
 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
38

  
 I

ss
ue

 1
7 

 S
ep

te
m

be
r 2

02
3 

 w
w

w
.m

rs
.o

rg
/jm

r

Vol:.(1234567890)

4042

 DOI:10.1557/s43578-023-01041-6

© The Author(s) 2023

Article

Calibration and data‑analysis routines 
for nanoindentation with spherical tips
Diana Avadanii1,a)  , Anna Kareer2, Lars Hansen3, Angus Wilkinson2
1 Department of Earth Sciences, University of Oxford, Oxford, UK
2 Department of Materials, University of Oxford, Oxford, UK
3 Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, USA
a) Address all correspondence to this author. e-mail: diana.avadanii@univ.ox.ac.uk

Received: 5 February 2023; accepted: 9 May 2023; published online: 18 August 2023

Instrumented spherical nanoindentation with a continuous stiffness measurement has gained increased 
popularity in microphysical investigations of grain boundaries, twins, dislocation densities, ion-induced 
damage, and more. These studies rely on different methodologies for instrument and tip calibration. 
Here, we test, integrate, and re-adapt published strategies for tip and machine-stiffness calibration 
for spherical tips. We propose a routine for independently calibrating the effective tip radius and the 
machine stiffness using standard reference materials, which requires the parametrization of the effective 
radius as a function of load. We validate our proposed workflow against key benchmarks and apply 
the resulting calibrations to data collected in materials with varying ductility to extract indentation 
stress–strain curves. We also test the impact of the machine stiffness on recently proposed methods for 
identification of yield stress. Finally, we synthesize these analyses in a single workflow for use in future 
studies aiming to extract and process data from spherical nanoindentation.

Introduction
Instrumented nanoindentation has become a widely–used tech-
nique for material characterization. The array of available tip 
geometries allows material analysis over a wide range of stress 
states. Indentation with a rigid, spherical tip has recently gained 
popularity due to key advantages of this geometry compared 
to sharp tip geometries (e.g., Berkovich). Indentation with 
a sphere induces a stress field under the indenter that is not 
self similar, and therefore, the indentation strain progressively 
increases with indentation depth [see Chapter 3 in 1–4]. Thus, 
load–displacement data can be transformed into indentation 
stress–strain curves, which facilitate the investigation of the full 
elasto-plastic response of materials [for review, see 3]. Moreover, 
nanoindentation with indenters of varying radii provides insight 
into size effects associated with deformation and enables cor-
relation of small-scale material testing with macroscopic tests 
[e.g., 3]. For example, in certain materials, indentation using tips 
with large radii results in stress–strain curves with a hardening 
coefficient similar to that of uniaxial tests, while data obtained 
using indenters with smaller radii display an indentation size 
effect [e.g., 5, 6]. In spherical nanoindentation, the indentation 

size effect is underpinned by both material hardening with 
increasing indentation strain, as well an increase in hardness 
with decreasing spherical radii [2, 5, 7–9]. Finally, bursts of dis-
placement in the stress–strain curves (called ‘pop-ins’) provide 
valuable insight into initiation of plasticity at small scales and 
display an additional size effect in spherical nanoindentation, in 
which the stress at pop-in increases with decreasing tip radius 
[10–13].

The potential to produce a large number of measurements 
and generate indentation stress–strain curves from a small 
volume of material makes spherical nanoindentation a desir-
able technique with a wide range of applications. For example, 
spherical nanoindentation has been deployed to investigate yield 
stress and size effects in brittle engineering ceramics and natu-
ral minerals [e.g., 10, 14–18], the mechanical properties of twin 
and grain boundaries in metals [e.g., 19–21], the effects of ion-
induced damage in metals and alloys [e.g., 22–24], the relation-
ship between structure and mechanical properties in biomaterials 
(bone [e.g., 25], human enamel [e.g., 26]), elasto-plastic transi-
tions in bulk metallic glasses [e.g., 27, 28], and fracture in thin 
films [e.g., 29, 30]. This versatility of mechanical testing using 

http://crossmark.crossref.org/dialog/?doi=10.1557/s43578-023-01041-6&domain=pdf
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spherical indentation has motivated studies on the reliability of 
measurements and prompted efforts to improve data analysis. 
Investigations into the methodology of spherical indentation 
highlight the importance of accurate knowledge of tip radius 
[31–33], machine stiffness, [32, 34, 35], differences among 
nanoindenter apparatus [35], and the impact of different data-
analysis routines on the extracted material properties [3, 36].

In this contribution, we test, integrate, and adapt several 
published strategies for calibration of spherical tip shape and 
machine stiffness, and implement a routine to calibrate the effec-
tive radius and machine stiffness using purely elastic indenta-
tion data collected on materials with varying elastic moduli. 
This synthesis results in an improved workflow to accurately 
extract stress–strain curves. We also develop a procedure for 
characterization of the effective tip shape and machine stiffness 
for tips that are not perfectly spherical, relying on the obtained 
indentation data from reference materials. We emphasize that 
the cumulative impact of imperfections in spherical tips, incon-
sistencies in sample mounting, and variations among instru-
ments reduce the repeatability and overall meaningful interpre-
tation of data collected across multiple studies. To this end, we 
outline a calibration routine using fused silica, sapphire, and 
glassy carbon as reference materials. We then implement the 
resulting calibration to extract indentation stress–strain curves 
from tungsten, olivine, and titanium. Details of the experiment 
set-up are outlined in the “Experimental aspects” section. We 
suggest that future studies using spherical nanoindentation 
would benefit from detailed reports of how the tip and machine-
stiffness calibration satisfy different benchmarks for meaningful 
comparison among published results. Ultimately, we intend for 
this contribution to serve as a detailed guide to deliver the full 
potential of spherical nanoindentation as a materials characteri-
zation technique with application to a broad range of materials 
with varying ductility.

