Skip to main content
Log in

Manganese doped cobalt–nickel spinel ferrite via. sol–gel approach: Insight into structural, morphological, magnetic, and dielectric properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, morphological, magnetic, and dielectric properties of MnxCo0.5-xNi0.5Fe2O4 (x = 0.0, 0.2, and 0.4) synthesized by sol–gel auto-combustion are reported in this paper. X-ray diffraction pattern of the samples confirms the formation of a single-phase spinel ferrite and the crystallite size (D) is in the range of 32.60–33.62 nm. Fourier transform infrared spectra have a vibrational band at 534.20 cm−1 and 420.13 cm−1 which corresponds to the tetrahedral and octahedral sites of the MnxCo0.5-xNi0.5Fe2O4 respectively. Field emission scanning electron microscope reveals the cubic morphology of the synthesized spinel ferrite with inhomogeneous grain size. Vibrating sample magnetometer analysis showed the ferromagnetic nature of all samples. All the samples exhibit a multi-domain because the value of Mr/Ms lies in the range of 0.153–0.336. Dielectric properties reveal the hopping of the charge carrier which has improved the conduction mechanism of the MnxCo0.5-xNi0.5Fe2O4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data related to this research will be available on request.

References

  1. Y. Cedeño-Mattei, O. Perales-Pérez, Synthesis of high-coercivity cobalt ferrite nanocrystals. Microelectron. J. 40(4–5), 673–676 (2009). https://doi.org/10.1016/j.mejo.2008.07.040

    Article  CAS  Google Scholar 

  2. P. Liu et al., Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: catalyst characterization, performance and reaction mechanism. Appl. Catal. B Environ. 182, 476–484 (2016). https://doi.org/10.1016/j.apcatb.2015.09.055

    Article  CAS  Google Scholar 

  3. P. Chen, B. Cui, X. Cui, W. Zhao, Y. Bu, Y. Wang, A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles. J. Alloys Compd. 699, 526–533 (2017). https://doi.org/10.1016/j.jallcom.2016.12.304

    Article  CAS  Google Scholar 

  4. A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators, B Chem. 222, 95–105 (2016). https://doi.org/10.1016/j.snb.2015.08.027

    Article  CAS  Google Scholar 

  5. W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134(36), 14658–14661 (2012). https://doi.org/10.1021/ja305681n

    Article  CAS  Google Scholar 

  6. E.M. Masoud, Improved initial discharge capacity of nanostructured Ni-Co spinel ferrite as anode material in lithium ion batteries. Solid State Ionics 253, 247–252 (2013). https://doi.org/10.1016/j.ssi.2013.10.017

    Article  CAS  Google Scholar 

  7. Y. Chen, J.E. Snyder, K.W. Dennis, R.W. McCallum, D.C. Jiles, Temperature dependence of the magnetomechanical effect in metal-bonded cobalt ferrite composites under torsional strain. J. Appl. Phys. 87(9), 5798–5800 (2000). https://doi.org/10.1063/1.372526

    Article  CAS  Google Scholar 

  8. H. Mahajan, S.K. Godara, A.K. Srivastava, Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. J. Alloys Compd. 896, 162966 (2022). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  CAS  Google Scholar 

  9. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  CAS  Google Scholar 

  10. M.N. Akhtar et al., Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices. Ceram. Int. 47(9), 11878–11886 (2021). https://doi.org/10.1016/j.ceramint.2021.01.028

    Article  CAS  Google Scholar 

  11. M.S.I. Sarker, M. Yeasmin, M.A. Al-Mamun, S.M. Hoque, M.K.R. Khan, Influence of Gd content on the structural, Raman spectroscopic and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel route. Ceram. Int. 48(22), 33323–33331 (2022). https://doi.org/10.1016/j.ceramint.2022.07.275

    Article  CAS  Google Scholar 

  12. M. Abdullah-Al-Mamun et al., Effect of Er substitution on the magnetic, Mössbauer spectroscopy and dielectric properties of CoFe2−xErxO4 (x = 0.00, 0.01, 0.03, 0.05) nanoparticles. Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.104698

