Skip to main content
Log in

N-succinyl chitosan-cellulose acetate-based bionanocomposite films: Preparation and characterization

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The solution casting method was used to prepare N-succinyl chitosan/cellulose acetate (NSCCA)-based bionanocomposite films. Bentonite (BN) was added as a nanofiller to the solution mixture (NSC/CA) and chitosan (CS) was used as a control. The NSCCA-based bionanocomposite films were characterized using various techniques such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, X-ray diffraction (XRD), Thermogravimetric Analysis, water contact angle (WCA), water vapor transmission rate (WVTR), moisture content (MC), water solubility (WS), opacity, and tensile strength (TS). FTIR and XRD results confirmed the interaction between bentonite, chitosan, and N-succinyl chitosan (NSC). With the incorporation of CA and BN into the CS-NSC matrix, the MC, WS, WAC, and WVTR values decreased, whereas the opacity value (7.74 ± 0.32) of the bionanocomposite film increased significantly compared to pure CS film (2.12 ± 0.62). These findings suggested that the prepared bionanocomposites films could be effectively used for food packaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1

Similar content being viewed by others

References

  1. R.M. Abdel-Rahman, A.M. Abdel-Mohsen, R. Hrdina, L. Burgert, Z. Fohlerova, D. Pavliňák, O.N. Sayed, J. Jancar, Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: preparation, characterization and medical applications. Int. J. Biol. Macromol. 89, 725–736 (2016). https://doi.org/10.1016/J.IJBIOMAC.2016.04.087

    Article  CAS  Google Scholar 

  2. A.S. Montaser, A.M. Abdel-Mohsen, M.A. Ramadan, A.A. Sleem, N.M. Sahffie, J. Jancar, A. Hebeish, Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int. J. Biol. Macromol. 92, 739–747 (2016). https://doi.org/10.1016/J.IJBIOMAC.2016.07.050

    Article  CAS  Google Scholar 

  3. S.M. Costa, D.P. Ferreira, P. Teixeira, L.F. Ballesteros, J.A. Teixeira, R. Fangueiro, Active natural-based films for food packaging applications: the combined effect of chitosan and nanocellulose. Int. J. Biol. Macromol. 177, 241–251 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.105

    Article  CAS  Google Scholar 

  4. M. Salari, M. SowtiKhiabani, R. RezaeiMokarram, B. Ghanbarzadeh, H. SamadiKafil, Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 84, 414–423 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.037

    Article  CAS  Google Scholar 

  5. L. Rui, M. Xie, B. Hu, L. Zhou, D. Yin, X. Zeng, A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr. Polym. 173, 473–481 (2017). https://doi.org/10.1016/J.CARBPOL.2017.05.072

    Article  CAS  Google Scholar 

  6. N. Naseri, A.P. Mathew, L. Girandon, M. Fröhlich, K. Oksman, Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22, 521–534 (2014). https://doi.org/10.1007/S10570-014-0493-Y

    Article  Google Scholar 

  7. N. Devi, J. Dutta, Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. Int. J. Biol. Macromol. 104, 1897–1904 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.080

    Article  CAS  Google Scholar 

  8. H. Sashiwa, N. Yamamori, Y. Ichinose, J. Sunamoto, S. Aiba, Chemical modification of chitosan, 17. Macromol. Biosci. 3, 231–233 (2003). https://doi.org/10.1002/MABI.200390029

    Article  CAS  Google Scholar 

  9. S. Bautista-Baños, G. Romanazzi, A. Jiménez-Aparicio, Chitosan in the Preservation of Agricultural Commodities (Academic Press, Cambridge, 2016)

    Google Scholar 

  10. X. Qing, G. He, Z. Liu, Y. Yin, W. Cai, L. Fan, P. Fardim, Preparation and properties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing. Carbohydr. Polym. 261, 117875 (2021). https://doi.org/10.1016/j.carbpol.2021.117875

    Article  CAS  Google Scholar 

  11. A. Rajeswari, E.J.S. Christy, E. Swathi, A. Pius, Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ. Chem. Ecotoxicol. 2, 107–114 (2020). https://doi.org/10.1016/j.enceco.2020.07.003

    Article  Google Scholar 

  12. J.A. Ramírez, C.J. Suriano, P. Cerrutti, M.L. Foresti, Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr. Polym. 114, 416–423 (2014). https://doi.org/10.1016/J.CARBPOL.2014.08.020

