics to steer the electron trajectory, cor-
rect aberrations or focus, and conventional microscopy that 
maps the intensity distribution. The latter is determined by 

spatial variations in, e.g., absorption due to differences in thick-
ness, density, elements, and ionization state and deflection by 
electrostatic and magnetic fields. The movement of electrically 
charged particles, such as electrons with a negative elementary 
charge q = −e , obeys the Lorentz force F = q(E + v × B) with 
electric field E , magnetic induction B , and velocity v . The deflec-
tion angle ε = px/pz , representing the ratio between initially 
vanishing perpendicular momentum px and original momen-
tum pz , scales linearly with the magnetic induction and electric 
field components as eBytmvz

  and eExt
mv2z

 , respectively. Here, m is the rest 

electron mass and t is the interaction length (approximately 
capacitor width, coil length or thickness of specimen). While 
electric fields are easier to generate involving voltages, magnetic 
fields are more efficient for high-energy electrons ( v−1

z  vs. v−2
z  ). 

Moreover, magnetic fields do not affect the total momentum of 
electrons ( vF = −qvE ), which is critical for preserving a mono-
chromatic electron beam generated by, e.g., a Schottky field 
emission gun in aberration-corrected transmission electron 
microscopes.

For all other cases, the wave picture is beneficial, if not 
required.

Magnetic and electric phase shift

Electrons emanating from field emission guns in transmis-
sion electron microscopes possess a relativistic momentum 
p = �k0 =

√

2meU +
(
eU
c

)2
k̂ due to acceleration from rest in 

an electric field. The appeal of transmission electron micros-
copy becomes clear from the equivalent de Broglie wavelength 
� = h/p = 1.97 pm (for an acceleration voltage U = 300 keV) 
that is substantially smaller than atomic scales enabling high-
resolution microscopy and tomography. Comparison with the 
non-relativistic momentum (2.24 pm) showcases the impor-
tance of using the relativistic description when concerning 
electromagnetic interactions and interference/holography. The 
presence of an electric potential −eV  and a vector potential 
A , related to the magnetic induction B = ∇ × A , yields the 
modified relativistic momentum described by the relativistic 
Klein–Gordon equation [58, 59] for the wave vector k:

The latter equivalence uses the first-order Taylor expansion 
for U ≫ V  with σ = me

�2k
 ( |k| = k , k = kk̂ ) and infers that the 

momentum of the image-forming free electrons is substantially 
larger than the change in momentum due to interaction with 
the electromagnetic field within the material under investiga-
tion. The three terms in Eq. (1) are similar to the non-relativistic 

(1)
k =

1

�

√

2me(U + V)+

( e

c
(U + V)

)2
k̂ −

e

�
A

≈ k0 +

(

σV +
eU

�mc2

)

k̂ −
e

�
A .
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result k = 1
�

√
2me(U + V)k̂ − e

�
A ≈ k0 + σV k̂ − e

�
A except 

for eU
�mc2

k̂ , which is independent of the trajectory and thus irrel-
evant to the relative change across the specimen. The latter is 
important to phase contrast imaging. The mathematical rela-
tion between wavelength and phase φ given by �s

�
=

�φ
2π  can be 

written in integral form for the eikonal φ =
∫
kds describing 

the phase shift along the path segment ds . Subtracting the geo-
metrical optical path difference 

∫
k0ds unveils the phase shift 

due to electromagnetic interaction within the specimen:

This line integral representation implies that only projected 
properties matter, which corresponds to thickness-averaged 
quantities upon normal incidence. Hence, an investigation 
of specimens with thickness profile-dependent properties 
requires tomographic imaging using, e.g., vector field tomogra-
phy [9–15]. The electric phase shift (first term) may be caused 
by the mean inner potential [60], contact potential, dopants 
in semiconductors [61, 62], ferroelectric polarization [63, 64], 
charging under the beam, adsorbed ions, grain boundaries, 
and voids. The second term represents the magnetic phase shift 
[65, 66] that depends on the propagation direction, while the 
electric scalar field does not. This feature allows for isolating 
electric and magnetic contributions by, e.g., flipping the sample 
up-side-down.

Under the assumption that the momentum changes margin-
ally due to the electrostatic potential and that the magnetic induc-
tion is confined to the film, i.e., no outside stray fields, the phase 
difference between two quasi-parallel electron trajectories along ẑ 
can be approximated using only magnetic contributions as

The integration along ẑ is over the film thickness t. This equa-
tion links the magnetic phase shift to the enclosed flux (Aha-
ronov–Bohm effect) [67–69] and shows that a magnetic flux 
�B = h/e = 4.135 · 10−15 Vs (twice the magnetic flux quan-
tum �0 =

h
2e ) is sufficient to cause a 2π phase shift. The latter 

is equal to a phase difference �s = � causing one interference 
fringe [Fig. 1(b), (c)]. The in-plane components of the magnetic 
induction within the specimen can be derived from the 2D gra-
dient of the magnetic phase:

This relation assumes a thickness profile-independent magneti-
zation and a constant film thickness.

(2)φ =

∫

(k − k0)ds = σ

∫

Vds −
e

�

∫

Ads.

(3)
�φm = −

e

�

(∫

ζ1

Ads−

∫

ζ2

Ads

)

= −
e

�

∮

Ads

= −
e

�

∫ ∫

(∇ × A)xdz dy = −
e

�
�B .

(4)∇⊥φm = −
e

�
t(−By ,Bx , 0).