    Article  Google Scholar 

  13. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O 4) nanoparticles via sol-gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011). https://doi.org/10.1016/j.materresbull.2011.09.010

    Article  CAS  Google Scholar 

  14. B.J. Rani et al., Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Struct. Nano-Objects 14, 84–91 (2018). https://doi.org/10.1016/j.nanoso.2018.01.012

    Article  CAS  Google Scholar 

  15. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38(5), 3625–3634 (2012). https://doi.org/10.1016/j.ceramint.2012.01.001

    Article  CAS  Google Scholar 

  16. Hirthna, S. Sendhilnathan, Enhancement in dielectric and magnetic properties of Mg2+ substituted highly porous super paramagnetic nickel ferrite nanoparticles with Williamson-Hall plots mechanistic view. Ceram. Int. 43(17), 15447–15453 (2017). https://doi.org/10.1016/j.ceramint.2017.08.090

    Article  CAS  Google Scholar 

  17. T. Tchouank Tekou Carol, J. Mohammed, H.Y. Hafeez, B.H. Bhat, S.K. Godara, A.K. Srivastava, Structural, dielectric, and magneto-optical properties of Al-Cr substituted M-type barium hexaferrite. Phys. Status Solidi 216(16), 1800928 (2019). https://doi.org/10.1002/pssa.201800928

    Article  CAS  Google Scholar 

  18. N. Murali et al., Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites. Phys. B Condens. Matter 522(July), 1–6 (2017). https://doi.org/10.1016/j.physb.2017.07.043

    Article  CAS  Google Scholar 

  19. J. Rani, K.L. Yadav, S. Prakash, Dielectric and magnetic properties of xCoFe2O4-(1 - X)[0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] composites. Mater. Res. Bull. 60, 367–375 (2014). https://doi.org/10.1016/j.materresbull.2014.09.013

    Article  CAS  Google Scholar 

  20. Y. Il kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B Condens. Matter 337(1–4), 42–51 (2003). https://doi.org/10.1016/S0921-4526(03)00322-3

    Article  CAS  Google Scholar 

  21. M.S. Shah, K. Ali, I. Ali, A. Mahmood, S.M. Ramay, M.T. Farid, Structural and magnetic properties of praseodymium substituted barium-based spinel ferrites. Mater. Res. Bull. 98(August 2017), 77–82 (2018). https://doi.org/10.1016/j.materresbull.2017.09.063

    Article  CAS  Google Scholar 

  22. R. Vishwarup, S.N. Mathad, Facile synthesis of nano Mg-Co ferrites (x=0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) via coprecipitation route: structural characterization. Mater. Int. 2(4), 0471–0476 (2020)

    Google Scholar 

  23. S.S. Yattinahalli, S.B. Kapatkar, S.N. Mathad, Structural and mechanical properties of a nano ferrite. Adv. Sci. Focus 2(1), 42–46 (2014). https://doi.org/10.1166/asfo.2014.1079

    Article  Google Scholar 

  24. D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav, X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Nov. Magn. 27(2), 547–553 (2014). https://doi.org/10.1007/s10948-013-2305-2

    Article  CAS  Google Scholar 

  25. R. Jabbar, S.H. Sabeeh, A.M. Hameed, Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020). https://doi.org/10.1016/j.jmmm.2019.165726

    Article  CAS  Google Scholar 

  26. A. Amirabadizadeh, T. Amirabadi, Effect of substitution of Al for Fe on magnetic properties and particle size of Ni-Co nanoferrite. World J. Condens. Matter. Phys. 03(03), 131–135 (2013). https://doi.org/10.4236/wjcmp.2013.33021

    Article  CAS  Google Scholar 

  27. R. Sharma, P. Thakur, P. Sharma, V. Sharma, Ferrimagnetic Ni2+doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd. 704, 7–17 (2017). https://doi.org/10.1016/j.jallcom.2017.02.021

    Article  CAS  Google Scholar 

  28. M. Bhuvaneswari, S. Sendhilnathan, M. Kumar, R. Tamilarasan, N.V. Giridharan, Synthesis, investigation on structural and electrical properties of cobalt doped Mn-Zn ferrite nanocrystalline powders. Mater. Sci. Pol. 34(2), 344–353 (2016). https://doi.org/10.1515/msp-2016-0046