Results and analysis
Theoretical background

Instrumented nanoindentation measures the displacement of 
the indenter tip in response to an applied load, P. The total 
measured displacement, htotal, is a combination of the displace-
ment due to surface deformation of the sample, hsample, and the 
deflection due to the machine stiffness, hmach (Fig. A.1, Supple-
mentary Materials). This interaction can be expressed as two 
deforming elements connected in series, for which the displace-
ments are [37–39]

The value of hmach can be estimated from the machine stiffness, 
Smach , according to hmach = P/Smach , where the machine stiff-
ness accounts for the combined stiffness from the indenter tip 

(1)htotal = hsample + hmach

and the loading frame. The common procedure is to determine 
Smach for an instrument by performing a series of experiments 
with a Berkovich tip in a material with known elastic modu-
lus. This method allows both the area function describing the 
tip and the machine stiffness to be determined simultaneously 
[e.g., 38]. The obtained value of the machine stiffness is used as 
the default stiffness, Sdefault , which is generally applied by the 
instrument software when collecting and reporting new data. 
However, previous studies using spherical indenters have indi-
cated that the stiffness during experiments is a function of the 
applied load, rather than a single value [35, 37]. Consequently, 
this procedure for calibration of the area function and machine 
stiffness can lead to systematic errors in subsequent experiments 
if the applied loads are significantly different than those used in 
the calibration [32].

It is possible to explicitly implement a calibration routine 
for spherical indentation tips in order to identify Smach for each 
machine-tip pair, as well as to determine the effective radius of 
the tip. Following Li and Bhushan [37], we express the reported 
displacement as follows:

where h0 accounts for errors arising from the initial contact 
between the sample surface and the indenter tip (Fig. A.1).

Because the stiffness of a particular indenter tip combined 
with the stiffness of the other components of the instrument are 
unknown, we use Eqs. 1 and 2 to describe hrep as follows:

For cases in which the response of the material is purely elastic, 
hsample can be modeled according to Hertzian mechanics as the 
elastic displacement, he [4],

for which

and

Eeff  and Reff  are the reduced elastic modulus and tip radius and 
are expressed as a function of the elastic moduli and Poisson’s 
ratios of the sample ( Es and υs ) and indenter tip ( Ei and υi ) and 
of the radius of the sample surface ( Rs ) and indenter tip ( Ri ). For 
a purely elastic contact and a flat sample surface, the curvature 
of the surface is infinity so that Reff = Ri (Fig. A.1).

(2)hrep = htotal −
P

Sdefault
+ h0,

(3)hrep = hsample +
P

Smach
−

P

Sdefault
+ h0.

(4)he = P2/3
(

4

3

√

ReffEeff

)−2/3

,

(5)
1

Eeff
=

1− υ2
s

Es
+

1− υ2
i

Ei

(6)
1

Reff
=

1

Rs
+

1

Ri
.
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Calibrations on materials with known moduli

Determination of effective radius

Studies employing spherical nanoindentation implement various 
strategies for calculating the effective radius, Reff [3, 31, 33, 37]. 
The value of Reff can be calculated by using Eq. 6 and the nominal 
tip radius provided by the manufacturer [14]. More commonly, 
Reff  is calculated by fitting Eq. 4 to data collected in fused silica 
[3, 13, 39]. Alternatively, using data from fully elastic experi-
ments in materials with a wide range of elastic moduli, optimum 
values of Reff can be simultaneously determined alongside other 
variables (e.g., machine stiffness) with the constraint that Reff is 
as constant with depth as possible [e.g., 10, 33, 40]. Complica-
tions in implementing these methods arise due to the impact 
of machine stiffness on reported displacement values and of tip 
shape imperfections, which are difficult effects to deconvolve. 
These errors can lead to unrealistic differences in the values of 
Reff obtained with different reference materials (e.g., fused silica 

and sapphire) [10, 33, 37]. Moreover, errors in the calibration of 
Reff can lead to inconsistencies in stress–strain measurements on 
the same material with different indenter tips. These potential dis-
crepancies motivate the need for a calibration routine in which 
the machine stiffness and effective radius are both determined in 
a self-consistent manner [37].

To circumvent these issues, we implement the method pro-
posed by Li et al. [32] to find the machine stiffness and effective 
radius for each machine-tip pair in Table 1. Although Li et al. [32] 
applied their calibration routine to two reference materials, we 
extend this analysis to three reference materials. This approach 
relies on the difference in reported displacements at the same load 
in elastic experiments on different materials with known elastic 
moduli. Following Li et al. [32], we rearrange Eq. 3 to define the 
error in displacement, herr , as follows:

(7)herr = hrep − he − h0 =
(Sdefault − Smach)P

SdefaultSmach
.