Generally, the vector potential inside a specimen is caused 
by the magnetization vector field M and given by 
A(r) = µ0

4π

∫ M(r′)×(r−r′)
|r−r′|3

d3r′ with the spatial coordinate r and 
integration over the entire sample volume. Stray fields from 
Bloch lines [Fig. 7], Bloch points, magnetization divergence 
(reorientation) [Fig. 9], etc. are other contributions that may 
need to be considered for proper analysis. For practical reasons, 
computation intense integral calculations for both vector poten-
tial and magnetic phase shift are typically avoided by switching 
to the reciprocal space using 3D ( F3D ) and 2D ( F  ) Fourier 
transforms and taking advantage of the Fourier theorem stating 
the equivalence of real and reciprocal domain. It is also natural, 
since the electron wave propagation (Sect. 2.2) and exit wave 
reconstruction (Sect. 2.4) take place in reciprocal space. For a 
thickness profile-independent magnetization configuration, i.e., 
M(r) = Msm(x, y) with the saturation magnetization Ms and 
qz ≃ 0 (�z ≃ ∞) , the 3D Fourier transform can be Taylor 
expanded for qzt ≪ 1 to yield F3D[m] ≈ t · F[m] . This approxi-
mation is common use since t � 100 nm and otherwise tomo-
graphic imaging was required to properly visualize the magneti-
zation vector field in the specimen. With the approximated 3D 
Fourier transform F3D[A] ∝ Ms · F3D[m]× F3D

[
(r−r

′)
|r−r′|3

]

≈

Mst · F[m]×

(

4π
q

q2x+q2y

)

 , the magnetic phase shift of electrons 

propagating along ẑ can be obtain from the z-component as [70]

Note that this formula is valid only for a non-uniform mag-
netization ( q  = 0 ) since it predicts no phase shift for a uniform 
magnetization contrary to basic physics (Lorentz force) and 
experiment. However, this limitation has no practical implica-
tions since q = 0 is impossible to observe in finite-size materials. 
Indeed, such samples are better studied with magneto-optical 
Kerr microscopy [71].

To comprehend these abstract equations, Fig. 2(b) depicts 
the magnetic phase shift of common chiral topological spin tex-
tures. The skyrmions [40] are approximated as 3D spin textures 
with a thickness profile-independent magnetization defined in 
polar coordinates (r,ϕ) as [56]

Depending on the topological charge N, chirality C, polarity 
P, �(ϕ) = N(ϕ + C) , and radial function �(r) that determines 
the core size, different topological states emerge with distinct 
magnetic phase contrast. For instance, isotropic Bloch skyrmi-
ons cause a polar phase contrast (clockwise: dark; counterclock-
wise: bright) and Néel skyrmions with a gray (vanishing) phase 
are invisible to Lorentz microscopy. The relationship between 
acquired phase and in-plane magnetization components (spin 
chirality) given by Eq.  (5) holds for any configuration and 

(5)φm(qx , qy) =
eµ0Mst

�
·
F[mx]qy − F

[
my

]
qx

q2x + q2y
.

(6)m = (sin�(r) cos�(ϕ), sin�(r) sin�(ϕ),P cos�(r)).
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experimental setup as they are independent of the downstream 
imaging. An equivalent consideration for the electron intensity 
via the Lorentz force is more delicate. As the image-forming free 
electrons penetrate the magnetic film, the Lorentz force deflects 
the incident beam causing beam divergence (convergence) for a 
bright (dark) phase shift and high (low) intensity at a given focal 
plane [Fig. 2(a)]. However, this assertion is only correct for focal 
planes with positive defocus (overfocus). The opposite applies 
to underfocus images.

Furthermore, it is important to keep in mind that Eq. (5) is 
not unambiguous. A given electron phase may belong to multi-
ple magnetization configurations as the third normal magnetiza-
tion component is not reflected in the phase shift. This becomes 
important when dealing with 3D topological magnetic states 
whose identification will then rely on the contrast evolution with 
magnetic field, temperature, or other stimuli. It also necessitates 
the modeling of electron wave propagation to properly correlate 
interference fringes taken at different focal planes with the actual 
magnetic phase and magnetization configuration.

Electron wave propagation

The physical foundation for electron wave propagation is 
the time-independent non-relativistic Schrödinger equa-
t ion [72] 

{
1
2m (−i�∇ + eA)2 − eV

}
� = E�  with the 

plane wave solution � = �0 exp (ikr) , the energy eigen-
value E = k2�2

2m  , the scalar potential V giving rise to the 
potential energy U = −eV  , and the Laplace operator 
∇2 = ∂2x + ∂2y + ∂2z  . The kinetic energy can be approximated as 
T =

p2

2m = 1
2m (−i�∇ + eA)2 ≈ 1

2m

(
−�

2∇2 − i2e�Az∂z
)
 when 

taking into account negligible e
2

2mA2 and ∇A+ A∇ ≈ 2Az∂z since 
the divergence of a vector field vanishes. The analytical expression 
for the electron wave propagation and basis for numerical mod-
eling is derived by considering the Hamiltonian and eigenfunction 
as products, i.e., (T + U − E)� = L+L−� = 0 with � = ψv , 
L+ψ = 0 , and L−v = 0 . In this notation, ψ (v) is the eigenfunc-
tion of L+ ( L− ) defined as

(7)

L± = ∂z ∓ ik

√

1+
∂2x + ∂2y

k2
+

2meV

�2k2
+

i2e

�k2
Az∂z

≈ ∂z ∓

{

ik +
i

2k

(

∂2x + ∂2y +
2meV

�2
+

i2e

�
Az∂z

)}

.