    Article  Google Scholar 

  13. M. Koosha, S. Hamedi, Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 127, 338–347 (2019). https://doi.org/10.1016/j.porgcoat.2018.11.028

    Article  CAS  Google Scholar 

  14. H.A. El-Rehim, H. Kamal, E.S.A. Hegazy, E.S. Soliman, A. Sayed, Use of gamma rays to improve the mechanical and barrier properties of biodegradable cellulose acetate nanocomposite films. Radiat. Phys. Chem. 153, 180–187 (2018). https://doi.org/10.1016/j.radphyschem.2018.08.007

    Article  CAS  Google Scholar 

  15. A. Khan, R.A. Khan, S. Salmieri, C. Le Tien, B. Riedl, J. Bouchard, G. Chauve, V. Tan, M.R. Kamal, M. Lacroix, Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 90, 1601–1608 (2012). https://doi.org/10.1016/j.carbpol.2012.07.037

    Article  CAS  Google Scholar 

  16. M.P. Indumathi, K. SaralSarojini, G.R. Rajarajeswari, Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int. J. Biol. Macromol. 132, 1112–1120 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.171

    Article  CAS  Google Scholar 

  17. N. Devi, J. Dutta, Development and in vitro characterization of chitosan/starch/halloysite nanotubes ternary nanocomposite films. Int. J. Biol. Macromol. 127, 222–231 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.047

    Article  CAS  Google Scholar 

  18. A.M. Ahmad, Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines. Biopharm. Drug Dispos. 28, 135–143 (2007). https://doi.org/10.1002/bdd

    Article  CAS  Google Scholar 

  19. X. Niu, L. Zhu, L. Xi, L. Guo, H. Wang, An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control 108, 106829 (2020). https://doi.org/10.1016/j.foodcont.2019.106829

    Article  CAS  Google Scholar 

  20. S. Bashir, Y.Y. Teo, S. Ramesh, K. Ramesh, M.W. Mushtaq, Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int. J. Biol. Macromol. 117, 454–466 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.182

    Article  CAS  Google Scholar 

  21. J. Dutta, N. Devi, Preparation, optimization, and characterization of chitosan-sepiolite nanocomposite films for wound healing. Int. J. Biol. Macromol. 186, 244–254 (2021). https://doi.org/10.1016/j.ijbiomac.2021.07.020

    Article  CAS  Google Scholar 

  22. P. Fei, L. Liao, B. Cheng, J. Song, Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods 9, 6194–6201 (2017). https://doi.org/10.1039/c7ay02165h

    Article  CAS  Google Scholar 

  23. H. Zhou, H. Tong, J. Lu, Y. Cheng, F. Qian, Y. Tao, H. Wang, Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties. Carbohydr. Polym. 270, 118381 (2021). https://doi.org/10.1016/j.carbpol.2021.118381

    Article  CAS  Google Scholar 

  24. S. Wan, Y. Sun, X. Qi, F. Tan, Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech 13, 159–166 (2012). https://doi.org/10.1208/s12249-011-9732-9

    Article  CAS  Google Scholar 

  25. O.V. Alekseeva, A.N. Rodionova, N.A. Bagrovskaya, A.V. Agafonov, A.V. Noskov, Effect of the bentonite filler on structure and properties of composites based on hydroxyethyl cellulose. Arab. J. Chem. 12, 398–404 (2019). https://doi.org/10.1016/j.arabjc.2015.07.011

    Article  CAS  Google Scholar 

  26. G. Hao, Y. Hu, L. Shi, J. Chen, A. Cui, W. Weng, K. Osako, Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-021-81318-0

    Article  CAS  Google Scholar 

  27. M. Yadav, K. Behera, Y.H. Chang, F.C. Chiu, Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers (Basel) 12, 202 (2020). https://doi.org/10.3390/polym12010202

    Article  CAS  Google Scholar 

  28. D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, S. Khan, Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Prog. Org. Coat. 74, 435–442 (2012). https://doi.org/10.1016/J.PORGCOAT.2012.01.007

    Article  CAS  Google Scholar 

  29. A.S. Kritchenkov, A.R. Egorov, O.V. Volkova, L.A. Zabodalova, E.P. Suchkova, N.Z. Yagafarov, M.N. Kurasova, A.P. Dysin, A.V. Kurliuk, T.V. Shakola, V.N. Khrustalev, Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Package Shelf Life 25, 100534 (2020). https://doi.org/10.1016/j.fpsl.2020.100534