Figure 1:   (a) Load–displacement data collected with a spherical tip with a nominal radius of 10 µ m in different materials with known moduli. (b) 
Difference between measured displacements in two materials at similar load. The end cut-off load for each set of experiments is marked by the dashed 
horizontal lines in (a). The slope of these curves is proportional to the effective tip radius according to Eq. 8.

TABLE 1:   Summary of experiments. Note that the experiments in the reference materials with known elastic moduli are experiments in the elastic 
deformation regime only.

Material

Nominal tip radius, Rn

Young’s Modulus, 
Es, (GPa) Poisson ratio, νs Grain size (μm)

2 μm 5 μm 10 μm 20 μm 50 μm

Maximum load (N)

Fused silica 2.5 * 10−3 8 * 10−2 1 * 10−1 2 * 10−1 3 * 10−1 72 0.17 Single crystal

Sapphire 2.5 * 10−3 8 * 10−2 1 * 10−1 2 * 10−1 3 * 10−1 420 0.28 Single crystal

Glassy carbon 1.5 * 10−3 1 * 10−2 3 * 10−2 5 * 10−2 1 * 10−1 34 0.27 –

Olivine 8 * 10−2 2.5 * 10−1 3.8 * 10−1 6.5 * 10−1 6.5 * 10−1 – 0.24 Single crystal

Ti 2.5 * 10−2 8 * 10−2 1.5 * 10−1 3 * 10−1 4 * 10−1 – 0.35 35

W 5.5 * 10−2 2 * 10−2 3.2 * 10−1 6 * 10−1 6 * 10−1 – 0.29 > 50
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The main assumption with this approach is that, at a given load, 
herr is the same for different reference materials. For two refer-
ence materials (noted as I and II), using Eq. 3 and data collected 
at the same load, we can subtract the reported elastic displace-
ment in material II, hIIrep , from the reported elastic displacement 
in material I, hIrep . The P

Smach
 and P

Sdefault
 terms in Eq. 3 correspond-

ing to each material cancel out for the same load P such that [32]

We apply Eq. 8 to data collected from fused silica, glassy carbon, 
and sapphire as outlined in the “Experimental aspects” section. 
In Fig. 1, we display the reported elastic load–displacement 

(8)

hIrep − hIIrep = P2/3
(

4

3

√

Reff

)−2/3
(

EIeff
−2/3 − EIIeff

−2/3
)

+ hI0 − hII0 .

curves in the reference materials collected with a tip with nomi-
nal radius Rn = 10 µ m, and mark the load and displacement 
used in Eq. 8 with a dashed horizontal line. Figure 1(b) reports 
the differences calculated using Eq. 8 between reported displace-
ment in fused silica and sapphire, glassy carbon and fused silica, 
and glassy carbon and sapphire as a function of a term propor-
tional to P2/3 . Thus, according to Eq. 8, the slope of the graph 
in Fig. 1(b) is proportional to Reff  , and the intersection with the 
vertical axis is the difference in the displacement error due to 
surface contact in the two materials ( hI0 − hII0 ).

One key observation in Fig. 1(b) is that the average slope 
of the curves systematically varies among the three pairs of 
reference materials. This observation is ubiquitous among our 
experiments, as can be seen in Fig. 2 and Table A.1 (Supplemen-
tary Materials), which demonstrates that the best-fit Reff  varies 
by up to 40% depending on the pair of reference materials. This 
result is contrary to expectations arising from the analysis of Li 
et al. [32], which suggests that Reff  should not depend on the 
reference materials used in calibration.

Part of this discrepancy results from the curves in Fig. 1(b) 
departing from linearity, which implies that Reff is not a constant 
for any given calibration. This issue is accentuated in Fig. 3(a), 
which presents data comparing fused silica to sapphire and a 
linear fit assuming constant Reff  . There is clearly curvature in 
the data not captured by the linear fit. Since the subtraction 
method proposed by Li et al. [32] accounts for the effects of 
machine stiffness when calculating Reff  , we interpret the cur-
vature of the data in Fig. 3(a) to instead result from departure 
of the tip shape from a perfect sphere. Imperfections in tip 
shape could be accounted for by the parametrization of Reff  as 
a function of displacement. However, measured displacements 
are also affected by the machine stiffness, which is unknown 
at this point in the analysis. Therefore, we instead choose to 

Figure 2:   Summary of results for effective radius determined as the 
slope of a line fit through data calculated as the subtraction of elastic 
load–displacement curves at the same load in different reference 
materials following the method of Li et al. [32] (Eq. 8). The dashed line 
represents the 1:1 proportionality. The values can be found in Table A.1 
(Supplementary Materials).

Figure 3:   (a) Linear fit for a spherical tip with a nominal radius of 10 µ m following Li et al. [32]. Note the curvature in the data obtained by subtracting 
sapphire displacement from fused silica displacement according to Eq. 8. (b) Effective radius calculated using the first numerical derivative of data in 
(a) against load and an exponential fit. All values for Reff in Fig. 2 and the values for Reff at a constant load can be found in Supplementary Materials, 
Table A.1.
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express the effective radius as a function of load. Figure 3(b) 
presents Reff  as a function of load as calculated from the first 
derivative of the curve in Fig. 3(a). We fit an offset power law 
function (i.e., f (x) = axb + c ) to these data to allow Reff  to be 
easily estimated for any given load. This function captures the 
values of effective radius with load at the middle and end seg-
ments of the indentation data. We only fit this function to data 
comparing fused silica and sapphire because the data involving 
glassy carbon correspond to smaller loads [Fig. 1(a)], for which 
the data are considerably noisier, as demonstrated in Fig. A.2 
(Supplementary Materials). The trend in Fig. 3(b) matches the 
expectation of convergence to a single value for Reff  at larger 
loads. Comparing Figs. 2 with 3(b), we note that at higher loads, 
the calculations following Li et al. [32] overestimate the values 
for Reff  , which could lead to underestimations of stress [e.g., 41, 
42] (see Table A.1 ). 