The latter equivalence utilizes the first-order Taylor expansion 
for k2 ≫ ∂2x + ∂2y + 2meV/�2 + i2e/� · Az∂z , which is generally 
true for high-energy image-forming electrons. Exploiting the 
definition L+ψ = 0 and L−v = 0 and the first-order Taylor 
expansion of 1

1∓ζ
 for 1 ≫ |ζ | =

∣
∣ e
�kAz

∣
∣ as well as considering 

only the first term of e
�kAz

{

ik + i
2k

(

∂2x + ∂2y + 2meV
�2

)}

 due to 

the aforementioned relation, one obtains

Aside from the sign change in front of the parenthesis and 
the vector potential, L+ and L− are identical and describe the 
propagation along ẑ and −ẑ direction. The corresponding trans-
mitted and reflected waves are both solutions to the original 
Schrödinger equation. To this end, ψ is important to trans-
mission electron microscopy on sufficiently thin specimens to 
guarantee single elastic scattering events and can be derived by 
integration as

The resulting eigenfunction, typically abbreviated as 
ψ = Ŵf · ψ0e

iφ , is a plane wave (vacuum contribution) that is 
modified by the electromagnetic interaction causing a phase 
shift (interaction) and deflection described by the forward 
propagator Ŵf  . The electron phase shift due to electromagnetic 
interaction is identical to Eq. (2) underlining the appropri-
ateness of the physical and mathematical approximations. As 
before, the vector field contribution depends on the propagation 
direction which can be exploited to isolate electric and magnetic 
contributions to the phase shift. By analogy with Eq. (5), com-
putation intense integral calculations are avoided by expressing 
the propagator Ŵf (x, y) in reciprocal space Ŵf (qx , qy) using both 
Fourier transform F  and inverse Fourier transform F−1:

(8)

∂z

(
ψ

v

)

= ±

{

ik +
i

2k

(

∂2x + ∂2y +
2meV

�2

)

∓
ie

�
Az

}(
ψ

v

)

.

(9)

ψ(z +�z) = ψ(z) exp

(

i

∫ z+�z

z
kdz

)

︸ ︷︷ ︸

Vacuum contribution

·

exp

(

i

∫ z+�z

z

1

2k

(

∂2x + ∂2y

)

dz

)

︸ ︷︷ ︸

Propagator Ŵf (x,y)

·

exp

(

i

∫ z+�z

z

[

σV −
e

�
Az

]

dz

)

︸ ︷︷ ︸

Interaction

.

(10)exp

(
i

2k

(

∂2x + ∂2y

)

�z

)

f (x, y) = F
−1

{

exp
(

iπ��z
(

q2x + q2y

))

F
[
f (x, y)

]}

.
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Here, �z is the defocus value without restrictions to infinitesi-
mal steps.

Microscope-specific artifacts, such as aberration, astig-
matism, beam divergence, and incoherence, can be taken 
into account by modifying the forward propagator [23, 45, 
73, 74]

and the backward propagator

Spherical aberrations of third ( C3 ) and fifth ( C5 ) order contrib-
ute as perturbation to the contrast transfer function (exponent 
of the propagator) with

Astigmatism due to variation in defocus value �(�z) per-
pendicular to the propagation direction

are considered only in forward propagation as backward propa-
gation is a purely mathematical operation during numerical exit 
wave reconstruction [Sect. 2.4]. While correcting aberrations 
and astigmatism is essential to atomic-resolution transmission 
electron microscopy [17, 19], aberrations and astigmatism play 
a minuscule role in Lorentz microscopy owing to the use of focal 
planes far from focus and a magnification of a few 1000× . For 
these parameters, Eq. (13) yields an aberration � 10 nm com-
pared with millimeter defocus values. These imaging conditions 
amplify modifications to the contrast transfer function due to 
beam divergence [75]

with β = 1+ 2[πα�(�z)]2
(

q2x + q2y

)2
≈ 1 for small products 

of beam divergence α and �(�z) . Beam divergence can originate 
from both field emission gun and multiple scattering events in 
dense and thick specimens. The result is a loss of interference 
fringes, spatial resolution, and sensitivity [Fig. 3(a)–(c)]. A simi-
lar effect is observed with a partially coherent beam due to, e.g., 
inelastic scattering off the sample [Fig. 3(d)]. Recent develop-
ments in double-aberration-corrected transmission electron 
microscopes with monochromatic electron sources have caused 
a paradigm shift since, now, most “measurement artifacts” stem 
from the interaction with the specimen due to simplifications 

(11)Ŵf = exp
{

i
[

π��z
(

q2x + q2y

)

+ χ

]}

ECt

(12)Ŵb = exp
{

−i
[

π��z
(

q2x + q2y

)

+ χ

]}

.

(13)χ =
2π

�

[
1

4
�
4
(

q2x + q2y

)2
C3 +

1

6
�
6
(

q2x + q2y

)3
C5

]

.

(14)Ct = exp

{
1

2

[

�(�z)π�
(

q2x + q2y

)]2
}

(15)

E = exp

{

−
π2α2

�2β

(

C3�
3
(

q2x + q2y

)3/2
−�z�

√

q2x + q2y

)2
}

,

to, e.g., single elastic scattering events confined to the volume of 
the specimen discussed in this article.

The impact of electric and magnetic phase shifts on the 
electron wave propagation is illustrated on the example of 

Figure 3:  Effect of beam divergence, partial coherence, and aberration on 
electron wave propagation. Left column depicts the modeled electron 
intensities in overfocus (3 mm) of a honeycomb nanodisk array similar 
to that shown in Fig. 1(c). Right column displays the electron phases 
reconstructed from focal plane using the transport-of-intensity equation. 
Polynomial background may be subtracted to enhance contrast while 
preserving the poor spatial resolution apparent in both focal planes and 
electron phase. Astigmatism and aberration cause noticeable changes 
only at/near focus (not shown).
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soft-magnetic nanodisk arrays. Figure 4(a) depicts the mag-
netization configuration in honeycomb lattices obtained from 
micromagnetic simulations near remanence. The 10-nm-thick 
nanodisks with a diameter of 100 nm and a nominal cell size of 
6 nm (compared to exchange length 10 nm) reside at trigonal 
lattice sites with lattice constant 120 nm. The micromagnetic 
simulations were conducted for materials parameters for Per-
malloy ( Ms = 860 kA/m, exchange stiffness: 13 pJ/m) [76] using 
Nmag v0.2 [77], a finite element method/boundary element 
method micromagnetic simulator, in combination with the HLib 
library [78, 79]. The formation of extended trigonal macrovortex 
lattices and striped domains along the 30◦ bias field agrees with 
literature [76]. The corresponding magnetic phase shift contains 
polar (vortex) and step-like (striped domains) regions [Fig. 4(b)] 
that cause complex interference fringes. Figure 4(c) displays the 
electron intensities at 1-mm defocus for pure magnetic phase 
shift and additional electric phase shift. The latter is approxi-
mated as 100% of the maximum magnetic contrast and confined 
to the location and size of the nanodisks. A realistic estimate for 
the electric phase shift is 10 to 100 times or more instead of 1. 
The electron wave propagation is modeled for 300-kV accelera-
tion voltage without aberration and beam divergence and for 

