Skip to main content
Log in

Enhancing effect of NaYF4: Yb, Tm on the photocatalytic performance of BiVO4 under NIR and full spectrum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, NaYF4: Yb, Tm@BiVO4 core–shell composites, and NaYF4: Yb, Tm/BiVO4 mixture were synthesized. In this study, we compared the degradation rates of MB by two different materials under two light conditions through photocatalytic degradation experiments. The results concluded that the degradation rates of the composites and mixture materials were 41 and 32% for 2 h under NIR light and 99 and 96% for 2 h under the full spectrum, respectively. Upconversion material NaYF4: Yb, Tm, under the excitation of NIR light, the emitted ultraviolet visible emission light and excitation energy level will be transferred to BiVO4 photocatalyst through emission reabsorption and FRET process. This results in a significant improvement in the degradation performance of the photocatalyst under full-spectrum light.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Z.Y. Zhao, J. Zuo, L.L. Fan, Impacts of renewable energy regulations on the structure of power generation in China—A critical analysis. J. Renewable Energy 30, 36 (2011)

    Google Scholar 

  2. N.C. Meng, B. Jin, C. Chow, Recent developments in photocatalytic water treatment technology: A review. J. Water Research 44, 2997 (2010)

    Article  Google Scholar 

  3. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Visible-light driven heterojunction photocatalysts for water splitting—A critical review. J. Energy & Environmental Science 8, 759 (2015)

    Article  Google Scholar 

  4. Q. Li, B. Guo, J. Yu, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133, 10884 (2011)

    Google Scholar 

  5. K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. J. Appl. Catal. B 142, 728 (2013)

    Google Scholar 

  6. G. Wu, S.S. Thind, J. Wen, A novel nanoporous α-C3N4 photocatalyst with superior high visible light activity. J. Appl. Catal. B 142, 597 (2013)

    Google Scholar 

  7. W. Hou, W.H. Hung, P. Pavaskar et al., Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. J. ACS Catal 1, 936 (2011)

    Google Scholar 

  8. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. J. Nature 38, 5358 (1972)

    Google Scholar 

  9. D. Tilak, Xavier. Investigation of the optical and excitonic properties of the visible light-driven photocatalytic BiVO4 material. J. Chem. Mater. (2017).

  10. S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Photocatalytic decomposition of bisphenol A in water using composite TiO2−zeolite sheets prepared by a papermaking technique. Environ. Sci. Technol 37, 1051 (2003)

    Article  Google Scholar 

  11. S. Kaniou, K. Pitarakis, I. Barlagianni, I. Poulios, Photo-catalyticoxidation of sulfamethazine. Chemosphere 60, 380 (2005)

    Article  Google Scholar 

  12. S. Obregón, A. Caballero, G. Colón, Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity. J. Appl. Catal B 59, 118 (2012)

    Google Scholar 

  13. S. Obregón, G. Colón, On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation. J. Mol. Catalysis A 40, 376 (2013)

    Google Scholar 

  14. W. Wang, X. Huang, S. Wu, Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. J. Appl. Catal. B 134, 301 (2013)

    Google Scholar 

  15. S. Sun, W. Wang, D. Li, Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. J. ACS Catal. 4, 3503 (2014)

    Google Scholar 

  16. N.C. Castillo, L. Ding, A. Heel, On the photocatalytic degradation of phenol and dichloroacetate by BiVO4: The need of a sacrificial electron acceptor. J. Photochem. Photobiol A 216, 227 (2010)

    Article  Google Scholar 

  17. L. Zhang, D. Chen, X. Jiao, Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys Chem B 110, 2673 (2006)

    Google Scholar 

  18. G. Li, Y. Bai, W.F. Zhang, Difference in valence band top of BiVO4 with different crystal structure. J. Mater Chem Phys 136, 934 (2012)

    Article  Google Scholar 

  19. Y. Guo, X. Yang, F. Ma, Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation. Appl Surf Sci 256(7), 2215–2222 (2010)

    Article  CAS  Google Scholar 

  20. O.F. Lopes, K.T.G. Carvalho, G.K. Macedo, Synthesis of BiVO4 via oxidant peroxo-method: Insights into the photocatalytic performance and degradation mechanism of pollutants. New J. Chem. 39, 6237 (2015)

    Article  Google Scholar 

  21. M. Tahir, S. Tasleem, B. Tahir, Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 45, 16038 (2020)

    Article  Google Scholar 

  22. W.S. Koe, J.W. Lee, W.C. Chong, An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27, 2565 (2020)

    Article  Google Scholar 

  23. O. Monfort, G. Plesch, Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants. Environ. Sci. Pollut. Res. 25, 19379 (2018)