Determination of machine stiffness

For a robust interpretation of stress–strain curves obtained using 
spherical indentation, the impact of machine stiffness has to be 
determined for each combination of instrument and tip and can 
be reported as a function of load [32, 34, 35]. To assess the mag-
nitude of the machine stiffness, Fig. 4(a) compares the reported 
loads and displacements to the predicted elastic displacement 
using Eq. 4. In this equation, we implement Reff either as a con-
stant [blue symbols, similar to Fig. 3(a)] or as a function of load 
[red symbols, similar to Figs. 3(b), A.2]. Although using the load-
dependent Reff  in Fig. 4(a) results in better agreement with the 
reported data, there is still some mismatch in the displacements, 
which corresponds to herr and which we attribute to the stiffness 
of the machine-tip pair. We use Reff as a function of load in con-
junction with herr and the known value of Sdefault , provided by 
the manufacturer and stated in “Experimental aspects” section, 
to calculate Smach according to Eq. 7. Rearranging to Equation 7, 
indicates that Smach has large values if herr has values close to the 
displacement error given by P/Sdefault . We plot this machine stiff-
ness, Smach , as a function of load for sapphire and fused silica in 
Fig. 4(b and c). For comparison, we also plot Smach assuming Reff  
is constant (values from Table A.1. column 1). In Fig. 4(b and c), 
we plot the result of calculations of Smach among tests in sapphire 
and fused silica, as there is no particular reason for using one data 
set over another when substituting in Eq. 7. We emphasize that 
the values of Smach calculated with for sapphire and fused silica 
both converge to ∼ 0.7 ∗ 107 N/m for a tip with a nominal radius 
of 20 µ m (Fig. 4). Note that the variability in Smach resulting from 
tests on sapphire (Fig. 4b) and fused silica [Fig. 4(c)] is directly 
related to how well the Hertzian prediction in Fig. 4(a) fits the 
reported data. As demonstrated in Fig. 4(a), the elastic prediction 
overestimates the reported displacement, which means hrep − he is 
negative, and therefore, the resulting effective machine-tip stiffness 

( P/(hrep − he) ) is negative (see Eq. 7). This effective negative effec-
tive machine-tip stiffness does not imply that the machine actu-
ally has negative stiffness. Instead, the negative effective stiffness 

Figure 4:   (a) Load–displacement data for a spherical tip with a nominal 
radius of 20 µ m in different materials with known moduli overlapped 
with predictions using a constant effective radius (blue) and radius as a 
function of depth (red) in Eq. 4. The arrows are proportional to herr at the 
maximum load, as defined in Eq. 7. (b) Calculations of machine stiffness 
using sapphire data in Eq. 7. (c) Calculations of machine stiffness using 
fused silica data in Eq. 7.



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
38

  
 I

ss
ue

 1
7 

 S
ep

te
m

be
r 2

02
3 

 w
w

w
.m

rs
.o

rg
/jm

r

Article

© The Author(s) 2023 4047

results from the default stiffness used by the software, Sdefault , being 
smaller than the actual machine-tip stiffness (see Eq. 7).

The contribution of the stiffness of the machine-tip pair also 
needs to be accounted for when evaluating the reported harmonic 
contact stiffness. We model the machine-tip pair and the sample 
response as a series of elastic elements [37] and propose a correc-
tion for the reported harmonic contact stiffness using

where Scorr is the corrected contact stiffness and Srep is the 
reported contact stiffness collected with Sdefault . We implement 
Eq. 9 with a variable Smach by linearly fitting Smach as a function 
of load in Fig. 4(b). We recognize that these data depart from 
linearity but implement a linear fit as a practical approxima-
tion in line with previous studies [e.g., 32]. In this step, choices 
regarding the range of data used in the fitting will impact the 
slope of the fitted line. This is the key step in which we recom-
mend an iteration between the fitting procedure and the out-
come of the data correction verified in the benchmarks pre-
sented in the next section.

Benchmarks

Calibrations of spherical tips can be assessed with a variety of key 
benchmarks. The most common benchmark in nanoindentation 
is observation of a constant Young’s modulus with depth [e.g., 31, 
43]. Following the derivation from Hackett et al. [14] and using 
Eqs. 4 and 9, we can express the effective Young’s modulus as 
follows:

Using Eq. 10, we assess the impact of different corrections 
and formulations for Reff  on the Young’s modulus. Figure 5(a) 
demonstrates that using a constant effective radius (Table A.1., 

(9)
1

Scorr
=

1

Srep
+

1

Sdefault
−

1

Smach
,

(10)E∗eff =

√

S3corr
6PReff

.

column 1) and the reported continuous stiffness measurement 
results in significant variability of the Young’s modulus with 
depth. In contrast, Fig. 5(b) demonstrates that using a load-
dependent Reff  [e.g., Fig. 3(b)] results in the convergence of Eeff  
towards expected values at relatively shallow depths.