a fully coherent beam using the same materials and geometry 
parameters as for micromagnetic simulations. The electric phase 
shift of isotropic disks yields circular interference fringes that 
themselves interfere due to proximity [Fig. 1(c)]. An in-plane 
magnetization breaks this symmetry causing highly complex 
anisotropic interference patterns. The latter can be used to cor-
relate experimental with numerical data and identify the mag-
netization configuration. In practice, this approach is useful to 
obtain an idea of what to expect during experiment while sur-
veying a large parameter space for the onset of magnetism or the 
emergence of chiral and topological states. These states are then 
reconstructed using phase retrieval algorithms.

Reconstruction à la transport‑of‑intensity equation

As mentioned in Sect. 2.1, the scalar and vector field are typically 
assumed to be confined to the specimen leading to localized 
electromagnetic interactions and electron phase shift. Once the 
electron wave escapes from the film, it propagates in free space 
that can be described by Eq. (8) with ψ =

√
Ieikzeiφ , V = 0 , 

and A = 0:

Figure 4:  Inference of magnetization configuration from in-line holography. (a) Magnetization configuration in soft-magnetic nanodisk arrays with 
honeycomb symmetry forming macrovortex lattices and striped domains, obtained from micromagnetic simulations. (b) Modeled electron phase 
and (c) electron intensities in overfocus (1 mm) depicted for negligible structural (electric) and equivalent electric and magnetic contributions 
underscoring the well-known challenge of much weaker magnetic contributions and the possibility of identifying the magnetic state by correlation 
of modeled data with experiment. (d) Electron phase retrieved from one focal plane (c) using the transport-of-intensity equation confirming stored 
phase information and unambiguity. (e) 2D gradient of phase shift approximating the in-plane magnetization for pure magnetic phase shift. Color 
coincides with (a). (f ) Electron phase derived with the Gerchberg–Saxton algorithm indicating superior spatial resolution and slow convergence of 
low-frequency components, which can be accelerated by blurring. Scale bar is 200 nm.
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Here, I denotes the electron intensity defined as |ψ |2 = ψ∗ψ 
with the complex conjugate ψ∗ . Calculating the sum of 
Eqs. (16) and (17) yields the transport-of-intensity equation 
−2k

√
I ∂z

√
I = 2

√
I ∇⊥

√
I ∇⊥φ + I∇2

⊥φ , which can be rewrit-

ten using the relation 2
√
I ∂z

√
I = ∂zI as [30–33]

The analytical solution for this partial differential equa-
tion is obtained by substituting ∇⊥� = I ∇⊥φ and solving 
∇2
⊥φ = ∇⊥

(
1
I ∇⊥�

)
 for φ [32, 33]:

The inverse Laplace operator ∇−2
⊥  can be calculated in reciprocal 

space without the need for integration:

The intensity change along the electron trajectory is approxi-
mated using only one single focal plane and assuming a homo-
geneous intensity in focus I0 . A more rigorous calculation may 
compare intensities taken at different focal planes through, e.g., 
calculating the mean phase value or higher-order gradient cal-
culation. In either case, the electron phase is obtained within 
seconds in a non-iterative manner. In comparison, iterative exit 
wave reconstruction relying on, e.g., the Gerchberg–Saxton 
algorithm require a large set of focal planes and may take days to 
converge depending on the number of focal planes and data size. 
The basically instantaneous gratification and data acquisition 
requiring only one focal plane make the transport-of-intensity 
equation remarkably attractive for mapping and time-resolved 
studies. Precise knowledge of the defocus value is not needed 
due to limited spatial resolution.

The transport-of-intensity equation (19) is a masterpiece 
of abstract mathematics and physics emerging from quan-
tum mechanics. Its function is best assessed by application to 
the nanodisk array discussed above. Figure 4(d) depicts the 
reconstructed electron phase using only one focal plane for 
pure magnetic and magnetic plus electric phase contributions. 
While not perfect, the resemblance of reconstructed and mod-
eled phase is striking. This even applies to cases with a siz-
able electric contribution, which highlights the location of the 
nanodisks. Discrepancies become apparent when calculating 
the 2D gradient of the electron phase using Eq. (4) to obtain 

(16)
ψ∗∂zψ = ψ∗

{

ik +
i

2k

(

∂2x + ∂2y

)}

ψ ,

(17)ψ∂zψ
∗ = ψ

{

−ik −
i

2k

(

∂2x + ∂2y

)}

ψ∗ .

(18)−
2π

�
∂zI = ∇⊥(I ∇⊥φ).

(19)φ ≈ −
2π

�
∇

−2
⊥ ∇⊥

[
1

I
∇⊥∇

−2
⊥

(
I(�z)− I0

�z

)]

.

(20)∇
−2
⊥ f (x, y) = F

−1

{

1

q2x + q2y
F
[
f (x, y)

]

}

.

the in-plane magnetic induction [Fig. 4(e)]. Even for absent 
electric phase contrast, the reconstructed in-plane magnetic 
induction exhibits artifacts that may influence the interpreta-
tion of both modeled and experimental data. In particular, one 
has to keep in mind that the obtained result is not the in-plane 
magnetization. This is true for any electron phase retrieval.