    Article  Google Scholar 

  30. B. Soni, E.B. Hassan, M.W. Schilling, B. Mahmoud, Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr. Polym. 151, 779–789 (2016). https://doi.org/10.1016/j.carbpol.2016.06.022

    Article  CAS  Google Scholar 

  31. A. Jayakumar, K.V. Heera, T.S. Sumi, M. Joseph, S. Mathew, G. Praveen, I.C. Nair, E.K. Radhakrishnan, Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 136, 395–403 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.018

    Article  CAS  Google Scholar 

  32. H. Mao, C. Wei, Y. Gong, S. Wang, W. Ding, Mechanical and water-resistant properties of eco-friendly chitosan membrane reinforced with cellulose nanocrystals. Polymers (Basel) 11, 166 (2019). https://doi.org/10.3390/polym11010166

    Article  CAS  Google Scholar 

  33. M.H. Salehudin, E. Salleh, S.N.H. Mamat, I.I. Muhamad, Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Procedia Chem. 9, 23–33 (2014). https://doi.org/10.1016/j.proche.2014.05.004

    Article  CAS  Google Scholar 

  34. S. Ediyilyam, B. George, S.S. Shankar, T.T. Dennis, S. Wacławek, M. Černík, V.V. Padil, Chitosan / gelatin / silver nanoparticles composites films for biodegradable food packaging applications. Let us know how access to this document benefits you. Polymers (Basel) 13, 18 (2021)

    Article  Google Scholar 

  35. L. Bastarrachea, S. Dhawan, S.S. Sablani, Engineering properties of polymeric-based antimicrobial films for food packaging. Food Eng. Rev. 3, 79–93 (2011). https://doi.org/10.1007/s12393-011-9034-8

    Article  Google Scholar 

  36. M. Avella, J.J. De Vlieger, M.E. Errico, S. Fischer, P. Vacca, M.G. Volpe, Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93, 467–474 (2005). https://doi.org/10.1016/J.FOODCHEM.2004.10.024

    Article  CAS  Google Scholar 

  37. A. Yabannavar, R. Bartha, Biodegradability of some food packaging materials in soil. Soil Biol. Biochem. 25, 1469–1475 (1993). https://doi.org/10.1016/0038-0717(93)90001-R

    Article  CAS  Google Scholar 

  38. C. Catarci-Carteny, R. Blust, Not only diamonds are forever: degradation of plastic films in a simulated marine environment. Front. Environ. Sci. 9, 1–11 (2021). https://doi.org/10.3389/fenvs.2021.662844

    Article  Google Scholar 

  39. D. Hu, H. Wang, L. Wang, LWT Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.08.033

    Article  Google Scholar 

  40. S.M. Gonçalves, J. Fagundes, G. Motta, R.S. Ribeiro, D. William, H. Chávez, N.R. De Melo, Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Curr. Res. Food Sci. (2020). https://doi.org/10.1016/j.crfs.2020.01.001

    Article  Google Scholar 

  41. M. Ghasemlou, F. Khodaiyan, A. Oromiehie, M.S. Yarmand, Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 127, 1496–1502 (2011). https://doi.org/10.1016/j.foodchem.2011.02.003

    Article  CAS  Google Scholar 

  42. P. Wu, A.C. Fisher, P.P. Foo, D. Queen, J.D.S. Gaylor, In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials 16, 171–175 (1995). https://doi.org/10.1016/0142-9612(95)92114-L

    Article  CAS  Google Scholar 

  43. S.M. Ojagh, M. Rezaei, S.H. Razavi, S.M.H. Hosseini, Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 122, 161–166 (2010). https://doi.org/10.1016/J.FOODCHEM.2010.02.033

    Article  CAS  Google Scholar 

  44. M. Kaya, S. Khadem, Y.S. Cakmak, M. Mujtaba, S. Ilk, L. Akyuz, A.M. Salaberria, J. Labidi, A.H. Abdulqadir, E. Deligöz, Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 8, 3941–3950 (2018). https://doi.org/10.1039/c7ra12070b

    Article  CAS  Google Scholar 

  45. H.C. Oyeoka, C.M. Ewulonu, I.C. Nwuzor, C.M. Obele, J.T. Nwabanne, Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 6, 168–185 (2021). https://doi.org/10.1016/j.jobab.2021.02.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2327 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, Thakur, R. & Dutta, J. N-succinyl chitosan-cellulose acetate-based bionanocomposite films: Preparation and characterization. Journal of Materials Research 38, 2738–2751 (2023). https://doi.org/10.1557/s43578-023-00999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00999-7

Keywords

Navigation