Another important benchmark is a consistent effective tip 
shape measured in multiple reference materials over the elastic 
depth range. A plot of the contact depth, hc , versus the contact 
radius, a, determined from the harmonic stiffness should essen-
tially represent a profile of the effective indenter shape [3, 44] (Fig. 
A.1 ). In the case of elastic spherical indentation, the effective tip 
shape is expected to be the same during loading and unloading 
for a given tip regardless of which reference material is used. We 
calculate the contact depth (see Fig. A.1 ), hc , using [3, 38, 45]

where ξ is a geometric factor equal to 0.75 for spherical indents 
[1, 38]. Implementing corrections associated with the system 
stiffness, we calculate the corrected contact depth, h∗c , as follows:

We calculate the contact radius using both reported and cor-
rected values of the contact stiffness, [3, 38]

We compare the effective tip shape with the shape predicted for 
a perfect sphere with contact radius apred given by

(11)hc = hrep − ξ
P

S
,

(12)h∗c = hrep − herr − ξ
P

Scorr
.

(13)
a =

Srep

2Eeff

and

(14)acorr =
Scorr

2Eeff
.

(15)apred =
√

2Rihc − h2c .

Figure 5:   Comparison of Young’s modulus calculated using Eq. 10 to expected values. Young’s modulus is calculated using either (a) a constant effective 
radius (Table A.1, column 1) and reported values for the harmonic contact stiffness or (b) a load-dependent effective radius and contact stiffness 
corrected according to Eq. 9. Note the differences in vertical scales. The reference values of the effective Young’s modulus are plotted with dashed lines 
and are calculated using the values in Table 1 and Eq. 5. These tests were conducted with a tip with nominal radius of Rn = 5 μm.
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Note that for perfectly elastic indents hc = he/2 and Ri = Reff  
[3, 46].

Figure 6 summarizes the impact of the proposed calibra-
tion routines and data corrections on the effective tip shape. We 
observe in Fig. 6(a) that the uncorrected data display significant 
discrepancies between the apparent tip shape and the ideal pre-
dicted tip shape calculated using the constant radii summarized 
in Fig. 2 (Table A.1, column 1). We also observe that, the appar-
ent tip shape varies depending on the reference material, with 
the sapphire dataset exhibiting the most significant discrepan-
cies. Figure 6(b) indicates that our proposed strategies for data 
correction result in good agreement between the apparent tip 
shape and the tip shape calculated with the best-fit, constant 
radius in Eq. 15 and corrected data in Eq. 12. These corrections 
also result in a consistent apparent tip shape among different 
reference materials.

Characterization of materials with unknown Young’s 
moduli

In “Calibrations on materials with known moduli” section we 
determined that two key parameters (the effective radius and 
machine stiffness) are needed for each combination of machine 

and indenter tip (Fig. 6) to calculate the Young’s modulus and 
stress–strain curves using load–displacement data. In this sec-
tion, we demonstrate how these calibrations may be imple-
mented to extract stress–strain curves in samples with poten-
tially unknown moduli, using W, Ti, and olivine as examples. 
The details of these experiments are described in “Experimental 
aspects” section (see Table 1).

Zero‑point correction

A key step in analyzing reported load–displacement data is the 
identification of the point of zero-displacement and zero-load, 
i.e., the zero-point correction. The impact of the zero-point cor-
rection on the estimations of Reff  and stress–strain curves has 
been a focus in previous analyses of spherical nanoindentation 
data [3, 36, 47]. In our approach for calibrating spherical tips 
using reference materials of known elastic moduli, the last term 
in Eq. 8 already accounts for errors in the point of initial contact. 
However, the methods discussed above do not provide a means 
for finding the effective point of zero contact in data acquired 
in materials with unknown elastic moduli.

Kalidindi and Pathak [36] proposed a method for deter-
mining the effective point of contact by using the relationship 

Figure 6:   (a) The effective tip shape calculated with data as reported and (b) the effective tip shape calculated with corrected displacement and 
harmonic stiffness data for spherical tips with load-dependent radii. The green curve represents the tip shape for a perfect sphere with Ri values from 
Fig. 2 and presented in Table A.1 (column 1), and with the contact radius calculated using Eqs. 15 and 11 in panel (a), and Eqs. 15 and 12 in panel (b).
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between the reported load, displacement, and harmonic stiffness 
measurements for the elastic portion of an indentation test,

where h0 and P0 represent the values of displacement and load 
at the actual point of contact, respectively. These values can 
be found by re-arranging Eq. 16 to yield a linear relationship 
between P − 2

3Srephe and Srep , with the slope equal to − 2
3h0 and 

the vertical intercept equal to P0 . Thus, the corrected load–dis-
placement data are the reported data minus the values for P0 
and h0 . One major advantage of this approach is that no a priori 
knowledge of Eeff  or Reff  is necessary. This approach is also suit-
able for anisotropic materials [3, 36]. However, this method does 
rely on accurate identification of the elastic-loading segment for 
fitting by linear regression, which is often a subjective proce-
dure since, in practice, the transition between elastic and plastic 
deformation is not sharply defined [36, e.g., Fig. 4 in]. This dif-
ficulty in identifying the most appropriate segment of data for 
a linear fit introduces significant uncertainty in the calculated 
stress and strain [48].