Exit wave reconstruction using the Gerchberg–Saxton 
algorithm

Iterative phase retrieval based on the Gerchberg–Saxton exit 
wave reconstruction algorithm [55] relies on the modeling of 
electron wave propagation in forward and backward direction 
using Eqs. (11) and (12), respectively. Its numerical implementa-
tion alongside data preparation, relevant to experimental data 
(discussed in Sect. 3.1), is shown as a flowchart in Fig. 5. For 
each iteration, the electron wave for a given focal plane, identi-
fied by its defocus value �z , is approximated as

with φ(�z) = arctan Im[ψ(�z)]
Re[ψ(�z)]

 and the intensity of the experi-
mental data I. Contrary to earlier belief [57], the initial guess 
for the phase can be arbitrary. In fact, all Gerchberg–Saxton 
reconstructions presented in this work used φ(�z) = 0 as initial 
guess. Nonetheless, an educated guess based on modeling or 
TIE phase retrieval can substantially accelerate convergence. The 
focal planes are then backward propagated into focus, denoted 
as ψ(�z)(0) , to calculate the Fourier transform of the mean elec-
tron wave averaged over all select focal planes:

Without leaving reciprocal space, the resulting in-focus wave is 
forward propagated to all focal planes:

commencing the next iteration step.
The convergence time, i.e., number of iterations needed for 

convergence, is inverse proportional to the square of the maxi-
mal defocus �zmax of the focal series and proportional to the 
fourth power of the feature size, considered in terms of wave 
vector q [45]:

This relation elucidates the slow convergence of low-frequency 
components (small q2x + q2y ) apparent in both numerical and 
experimental data. Figure 4(f) depicts the electron phase derived 
with the Gerchberg–Saxton algorithm after 800 iterations indicat-
ing slow convergence of low-frequency components and hinting 
at a spatial resolution superior to the transport-of-intensity equa-
tion [Fig. 4(d)]. A rigorous proof of this statement is given in 

(21)ψ(�z) =
√

I(�z) exp [iφ(�z)],

(22)F[ψ] = F
[
ψ(�z)(0)

]
= Ŵb(�z)F[ψ(�z)].

(23)ψ(�z) = F
−1

{
Ŵf (�z)F[ψ]

}
,

(24)τ ≈
3

π2�2
(

q2x + q2y

)2
�z2max

.
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Sect. 3.2. Although the convergence of the Gerchberg–Saxton exit 
wave reconstruction can be accelerated by blurring, this simple 
example illustrates the need for thousands of iterations to obtain 
a phase information comparable with TIE phase retrieval. A sys-
tematic study of convergence as a function of select focal planes 
and stage of iteration is given in Sect. 3.2 using experimental data.

Alignment of the experimental focal planes may be cor-
rected by comparing the phase crosscorrelation between recon-
structed and experimental focal planes translated by small 
amounts [Fig. 5]. Similarly, the defocus values can be refined by 
comparing the reconstructed in-focus planes with the experi-
mental backward-propagated focal planes using small varia-
tions in the defocus value. Although available, these features 
were not used in this work to minimize computing time and 
because of marginal improvements for focal planes with large 
defocus values initially aligned during the data preparation pro-
cess (Sect. 3.1). Moreover, the presented results do not consider 
aberration, partial coherence, beam divergence, and temporal 
coherence.

Application to inhomogeneous materials

Alignment and defocus determination

The display of data preparation and phase retrieval on an equiv-
alent level in Fig. 5 conveys the importance of the former to 

succeed in the latter. Visualizing magnetization configurations 
with relatively weak phase contributions requires large defocus 
values that amplify deviations of the beam trajectory from the 
optical axis and markably alter the image due to beam deflection 
(several fields of view), beam rotation ( ≈ 5◦ ), and magnification 
(80–120%). These artifacts persist even in state-of-the-art double 
aberration-corrected transmission electron microscopes since 
their optics are not optimized for out-of-focus imaging. Hence, 
accurate and precise alignment, i.e., translation, rotation, and 
magnification, and defocus determination are necessary. During 
data acquisition, structural defects can be used as fiducial markers 
to retain the region of interest by translating the sample holder or 
shifting the beam. The beam should be spread out as much as pos-
sible to prevent distortion since it shrinks with increasing distance 
from focus and the magnification near the edge of the beam spot 
is inhomogeneous. Using a single electron, direct electron detec-
tor can help accommodate the corresponding low beam intensity. 
Nevertheless, no matter how thorough these experimental adjust-
ments are carried out, an iterative optimization of alignment and 
defocus determination needs to follow.

Manual alignment of 22 focal planes may take up to ten 
hours that fortunately can be shortened to a few hours using 
improved data processing and semi-automation. This includes, 
in particular, in-focus series obtained by backward propagation 
of the experimental focal planes into focus yielding sharp local-
ized features (defects) [Fig. 6(a), (b)]. Note that the resulting set 

Figure 5:  Implementation of data processing and Gerchberg–Saxton algorithm. The flowchart shows preparation of data and exit wave retrieval on 
equivalent level since proper alignment and identification of defocus values are as critical as the reconstruction algorithm itself.
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does not reflect the actual electron intensity due to unknown 
phase contributions. The magnification should be well estimated 
as it directly affects the defocus value for a given focal plane. This 
is typically an iterative process. The challenge with aligning focal 
planes is the lack of isomorphism due to interference fringes and 
emerging contrast that prevents the use of phase crosscorrela-
tion or other advanced image registrations. A precision of a few 
pixels is very common for image alignment, which translates 
to a misalignment < 10 nm for a magnification of 2000× and a 
detector pixel size of 0.45 nm.