    Article  CAS  Google Scholar 

  29. I. Mohammed et al., Structural, morphological, optical, magnetic, and microwave properties of La3+- Mn2+ substituted Zn2-Y-type barium-strontium hexaferrite. Chinese J. Phys. 78(April), 377–390 (2022). https://doi.org/10.1016/j.cjph.2022.06.025

    Article  CAS  Google Scholar 

  30. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, Effect of Tb substitution on structural, magnetic and electrical properties of magnesium ferrites. Ceram. Int. 37(7), 2519–2526 (2011). https://doi.org/10.1016/j.ceramint.2011.03.063

    Article  CAS  Google Scholar 

  31. S.V. Bhandare et al., Effect of Mg-substitution in Co–Ni-ferrites: cation distribution and magnetic properties. Mater. Chem. Phys. 251(March), 123081 (2020). https://doi.org/10.1016/j.matchemphys.2020.123081

    Article  CAS  Google Scholar 

  32. M. Augustin, T. Balu, Estimation of Lattice Stress and Strain in Zinc and Manganese Ferrite Nanoparticles by Williamson-Hall and Size-Strain Plot Methods. Int. J. Nanosci. 16(3), 1–7 (2017). https://doi.org/10.1142/S0219581X16500356

    Article  CAS  Google Scholar 

  33. A. Ali et al., Effect of In on superparamagnetic CoInxFe2-xO4 (x = 0–0.15) synthesized through hydrothermal method. Results Phys. 25(February), 104251 (2021). https://doi.org/10.1016/j.rinp.2021.104251

    Article  Google Scholar 

  34. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  CAS  Google Scholar 

  35. T.M. Hammad, S. Kuhn, A.A. Amsha, N.K. Hejazy, R. Hempelmann, Comprehensive study of the impact of Mg2+ doping on optical, structural, and magnetic properties of copper nanoferrites. J. Supercond. Nov. Magn. 33(10), 3065–3075 (2020). https://doi.org/10.1007/s10948-020-05559-2

    Article  CAS  Google Scholar 

  36. I. Sharifi, H. Shokrollahi, Structural, magnetic and Mössbauer evaluation of Mn substituted Co-Zn ferrite nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 334, 36–40 (2013). https://doi.org/10.1016/j.jmmm.2013.01.021

    Article  CAS  Google Scholar 

  37. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn 2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358–359, 87–92 (2014). https://doi.org/10.1016/j.jmmm.2014.01.039

    Article  CAS  Google Scholar 

  38. K.B. Modi, M.C. Chhantbar, H.H. Joshi, Study of elastic behaviour of magnesium ferri aluminates. Ceram. Int. 32(2), 111–114 (2006). https://doi.org/10.1016/j.ceramint.2005.01.005

    Article  CAS  Google Scholar 

  39. G. Dhillon, N. Kumar, M. Chitkara, I.S. Sandhu, Effect of A-site substitution and calcination temperature in Fe3O4 spinel ferrites. J. Mater. Sci. Mater. Electron. 31(21), 18903–18912 (2020). https://doi.org/10.1007/s10854-020-04427-y

    Article  CAS  Google Scholar 

  40. S. Hasan, B. Azhdar, Synthesis of Nickel-Zinc ferrite nanoparticles by the Sol-Gel auto-combustion method: study of crystal structural, cation distribution, and magnetic properties. Adv. Condens. Matter Phys. (2022). https://doi.org/10.1155/2022/4603855

    Article  Google Scholar 

  41. S. Kavitha, M. Kurian, Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J. Alloys Compd. 799, 147–159 (2019). https://doi.org/10.1016/j.jallcom.2019.05.183

    Article  CAS  Google Scholar 

  42. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization, magnetic and antimicrobial properties of silver chromite nanoparticles. J. Mater. Sci. Mater. Electron. 31(4), 3662–3673 (2020). https://doi.org/10.1007/s10854-020-02924-8