In this section, we present an alternative formulation pro-
posed by Breithaupt et al. [49], which is adapted from Kalidindi 
and Pathak [36] for the zero-point correction of load–displace-
ment data. We calculate the values for P0 and h0 by minimiz-
ing the residual, r∗ , between the data and predictions of perfect 
elasticity in the stress–strain curve. Thus, we define the residual, 
r, as [49]

where the indentation stress, σ , and strain, ε , are defined accord-
ing to Kalidindi and Pathak [36] and Pathak and Kalidindi [3] 
as follows:

We can substitute these definitions for stress, strain, and contact 
radius in Eq. 17 and rearrange to yield

Recasting Eq. 21 in terms of reported and corrected values for 
load and displacement (similar to Eq. 16) and summing the 
absolute error lead to the proportionality [49]:

(16)Srep =
3P

2he
=

3(P − P0)

2(he − h0)
,

(17)r = σ − Eeffε,

(18)σ = Eeffε,

(19)σ =
P

πa2
,

(20)ε =
4he

3πa
.

(21)r =
4E2eff
3π

(3P − 2Srephe

S2rep

)

.

(22)rtotal ∝
∑

∣

∣

∣

∣

∣

∣

∣

∣

3(P − P0)− 2Srep(he − h0)

S2rep

∣

∣

∣

∣

∣

∣

∣

∣

.

The residual in Eq. 22 describes the departure from elasticity. In 
practice, we find the values for h0 and P0 by minimizing rtotal . We 
subtract the values for h0 and P0 from the uncorrected reported 
values to yield the corrected data for the point of zero contact. 
The advantage of this approach is that a significantly larger 
portion of the dataset is used than in the linear regression by 
Kalidindi and Pathak [36], and therefore, the correction is less 
sensitive to accurate identification of the elastic segment.

Calculation of Young’s moduli

After the reported load–displacement data (P and h) are cor-
rected for the effective point of contact by subtracting P0 and 
h0 , respectively, we calculate the effective elastic modulus. In 
stiffer materials (e.g., olivine) with a clearly identifiable segment 
of elastic load–displacement, Eeff  can be determined from Eq. 4, 
which requires the elastic displacement and effective radius to be 
known. However, any error in Reff  or in determining the elastic 
segment will significantly impact estimations of the effective 
Young’s modulus. Importantly, if plastic yield occurs at shal-
low displacement, then the elastic displacement is not explic-
itly known and the sample curvature, Rs , becomes finite and 
modifies Reff  according to Eq. 6. This influence of plastic yield-
ing is not easily accounted for and leads to an erroneous depth 
dependence of Eeff .

We can also use Eq. 10 to evaluate the Young modulus over 
the elastic segment, as previously done for reference materials in 
Fig. 5. However, Eq. 10 also relies on Reff  regardless of whether 
or not we use a constant radius or a load-dependent radius and 
is, therefore, subject to the same effects as the previous method 
if plastic yielding occurs.

Finally, we can calculate Eeff  by assuming a constant radius 
and using Eqs. 14 and 15:

Because these equations are inherently based on the geometry 
of an ideal spherical tip, they are dependent on Ri and not on 
Reff  . Therefore, this method is not influenced by plastic yield 
of the surface [e.g., 31]. We implement Eq. 23 with corrected 
values for the harmonic stiffness measurement (Equation 9) 
and the contact depth (Equation 12), and use constant values 
for Reff  (Table A.1, column 1) to compute Ri . This approach is 
complementary to the one presented by Leitner et al. [31], who 
modify the parameters in Eq. 15 describing the geometry of the 
perfect tip for a given material. The advantage of our approach 
is that it inherently accounts for the effects of the machine stiff-
ness. This approach is still applicable after plastic yield, which 
is particularly advantageous for materials with a short or noisy 
elastic segment. Moreover, any issues related to tip calibrations 
or machine-stiffness corrections will result in moduli that are 

(23)Eeff =
√
π

2

Scorr
√

2πRihc − πh2c
.
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not constant with indentation depth, flagging issues with the 
calibration.

Figure 7 displays examples of each these three approaches 
to measuring Young’s modulus using tests in tungsten, tita-
nium, and olivine conducted with a tip with a nominal radius of 
Rn = 50µ m. As expected, the calculated moduli are comparable 
for elastic indentation at small displacements but diverge after 
plasticity initiates, at which point Eqs. 4 and 10 are no longer 
applicable. Moreover, Eq. 23 implemented with corrected values 
for hc and Ri results in essentially constant values for Young’s 
modulus, even after yield that are in agreement with previously 
published values for the tested materials [e.g., 3, 15].

Calculation of stress–strain curves and the yield point

Figure 8 presents stress–strain curves calculated for tungsten, tita-
nium, and olivine using the spherical tips summarized in Table 1 
and Eqs. 19 and 20 for stress and strain, respectively, as defined by 
Pathak and Kalidindi [3] and Kalidindi and Pathak [36]. All mate-
rials display an indentation size effect, in which the yield stress 
increases with decreasing effective radius. Note that the polycrys-
talline materials display a greater variability of stress values than 
the olivine single crystal due to plastic anisotropy [e.g., 48, 55]. 
Figure 8(a and b) displays Eeff values corresponding to averages 
of Es = 400± 9 GPa in W, and Es = 108± 8 GPa in Ti, which is 

in line with published values for W and on the lower end of the 
spectrum for Ti [3, 48, 55]. We calculate an indentation flow stress 
ranging between 4 and 10 GPa for W. In comparison, studies of 
indentation size effects using sharp tips document a hardness of 4 
GPa in W at the greatest contact depths [e.g., 56, 57]. We calculate 
an indentation flow stress ranging between 1 and 3.5 GPa for Ti, 
in agreement with published spherical nanoindentation results in 
single crystals [48]. We note the absence of pop-ins in the indenta-
tion stress–strain curves collected in these polycrystalline samples, 
which is in contrast to the presence of pop-ins documented using 
spherical nanoindentation in both W [13] and Ti single crystals 
[48]. 