Lastly, the defocus values is derived from the angle-averaged 
(radial) power spectral density using the mathematical  
expression for the contrast transfer function, i.e., exponent of 
the propagator or from the focal planes backward propagated 
into focus. The former approach leverages Thon rings  
[80] emerging upon defocusing and simultaneously allows to 
assess beam aberration causing non-circular patterns. The  
contrast transfer function vanishes according to Eq. (11) for 
n = 1

2��z
(

q2x + q2y

)

+ 1
2π χ with integer n. Large defocus val-

ues are well described without considering aberrations by ana-
lyzing the minima according to

with the nk-th minima located at q0,k . Focal planes far from focus 
may be backward propagated near focus prior to calculating the 
power spectral density to reduce the uncertainty ( ≈ 10% ) origi-
nating from very few, small Thon rings. The omission of aberra-
tions is justified since a spherical aberration C3 = 20 mm causes, 
for a magnification of 2000× , a relative change < 0.01% or 
< 10 nm for defocus values exceeding hundreds of micrometers. 
For reference, typical experimental values for C3 < 1 µ m result 
in a minuscule change. In practice, the relationship between 
Lorentz lens current and defocus value is linear [Fig. 6(d)] and 
offers a convenient way to check whether magnification and 
defocus were properly determined and/or the beam spot was 
sufficiently spread out to ensure homogeneous magnification. 
Small deviations from the linear relationship become apparent 

(25)�zk = −
2nk

�q20,k
,

Figure 6:  Preparation of data to ensure high-quality reconstruction. (a) Experimental focal planes, (b) backward-propagated focal planes into focus, 
and (c) reconstructed focal planes using the Gerchberg–Saxton algorithm. Images are normalized to enhance contrast. The in-focus series improves 
image alignment and defocus determination but does not reflect the actual electron intensity or phase. Lack of shadow, double, and smeared peaks 
in the reconstructed focal planes corroborates proper alignment and defocus values. (d) Comparison of defocus values derived from Thon rings and 
backward propagation of focal planes revealing linear relation to Lorentz lens current and a slight deviation far from focus. Scale bar is 200 nm.
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far from focus in the in-focus series that make a manual deter-
mination of the in-focus plane, i.e., defocus value, faulty. Beam 
divergence and partial coherence can be excluded as cause as 
dozens of interference fringes are observed.

Ultimately, the quality assessment is given by comparison 
between experimental and reconstructed focal planes [Fig. 6(a), 
(c), Suppl. Movies 1, 2] and by the reconstructed electron phase 
(Figs. 7, 8, and 9). Since experiment and reconstruction will 
never match each other due to simplifications during recon-
struction, uncertainty in defocus, and misalignment, other 
quality checks are important, such as resemblance of small and 
large features and lack of shadow, double, and smeared peaks. 
Satisfying these is necessary but not sufficient as the convergence 
of the exit wave reconstruction, i.e., electron phase, depends on 
the selection of focal planes and number of iterations.

Convergence of exit wave reconstruction

The characteristic frequency dependence (Eq. 24) of the Ger-
chberg–Saxton algorithm allows to differentiate between struc-
tural (high-frequency), magnetization (medium- and low-
frequency), and stray field (low-frequency) contributions by 
selecting subsets of focal planes and/or varying the number of 
iterations. This unique capability is exemplarily demonstrated 
by visualizing structural defects alongside domain walls in 
amorphous ferrimagnets with perpendicular magnetic anisot-
ropy [51] and chiral spins in amorphous thick films [56]. The 
phase retrieval coincides with Sect. 2.4 using an initial phase 
equal to zero and without considering aberrations, astigma-
tism, beam divergence, and incoherence. The neglect of aber-
rations and astigmatism is justified since modifications to the 
focal planes far from focus are negligible for any realistic val-
ues. Samples with a thickness � 100 nm may cause multiple 
or inelastic scattering events leading to beam divergence and 
incoherence, which can affect the quality of the reconstructed 
electron phase. Each GSR phase retrieval is compared with the 
TIE phase retrieval to highlight differences and validate the 
reconstructed electron phase. The TIE phase retrieval for differ-
ent focal planes revealed variations in the form of a polynomial 
2D background that was not subtracted prior to calculating the 
mean electron phase.

The experimental data were obtained, as discussed in the 
original research articles [51, 56], with a 300-keV aberration-
corrected transmission electron microscope (TEAM I) equipped 
with a Gatan K2-IS direct electron detector operated in electron-
counting mode at the Molecular Foundry (Berkeley, CA). Each 
focal plane was recorded for 6 s at room temperature using a 
magnification of 2000× (pixel size of 0.45 nm) and under nor-
mal incidence probing exclusively in-plane components of the 
magnetic induction.

Figure 7 depicts the electron phase reconstructed from 
three different sets of focal planes taken at remanence (zero 
magnetic bias field). A selection of the corresponding experi-
mental and reconstructed focal planes is depicted in Fig. 6(a) 
and (c), respectively. The complete set, containing 22 focal 
planes up to −5.2  mm [Suppl. Movies  1, 2], shows much 
faster convergence of low-frequency components (domains) 
than the subsets Fig. 7(a)–(c) in accordance with Eq. (24). 
The low-frequency magnetic phase contrast originates from 
Bloch walls as the out-of-plane magnetized domains do not 
deflect the electron beam under normal incidence. On the 
submicrometer length scale, the Bloch walls are chiral leading 
to the appearance of homogeneous domains emerging with 
progressing iteration with different gray tones. The final con-
verged phase unveils two Bloch lines near the center of the 
field of view, identifiable by their quadrupole phase contrast, 
that reverse the chirality of the Bloch walls [Fig. 7(a)]. Small 
features emerge after less than 100 iterations due to structural 
defects and retain their shape, intensity, and location through-
out the entire process. While structural defects, magnetiza-
tion, and magnetic stray field contributions are clear in the 
final converged electron phase of the complete set, defects 
immediately jump out in the reconstructed electron phases 
obtained from focal series with small defocus values (subsets) 
and small numbers of iterations [Fig. 7(b), (c)]. This charac-
teristic enables the correlation of pinning sites and defects 
with the magnetization configuration at an unprecedented 
spatial resolution. The vast majority of structural defects pin 
magnetic domain walls; not all defects act as pinning and, by 
extension, nucleation sites. Note that the corresponding TIE 
phase retrieval completely lacks high-frequency components 
(small features) preventing such a correlation [Fig. 7(g)]. The 
high spatial resolution and high sensitivity of the GSR phase 
retrieval enable a quantitative phase contrast imaging that has, 
thus far, only be known from off-axis electron holography.