    Article  Google Scholar 

  24. A. Malathi, J. Madhavan, A. Muthupandian, A. Prabhakarn, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 47, 555 (2018)

    Google Scholar 

  25. Z. Wang, X. Huang, X. Wang, Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catal Today 31, 335 (2019)

    CAS  Google Scholar 

  26. M. Tayebi, B.K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev. 111, 343 (2019)

    Article  Google Scholar 

  27. S. Matavos Aramyan, S. Soukhakian, M.H. Jazebizadeh, On engineering strategies for photoselective CO2 reduction—A thorough review. Appl. Mater. Today 18, 100499 (2019)

    Article  Google Scholar 

  28. X. Huang, J. Zhao, X. Xiong, Positive effect of Fe 3+ ions on Bi 2 WO 6, Bi 2 MoO 6 and BiVO 4 photocatalysis for phenol oxidation under visible light. Catal. Sci. Technol. 9, 16 (2019)

    Article  Google Scholar 

  29. M. Lu, Q. Li, C. Zhang, Synthesis of Mo-doped ultrathin BiVO4 nanosheets with efficient visible-light-driven photocatalytic activity. Int. J. Modern Phys. B 33, 1950270 (2019)

    Article  CAS  Google Scholar 

  30. Y. Zhang, L. Shi, Z. Geng, The improvement of photocatalysis O2 production over BiVO4 with amorphous FeOOH shell modification. Sci. Rep. 9, 19090 (2019)

    Article  CAS  Google Scholar 

  31. P. Zou, Z.H. Ren, P.F. Zhu Preparation and properties of magnetic Ce-BiVO_4/Fe_3O_4 visible-light photocatalyst. Modern Chem. Ind. 2 (2019).

  32. Y. Xu, Z. Wen, T. Wang, M. Zhang, C. Ding, Y. Guo, D. Jiang, K. Wang, Ternary Z-scheme heterojunction of Bi SPR-promoted BiVO 4 /g-C 3 N 4 with effectively boosted photoelectrochemical activity for constructing oxytetracycline aptasensor. Biosens. Bioelectron. 166, 112453 (2020)

    Article  CAS  Google Scholar 

  33. H. Huang, H. Li, Z. Wang, Efficient near-infrared photocatalysts based on NaYF4:Yb3+, Tm3+ @NaYF4:Yb3+, Nd3+ @TiO2 core@shell nanoparticles. Chem. Eng. J. 361, 1097 (2018)

    Google Scholar 

  34. J. Zhao, J. Li, Y. Wang, W. Ni, Fabrication and broadband upconversion luminescence of Au@TiO2:Yb, Er core-shell nanostructures. J. Chem. Lett. 48, 653 (2019)

    Article  Google Scholar 

  35. B. Purohit, Y. Guyot, D. Amans, Multicolor solar absorption as a synergetic UV upconversion enhancement mechanism in LiYF4:Yb3+, Tm3+ nanocrystals. ACS Photon 6, 3126 (2019)

    Article  CAS  Google Scholar 

  36. E. Hong, L. Liu, L. Bai, Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. J. Mater. Sci. Eng. 105, 110097 (2019)

    Article  CAS  Google Scholar 

  37. J. Qiu, Q. Jiao, D. Zhou, Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics. J. Rare Earths 34, 367 (2016)

    Article  Google Scholar 

  38. A. Gupta, S. Ghosh, M.K. Thakur, J. Zhou, K. Ostrikov, D. Jin, S. Chattopadhyay, Up-conversion hybrid nanomaterials for light- and heat driven applications. J. Progress Mater. Sci. 121, 100838 (2021)

    Article  CAS  Google Scholar 

  39. D.K. Ma, S.M. Huang, Y.Y. Yu, Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: controlled synthesis and luminescent properties. J. Phys. Chem. C 113, 8142 (2019)

    Google Scholar 

  40. B.S. Cao, Y.Y. He, L. Zhang, Upconversion properties of Er3+–Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration. J. Luminescence 128, 135 (2013)

    Google Scholar 

  41. L. Zeng, Y. Pan, Y. Tian, Doxorubicin-loaded NaYF4:Yb/TmeTiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials 04, 006 (2015)

    Google Scholar 

  42. Y. Tang, W. Di, X. Zhai, NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core-shell nanoparticles. ACS Catal. 3, 412 (2013)