Furthermore, Fig. 7 highlights that the divergence of the mod-
uli calculated with different formulations marks the yield point of 
the material. This result has a similar basis to the method proposed 
by Hackett et al. [14] for identifying the yield point. Their method, 
however, does not require a priori knowledge of Reff  or Eeff  . To 
achieve this, Hackett et al. [14] compute the value S3/P using two 
different methods for computing the contact stiffness. In the first 
method, the contact stiffness is obtained by differentiation [58] of 
the load–displacement curve, such that [14]

(24)Tslope =
(dP

dh

)3
P−1.

Figure 7:   Measurements of Young’s modulus for (a) tungsten (average Eeff = 306.7±14.2 GPa), (b) titanium (average Eeff = 99.5±4.7 GPa), and (c) olivine 
(average Eeff = 183.8±8.8 GPa) using data collected with a tip with a nominal radius of 50 μm. The grey horizontal lines indicate values obtained in 
previous studies on tungsten [50, 51], titanium [52, 53], and olivine [54]. The orange arrow indicates the approximate position of the elastic–plastic 
transition, which is absent in the fully elastic experiments on olivine. The effective Young’s modulus is calculated using Eqs. 4 (green), 23 (red), and 10 
(purple) to demonstrate that equations assuming elastic-only experiments diverge after the elastic–plastic transition.
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This method calculating the stiffness is only valid for perfectly 
elastic portions of the loading curves. The second method uses 
the reported harmonic contact stiffness [14]:

which is valid even if there is some plastic strain. These two esti-
mates of S3/P will be equivalent for elastic deformation and will 
diverge after plastic yield. Importantly, the first method relies on 
measurements of displacement and the second method relies on 
measurements of the harmonic contact stiffness, both of which 
will depend strongly on the corrections described in “Determi-
nation of machine stiffness” section.

In Fig. 9(a), we compute the elastic parameter S3/P using 
both of these methods to identify the yield point for an indent in 
olivine collected using a tip with a nominal radius of 20 µ m. We 

(25)TCSM =
S3

P
,

compare the yield point identified using reported values for S 
and h to the yield point identified using corrected values accord-
ing to Eqs. 7 and 9. The light-colored data represent reported 
values, which are significantly different to the corrected data 
displayed in darker colors. The orange arrows and the blue-filled 
symbols mark the divergence point in the two independent cal-
culations of the S3/P parameter and the corresponding posi-
tion of this point on the stress–strain curve for the same indent 
[insert in Fig. 9(a)]. Figure 9(a) highlights that this method is 
highly sensitive to the machine-stiffness corrections and the 
zero-point correction, with the point of divergence shifted by 
about 150 nm after applying the corrections.

In contrast to olivine, we are unable to distinguish an 
elastic segment implementing the method proposed by 
Hackett et  al. [14] in titanium and tungsten with these 

Figure 8:   Summary of stress-strain curves in (a) tungsten, (b) titanium, and (c) olivine collected with spherical tips of varying radii. The dashed lines 
have the slope equal to the average Eeff across all indents. The displayed values of Eeff correspond to Es = 400 ± 9 GPa in tungsten, Es = 108 ± 8 GPa in 
titanium, and Es = 205 ± 9 GPa in olivine. The corresponding load-displacement curves are presented in Supplementary Materials (Fig. A.5).

Figure 9:   (a) Example calculations of S3/P using Eqs. 24 and 25 proposed by Hackett et al. [14] using both reported (light colours, noted as Tslope and 
TCSM) and corrected (dark colours, noted as T*

slope and T*
CSM) values. The corresponding stress-strain curve is presented in the insert. A filled-blue 

circle and an orange arrow mark the yield point on the corrected data in panel (a) and the insert. The data were collected with a tip with Rn = 20 μm. 
A smoothing window with an interval of 5 is applied to Tslope and T*

slope. We present calculations for (a) olivine and (b) titanium. The elastic-plastic 
transition in panel (b) is indistinguishable as it occurs at small indentation depths. (c) Yield stress corresponding to the divergence point in panel (a) 
for olivine across tips with varying radii. The power law fit with an exponent of −0.09 has been determined by Kumamoto et al. [15] using spherical 
nanoindentation on similar samples, but deploying a different strategy for defining the yield stress.
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indentation contact sizes, as indicated by the immediately 
diverging values for Eeff  at small depths in Fig. 7. For exam-
ple, Fig. 9(b) displays the S3/P parameter computed for Ti 
using data collected with a tip with a nominal radius of 20 
µ m, and corrected S and h values. The two calculations of 
the S3/P parameter diverge at very small indentation depths 
( < 50 nm) consistent with the onset of plasticity at small 
displacements. Thus, this method is suitable only for mate-
rials displaying an elastic segment of minimum ≈ 100 nm 
[14]. Figure 9 emphasizes that, in ductile materials, the zero-
point correction and determination of the Young’s modulus 
following the methods proposed by Kalidindi and Pathak 
[36] and Pathak and Kalidindi [3] rely on data collected at 
small depths, which are heavily impacted by the quality of 
the initial contact.