A quantitative assessment of the convergence is given in 
terms of the normalized crosscorrelation function

defined for each pixel coordinate (i, j), with the number of itera-
tions n, number of pixels N, standard deviation σ , and mean 
intensity I  of the electron phase. In every presented case, the 
crosscorrelation is calculated with respect to the final elec-
tron phase reconstructed from the complete set of focal planes 
T(nmax)(i, j) . Analyzing the asymptotical behavior for the com-
plete set suggests near-convergence and validates the use of this 
metric [Fig. 7(d)] and the final electron phase as ground truth. 

(26)

g(n) =
∑

i,j

T(n)(i, j) · T(nmax)(i, j) ∈ (0, 1) ,

T(n)(i, j) =
I(n)(i, j)− I(n)
√
Nσ(I(n))

,
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Note that the number of iterations needed to obtain the ground 
truth depends on the defocus values, saturation magnetization, 
and feature sizes and is typically < 10, 000 . Hence, all recon-
structions presented in this work ran for 9,000 iterations inde-
pendent of convergence. The normalized correlations for partial 
sets reveal a steeper approach than the complete set hinting at 
the possibility that they reach the same electron phase at a later 
stage of iteration. This is also expected for artifact-free in-line 
holography. Together with the reconstructed electron phases 
[Fig. 7(a)–(c)], this underscores reliability of aligned data and 

reproducibility of the reconstruction. Such a self-consistency 
check is absent with the non-iterative TIE phase retrieval.

The reconstructed focal planes can be correlated with the 
experimental data by analogy with Eq. (26) using the defocus 
�z instead of the number of iterations n as variable [Fig. 7(e)]. 
An alternate metric quantifies the ratio of standard devia-
tion to mean value σ(�I)/|�I| defined pixel-wise as inten-
sity difference between reconstructed and experimental focal 
planes [Fig. 7(f)]. Aside from the in-focus plane, both metrics 
reveal the same trend. Near-focus focal planes deviate more 

Figure 7:  Convergence of exit wave reconstruction using the Gerchberg–Saxton algorithm and dependence on selection of focal planes. Electron 
phase of achiral Bloch walls in amorphous ferrimagnetic films with perpendicular magnetic anisotropy reconstructed from (a) 22 focal planes and a 
subset of (b) 10 and (c) 5 focal planes shown for different stages of iteration. (d) Normalized correlation of reconstructed electron phase with respect 
to final result obtained from the complete set suggesting ultimate convergence independent of select focal planes. (e) Normalized correlation and (f ) 
standard deviation of reconstructed and experimental focal planes for different numbers of iteration revealing worse agreement for near-focus planes 
when using larger sets. (g) Electron phase retrieved from complete set of focal planes using the transport-of-intensity equation demonstrating the 
same distribution of medium- and low-frequency components and lack of high-frequency components (small features), such as grains with dark phase 
contrast. Scale bar is 200 nm.
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significantly from each other than those farther away as the lat-
ter carry more weight during reconstruction and possess less 
sharp features. However, the correlation of experimental and 
reconstructed focal planes should be considered as an indica-
tor for poorly matching planes instead of a quantitative meas-
ure for the convergence due to the neglect of beam divergence, 
astigmatism, aberration, and partial coherence, uncertainty in 
defocus, and misalignment that, at best, leads to a resemblance 
of small and large features. The quality and convergence of the 
reconstructed electron phase and its reproducibility for different 
subsets of focal planes are proper criteria.

The high spatial resolution and sensitivity of Gerch-
berg–Saxton provide further means to investigate the impact 
of structural defects on helical spins and topological magnetic 
states in inhomogeneous materials. This is demonstrated on the 
example of amorphous iron germanium films with nanocrystal-
line defects. The electron phase, depicted in Fig. 8, shows the 
room-temperature configuration recorded in the presence of a 
normal magnetic bias field (32 kA/m) generated by the objec-
tive lens current. Data preparation, phase retrieval, and analysis 
were carried out by total analogy with the previous example. 

The experimental and reconstructed focal planes are shown 
as Supplementary Movies 3 and 4, respectively. While struc-
tural defects are well resolved, the reconstructed electron phase 
appears overall blurry since the magnetic signal from in-plane 
magnetization components and stray fields are less confined. The 
striped domain contrast of the helical spin lattice reveals a spin 
dislocation (fork) and a decoration of Bloch skyrmions exhibit-
ing a characteristic polar phase contrast [Fig. 2(b)]. Correlat-
ing the location of structural defects with the occurrence of the 
polar contrast divulges that some, not all, skyrmions are pinned 
at or reside near structural defects. On the other hand, not every 
defect pins a topological state. The larger sets, containing focal 
planes far from focus, reveal after thousands of iterations promi-
nent low-frequency components in the form of domains super-
imposed with the striped domain contrast [Fig. 8(a), (b)]. The 
corresponding loop of the in-plane magnetic induction connects 
regions with polar phase contrast and is reproduced by the TIE 
phase retrieval [Fig. 8(d)]. While a significant contribution from 
magnetization divergence, i.e., stray fields, can be excluded since 
the orientation of the helical spin lattice changes only margin-
ally, a systematic study of its physical origin is outside the scope 

Figure 8:  Convergence of low- and high-frequency components in the Gerchberg–Saxton algorithm illustrated on the example of helical spins with 
isolated Bloch skyrmions in amorphous iron germanium films reconstructed from (a) 21 focal planes and a subset of (b) 10 and (c) 5 focal planes. 
The complete set reveals prominent low-frequency stray field contributions which also appear in the (d) averaged electron phase obtained with the 
transport-of-intensity equation. Enhanced spatial resolution of the Gerchberg–Saxton algorithm enables correlation of magnetization and magnetic 
stray field contributions to structural defects. Normalized correlation of (e) reconstructed electron phase with respect to final result obtained from the 
complete set and (f ) reconstructed and experimental focal planes. Scale bar is 200 nm.
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of this work. The existence of the large domains causes a much 
slower convergence than in the previous example, particularly 
for subsets with near-focus focal planes [Fig. 8(e)]. Nonetheless, 
both convergence of the electron phase and correlation between 
experimental and reconstructed focal planes follow the same 
trend as in the previous example [Fig. 8(e), (f)].