    Article  CAS  Google Scholar 

  43. H. Fakhr Nabavi, M. Aliofkhazraei, M. Hasanpoor, A. Seyfoori, Combustion and coprecipitation synthesis of Co–Zn ferrite nanoparticles: comparison of structure and magnetic properties. Int. J. Appl. Ceram. Technol. 13(6), 1112–1118 (2016). https://doi.org/10.1111/ijac.12580

    Article  CAS  Google Scholar 

  44. S. Kumar Godara et al., Effect on Magnetic, morphological and structural properties of Zn2+-Zr4+ substituted SrM for permanent magnet based appliances. J. Magn. Magn. Mater. 560(May), 169626 (2022). https://doi.org/10.1016/j.jmmm.2022.169626

    Article  CAS  Google Scholar 

  45. M. Penchal Reddy, R.A. Shakoor, A.M.A. Mohamed, M. Gupta, Q. Huang, Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sintering. Ceram. Int. 42(3), 4221–4227 (2016). https://doi.org/10.1016/j.ceramint.2015.11.097

    Article  CAS  Google Scholar 

  46. K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, Mössbauer spectroscopy investigation of Mn-substituted Co-ferrite (Co Mn x Fe2–x O4). J. Appl. Phys. 97(10), 2003–2006 (2005). https://doi.org/10.1063/1.1846271

    Article  CAS  Google Scholar 

  47. V. Verma, M. Kaur, J.M. Greneche, Tailored structural, optical and magnetic properties of ternary nanohybrid Mn 0.4 Co 0.6-x Cu x Fe2 O4 (x= 0, 0.2, 0.4, 0.6) spinel ferrites. Ceram. Int. 45(8), 10865–10875 (2019). https://doi.org/10.1016/j.ceramint.2019.02.164

    Article  CAS  Google Scholar 

  48. P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, Studies on electrical and magnetic properties of Mg-substituted nickel ferrites. J. Electron. Mater. 46(1), 188–198 (2017). https://doi.org/10.1007/s11664-016-4886-6

    Article  CAS  Google Scholar 

  49. R.S. Yadav et al., Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017). https://doi.org/10.1016/j.jpcs.2017.04.004

    Article  CAS  Google Scholar 

  50. J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrites. J. Alloys Compd. 649(108), 362–367 (2015). https://doi.org/10.1016/j.jallcom.2015.07.103

    Article  CAS  Google Scholar 

  51. S. Aman, M.B. Tahir, N. Ahmad, The enhanced electrical and dielectric properties of cobalt-based spinel ferrites for high-frequency applications. J. Mater. Sci. Mater. Electron. 32(17), 22440–22449 (2021). https://doi.org/10.1007/s10854-021-06730-8

    Article  CAS  Google Scholar 

  52. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J. Appl. Phys (2013). https://doi.org/10.1063/1.4827416

    Article  Google Scholar 

  53. A. Sharma, S.K. Godara, A.K. Srivastava, Influence of composition variation on structural, magnetic and dielectric properties of Gd3Fe5O12(x)/MgFe2O4(1–x) composite. Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02365-5

    Article  Google Scholar 

  54. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Impedance and Modulus studies of the solid electrolyte system 20CdI 2–80[xAg2O-y(0.7V2O5-0.3B 2O3)], where 1 ≤x/y ≤ 3. Solid State Ionics 177(5–6), 475–482 (2006). https://doi.org/10.1016/j.ssi.2005.12.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend sincere appreciation to the Central Instrumentation Facility, Lovely Professional University – Punjab, India.

Author information

Authors and Affiliations

Authors

Contributions

KK: methodology, conceptualization, and writing-original draft. HM, IM, and AS: investigation of data and graphs. DB and AKS: supervision, writing-review, and editing.

Corresponding authors

Correspondence to Ajeet Kumar Srivastava or Deepak Basandrai.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Mahajan, H., Sharma, A. et al. Manganese doped cobalt–nickel spinel ferrite via. sol–gel approach: Insight into structural, morphological, magnetic, and dielectric properties. Journal of Materials Research 38, 3837–3849 (2023). https://doi.org/10.1557/s43578-023-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01119-1

Keywords

Navigation