To date, studies have implemented different conventions 
for determining the yield stress in spherical nanoindenta-
tion stress–strain curves [e.g., 9]. In this study, we picked the 
point of divergence exemplified in Fig. 9(a) for all indents in 
olivine and summarized the corresponding values in Fig. 9(c) 
as a function of their contact radii. Kumamoto et al. [15] used 
spherical nanoindentation and quantified a size effect in oli-
vine in which the yield stress is proportional to the contact 
radius according to a power law with an exponent of −0.09 . 
Figure 9(c) displays a size effect with some deviations from 
this power law. The discrepancy is likely due to the inherent 
differences in the definitions of the yield point, and possi-
bly due to material anisotropy. Kumamoto et al. [15] present 
stress–strain curves in annealed single crystals with a pop-in 
associated with dislocation nucleation and glide after a longer 
segment of elastic loading compared to deformed samples. 
This phenomenon, documented in materials with scarce dis-
location sources, is attributed to the requirement of a larger 
deformation volume for activating dislocation sources [e.g., 
11, 12, 41]. The method presented in Fig. 9 implements a 
definition of the yield stress as the end of the elastic-loading 
segment [14]. However, in the indents displaying a pop-in, 
the point of divergence in Fig. 9(a) corresponds to stresses 
required for initiation of plasticity that are elevated relative 
to typical yield stresses because of the lack of dislocation 
sources. For example, Kumamoto et al [15] define yield stress 
as the intersection of the projected slope of the hardening 
curve at high strains with the elastic-loading curve, in line 
with other studies using spherical nanoindentation [e.g., 
3]. Therefore, the apparent overestimate of the stresses in 
Fig. 9(c) for the largest contacts is consistent with the dif-
ferences in the two conventions for the yield stress. Other 
studies implement a definition of the yield stress as the stress 
at a strain chosen by convention for a meaningful comparison 
with data obtained in uniaxial macroscale tests [e.g., 0.2% in 
48, 59–62]. The calculated yield stress is a key outcome of 

spherical indentation and the choice of convention can influ-
ence the quantification of size effects in materials [e.g., 9].

Conclusions
We investigated in detail and further improved published 
methodologies for independently determining two key instru-
ment parameters in spherical nanoindentation: system stiff-
ness and effective radius of the indenter tip. To this end, we 
collect elastic data in reference materials with known moduli 
and highlight complexities in determining the effective radius 
using published protocols [e.g., 32]. We suggest a routine 
underpinned by parameterizing the effective radius as a func-
tion of load to overcome experimental errors. We benchmark 
our methodology against key criteria in spherical nanoinden-
tation. We implement the tip calibrations on data collected on 
materials with unknown Young’s modulus and varying ductil-
ity to calculate stress–strain curves. A summary diagram of 
this routine can be found in Supplementary Materials (Fig. 
A.4). These curves reveal a spherical indentation size effect 
in which the stress increases with indentation depth and with 
decreasing contact radius. We also test the influence of instru-
ment parameters on published methods for determining the 
yield stress in materials with a significant elastic-loading seg-
ment [e.g., 14] and highlight the importance of consistency 
when establishing a convention for determining the yield 
stress. These improvements of the spherical nanoindentation 
technique are critical for refining the measurement and cor-
rected values of the contact stiffness, given the importance of 
this measurement to the extraction of stress–strain curves, 
calculation of Young’s modulus, and analysis of pop-ins [e.g., 
in Berkovich nanoindentation 43].

Experimental aspects
Nanoindentation tests with spherical tips and continuous stiff-
ness measurements were performed with a load-controlled 
indenter (Nanoindenter G200, Agilent Technologies) with 
the frequency target set at 45 Hz, the harmonic displacement 
target set at 2 nm, and the loading rate divided by load set at 
Ṗ
P = 0.05 s−1 . We used diamond spherical tips ( Ei = 1141 GPa, 
vi = 0.07 ) with a 2–50 µ m range of nominal tip radii (Table 1). 
The data collection was undertaken with the default machine 
stiffness, Sdefault = 3.67 ∗ 106 N/m.

To assess tip calibration and data-analysis routines, we 
mounted reference materials with known moduli (fused silica, 
sapphire, and glassy carbon) on the same stub as materials 
with unknown elastic moduli (olivine, W, Ti) using the small-
est amount of epoxy necessary. This set-up mediates differ-
ences in assembly stiffness due to the mounting substrate. 
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The olivine single-crystal sample used in this study is the 
undeformed sample also used by Kumamoto et al. [sample 
MN1, 15, 63]. Both the titanium and tungsten samples are 
undeformed, commercially available pure samples, with grain 
sizes in the ranges of 10–50 µ m and 10–100 µ m, respectively.

We performed 270 nanoindentation tests in total, with at least 
9 tests for each tip reported in Table 1. Nanoindentation experi-
ments in materials with known Young’s modulus were performed 
at small loads, resulting in elastic load–displacement curves 
(Table 1). We measured the harmonic contact stiffness throughout 
the loading and unloading paths in all experiments.
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