The last two examples address challenges with phase contrast 
imaging of non-collinear spin textures that can lead to improper 
conclusions when using TIE phase retrieval alone. Figure 9 depicts 
the electron phase reconstructed from 20 focal planes taken at 
remanence [left column; Suppl. Movies 5, 6] and in the presence 
of a 64 kA/m normal magnetic bias field [right column; Suppl. 
Movies 7, 8] of two distinct materials systems. The left column 

shows the magnetic and electric phase contrast of chiral Néel walls 
in out-of-plane magnetized ferrimagnets. The low-frequency mag-
netic contrast is very weak since Néel spin textures are invisible 
to Lorentz microscopy [Fig. 2(b)]. The contrast emerging after 
thousands of iterations is caused by a small tilt ≈ 2% out of the 
horizontal [Fig. 9(a), (b)]. Hence, the out-of-plane magnetized 
domains exhibit projected in-plane components that deflect the 
image-forming electrons. The resulting phase contrast indicates 
the segments of domain boundaries not aligned parallel to the 
tilt axis. While these measurements suffice for an identification 
of the domain wall type, the electron phase and magnetization 
reconstruction are faulty rendering any differences between GSR 
and TIE phase retrieval irrelevant [Fig. 9(b), (c)]. A proper recon-
struction of the morphology and spatial distribution of the mag-
netic domains (not the domain walls) requires tilt series along two 
perpendicular axes to correlate the phase contrasts or to perform 
vector field tomography [9–15]. However, a more convenient alter-
native for this particular task is x-ray magnetic circular dichroism 
imaging as demonstrated on the example of amorphous ferrimag-
netic films with Bloch and Néel domain walls [51]. Note though 
that neither of the three techniques allows for visualizing Néel spin 
textures. The right column illustrates the sensitivity of electron 
holography to the in-plane magnetic induction rather than the 
magnetization itself. The helical spins with cobweb-like orientation 
yield a sizable divergence of the magnetization previously observed 
in magnetic force microscopy of boundary regions between heli-
cal spin lattices [81]. The corresponding low-frequency stray field 
appears in the GSR phase retrieval after thousands of iterations 
and coincides with the TIE phase retrieval [Fig. 9(b), (c)]. The 
stray field contributions outweigh contributions from the helical 
spin lattice and structural defects apparent at the early stages of 
iteration [Fig. 9(a)]. An inference of the magnetization from the 
TIE phase retrieval, typically done in literature, leads to a wrong 
conclusion which becomes only apparent by comparison with the 
GSR phase retrieval.

To minimize computing time without compromising quality, 
all numerical arrays are initially scaled and the selection of active 
focal planes is limited to 20 per iteration [Fig. 5]. This procedure 
is particular attractive since typical iterative phase retrievals take 
days to complete. For instance, an exit wave reconstruction based 
on 22 focal planes with 11 million pixels each and acceleration 
in the form of multiprocessing and Fourier transforms calculated 
on graphics card takes 45 s for each iteration totaling less than 
five days for 9000 iterations. These values are for Fig. 7(a) and the 
original data size and obtained with a high-performance computer 
(Ubuntu 22.04, python3.11) powered by 48 CPUs and one 24-GB 
GTX 3090 Ti GPU. Sets of ten and five focal planes [Fig. 7(b), (c)] 
reduce the computing time to 25 s and 15 s per iteration, respec-
tively. However, the slow convergence of low-frequency compo-
nents makes the use of large sets of focal planes with a wide range 
of defocus values more attractive since overall less iterations and 

Figure 9:  Electron phase of chiral Néel walls and helical spins with 
cobweb-like spatial orientation reconstructed using the Gerchberg–
Saxton algorithm after (a) 300 and (b) 9000 iterations and the (c) 
transport-of-intensity equation. Thousands of iterations are needed to 
properly capture contributions from very weak magnetic interactions 
(Néel walls in out-of-plane magnetized films) or magnetic stray fields 
(divergence of magnetization). The chiral Néel walls are visible due to a 
misalignment of 2◦ . Scale bar is 200 nm. Figure adapted from References 
[51, 56].
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computing time are required to reconstruct the same electron 
phase [Figs. 7(d), 8(e)].

Conclusion
In-line electron holography has become an integral part 
of materials sciences as it provides means to study spatial 
variations in electric and spin distributions in quantum, 
energy, and magnetic materials. This work demonstrated 
how advanced data analysis can be employed to boost both 
spatial resolution and sensitivity of existing aberration-cor-
rected transmission electron microscopes without the need 
for physical modifications that is particularly appealing to 
user facilities. Particular emphasis was given to the step-by-
step derivation of the physical background and mathematical 
equations to demystify phase contrast imaging with Lorentz 
microscopy and empower the reader to model and reconstruct 
the electron phase shift and electron wave propagation for 
arbitrary magnetization configurations. Non-iterative and 
iterative phase retrieval algorithms were quantitatively com-
pared using numerical and experimental data. The high spa-
tial resolution and frequency-dependent convergence of the 
Gerchberg–Saxton exit wave reconstruction allowed for dif-
ferentiating between structural features, magnetization, and 
magnetic stray fields in inhomogeneous materials hosting 
non-collinear spin textures. The unique capability to corre-
late magnetic and electronic properties with structural defects 
on relevant length scales comes at the expense of a signifi-
cantly longer computing time compared with, e.g., the com-
monly used transport-of-intensity equation, which provides 
instantaneous results. Ongoing developments of cryogenic 
transmission electron microscopes reaching down to liquid 
helium temperature will likely broaden the field of applica-
tion to include quantum information systems requiring the 
demonstrated high spatial resolution, sensitivity, and, ideally, 
temporal resolution.
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