    Article  Google Scholar 

  43. H. Ren, F. Huang, J. Jiang, Development of photocatalyst based on NaYF4: Yb, Tm@NaYF4: Yb, Ce/NH2-MIL-101 (Cr): doping Ce3+ ions to promote the efficient energy transfer between core and shell. Chem. Eng. J. 3, 132023 (2021)

    Google Scholar 

  44. H. Zhang, W. Zhang, S. Gao, Photocatalytic performance of metal–organic framework material MIL-100 (Fe) enhanced by rare earth upconversion material β-NaYF4: 90% Yb, 1% Tm. Appl. Phys. A 6, 128 (2022)

    Google Scholar 

  45. P. Madhusudan, J. Ran, J. Zhang, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl. Catal. B 110, 295 (2011)

    Article  Google Scholar 

  46. X. Liu, W. Qin, W. Di, Cooperative luminescence mediated near infrared photocatalysis of CaF2:Yb@BiVO4 composites. Appl. Catal. B Environ. 164, 205 (2017)

    Google Scholar 

  47. L.N. Dlamini, L.C. Mahlalela, P.V. Hlophe, A composite of platelet-like orientated BiVO4 fused with MIL-125(Ti): Synthesis and characterization. Sci. Rep. 9, 10044 (2019)

    Article  Google Scholar 

  48. O.F. Lopes, K.T.G. Carvalho, A.E. Nogueira, Controlled synthesis of BiVO4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl. Catal. B 87, 188 (2016)

    Google Scholar 

  49. M.M. Sajid, S.B. Khan, N.A. Shad, N. Amin, Synthesis of Zn3 (VO4) 2/BiVO 4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H2O2. RSC Adv. 8, 35403–35412 (2018)

    Article  CAS  Google Scholar 

  50. A. Bednarkiewicz, M. Nyk, M. Samoc, Up-conversion FRET from Er3+/Yb3+:NaYF4 Nanophosphor to CdSe Quantum Dots. J Phys Chem C 114, 17541 (2010)

    Article  Google Scholar 

  51. G. Singh, R. Vaish, Melt quenched V2O5/BiVO4 composite: A novel and promising adsorbent and photocatalyst. Mater. Chem. Phys. 240, 122238 (2019)

    Article  Google Scholar 

  52. Z. Chen, S. Kang, H. Zhang, Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths. Sci. Rep. 7, 45650 (2017)

    Article  CAS  Google Scholar 

  53. W. Shi, F. Guo, J. Chen, Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. J. Alloys Compd. 143, 612 (2014)

    Google Scholar 

  54. X. Guo, W. Song, C. Chen, Near-infrared photocatalysis of β-NaYF4:Yb3+, Tm3+@ZnO composites. Phys. Chem. Chem. Phys. 15, 14681 (2013)

    Article  CAS  Google Scholar 

  55. J. Zhang, B. Qiao, Z. Liang, Near-infrared light-induced photocatalysis of NaYF 4:Yb, Tm@Cu 2 O core-shell nanocomposites. Opt. Mater. 84, 93 (2018)

    Article  Google Scholar 

  56. S.C. Huang, Y.S. Chen, C.I. Chang, Outcome of tricuspid valve plasty in Norwood stage I operation. Circul. J. Off. J. Jpn. Circul. Soc. 80, 1370 (2016)

    Google Scholar 

  57. S. Huang, Z. Lou, Z. Qi, Enhancing upconversion emissions of Er3+/Tm3+/Yb3+ tridoped (NaY(WO4)2/YF3) through TiO2 coating and Bi3+ doping and its photocatalytic applications. Appl. Catal. B 168, 321 (2015)

    Google Scholar 

  58. G. Wang, W. Qin, J. Zhang, Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals. Opt. Mater. 31, 299 (2009)

    CAS  Google Scholar 

  59. Z. Dai, F. Qin, H. Zhao, Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 6, 3192 (2016)

    Article  Google Scholar 

  60. D. Tu, L. Liu, Q. Ju, Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 50, 6310 (2011)

    Article  Google Scholar 

  61. F. Wang, R. Deng, J. Wang, Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10, 973 (2011)

    Article  Google Scholar 

  62. W. Yang, X. Li, D. Chi, Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology 25, 482001 (2014)

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (51974168), Science and Technology Major Project of Inner Mongolia Autonomous Region in China (2019ZD023 and 2021ZD0028) and State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology) (SYSJJ2020-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 363 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Zhang, H., Wang, J. et al. Enhancing effect of NaYF4: Yb, Tm on the photocatalytic performance of BiVO4 under NIR and full spectrum. Journal of Materials Research 38, 1894–1908 (2023). https://doi.org/10.1557/s43578-023-00966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00966-2

Keywords

Navigation