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The analysis of the densification behavior of nanoporous metals in nanoindentation is challenging in 
simulations and experiments. A deeper understanding of the densification behavior provides valuable 
information about the different deformation mechanisms in nanoindentation and compression 
experiments. The developed two-scale model allows for predicting the densification field for variable 
microstructure and elastic–plastic behavior. It could be shown that the penetration depth of the 
densification field is mainly controlled by the ratio of the macroscopic work hardening rate to yield 
stress. The shape as well as the value at characteristic isolines of densification depend mainly on the 
macroscopic plastic response of the nanoporous material. This could be confirmed by nanoindentation 
experiments, where the densification under the indenter was measured for ligament sizes from 35 
to 150 nm. Although the depth of the densification field was underpredicted by the simulations, the 
experiments confirmed the predicted trends.

Introduction
Nanoporous gold (np-Au) is an ideal model material for fun-
damental research on structure–property relationships of open 
pore materials. Macroscopic samples can be produced by deal-
loying, exhibiting a bicontinuous network of nanoscale pores 
and solid ligaments connected in junctions. An overview of 
the fascinating morphologies and mechanical properties of 
this material is provided in review articles [1–3]. The average 
diameter of the ligaments and their connectivity density can be 
controlled by altering the dealloying conditions followed by a 
heat treatment, thereby allowing to examine the impact of the 
ligament size, load-bearing rings, and effective solid fraction on 
the macroscopic mechanical properties [4–7].

Due to the nanoscale nature of the materials, a direct access 
to the elastic–plastic mechanical properties of the solid phase 
that makes up the ligaments and nodes of the metal network is 
not possible. Insights can only be gained indirectly via nanoin-
dentation [4, 8, 9], micropillar testing [8, 10] or macroscopic 
compression [11–15]. In all cases—even for the micromechani-
cal tests—the experiment averages over a considerable number 

of features which are of random nature, and the interpretation 
requires models that are based on abstraction and simplifica-
tion of the complex network structure. Commonly, the Gibson-
Ashby scaling laws [16], modifications of them or numerical 
simulations are applied. For an overview the reader is referred 
to [17].

In contrast to micropillar compression and macrocompres-
sion testing, the inhomogeneous deformation in nanoindenta-
tion requires additional assumptions for the interpretation of 
the load–displacement data, concerning the plastic compress-
ibility of the material. Biener et al. reported that deformation 
is confined in the contact area and is dominated by a ductile 
densification, while the pore structure adjacent to the indents 
remained undisturbed [4]. The authors assumed that the con-
tact depth hc is equal to the indentation depth h , as there is no 
elastic deformation adjacent to the contact for the densifying 
material, and the material can be idealized as “rigid–perfectly 
plastic” in compression. It can be argued that the distribution 
of the densification under the indenter and perhaps also in its 
vicinity depends on the ligament size and further mechanical or 

http://crossmark.crossref.org/dialog/?doi=10.1557/s43578-022-00870-1&domain=pdf
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microstructural parameters. Therefore, an in-depth investigation 
of the densification behavior under an indenter is of fundamen-
tal importance. However, the measurement of the densification 
after nanoindentation is challenging and only a few works exist 
in literature.

Leitner et  al. measured the densification in np-Au for 
nanoindentation at room temperature and after loading at high 
temperature [18]. They computed porosity maps from seg-
mented images of cross-sections prepared with a focused ion 
beam (FIB). It is found that the densification remains localized 
close to the tip in the room temperature test, whereas for the 
high temperature test slightly denser zones are observed that are 
almost equally distributed over a large region extending beyond 
the contact radius. Briot and Balk prepared a cross-section of 
np-Au sample after nanoindentation in np-Au and measured the 
densification as function of the depth that relates to the distance 
of parabolic segments to the indenter tip [19]. The results sug-
gest a maximum densification below the surface while full struc-
tural densification directly under the indenter was not detected. 
Moreover, the extent of deformation ahead of the indenter 
was remarkable and the authors concluded that the behavior 
of np-Au during nanoindentation behaves more like a dense 
metal than a low-density porous material, which is in agreement 
with [11]. Recently, Richert et al. improved the approach for the 
image processing after FIB cross-sectioning such that the quality 
of the segmentation is comparable to a tedious manual approach 
[20]. They were able to derive densification scans starting from 
the indenter tip along the contact surface and into the depth 
and concluded that the extracted densification profiles show an 
overall increasing densification towards the indenter tip that can 
be fitted by an exponential function. Summarizing the available 
experimental works in literature, it is still unclear how the shape 
and size of the densified region depends on microstructural or 
mechanical properties and, if so, how they control the shape and 
size of the densified region.

Here, modeling and simulation can be very helpful in 
studying the effect of selected phenomena on the materials 
response under a specific loading condition. The indenta-
tion of foams was addressed by Needleman et al. based on 
the Desphande–Fleck constitutive model [21], by which the 
effect of plastic compressibility on the nominal hardness 
H/σ0 and the hydrostatic pressure was studied. The nominal 
hardness was found to increase progressively with decreasing 
plastic compressibility (increasing plastic dilatancy param-
eter α ), which was identified as the main origin, whereas the 
reduced elastic stiffness E/σ0 has only a secondary effect. In 
this work, the compressibility was discussed in terms of its 
impact on the hydrostatic pressure and the lowered hardness, 
but the densification of the material as such was not explicitly 
addressed. Wang et al. investigated the deformation behavior 
of closed-cell Al foams under conical indentation combining 

experiments and Finite Element simulations [22]. They found 
a concentration of the deformation near the indented sur-
face for cones of different angles, where the densification was 
related to pore collapse in the intended region and the tearing 
of cells.

Although a considerable amount of work went into mod-
eling to support the physical understanding of the deformation 
behavior of nanoporous metals [17], the literature that deals 
with the simulation of nanoindentation of nanoporous metals 
is scarce. Mangipudi et al. investigated the material response of 
np-Au under multiaxial loading, as it is typical for nanoinden-
tation, using representative volume elements (RVE) obtained 
from FIB/SEM tomography of np-Au samples and from spinodal 
decomoposition [23]. Farkas et al. carried out an MD simulation 
of the spherical indentation of a sample produced with spinodal 
decomposition. A detailed evolution of the densified layer under 
the indenter addressed the mechanism of pore collapse. Liu et al. 
used a pyramidal flat tip (frustum) indenter and positioned it 
near the free edge of the sample [24] to provide a better estimate 
of the uniaxial yield strength. Numerical simulations using the 
Deshpande-Fleck model confirmed that the indenter geometry 
provides a clear distinction of the mean pressure at which a 
material transitions to inelastic behavior. Kwon et al. analyzed 
nanoindentation experiments with the expanding cavity model 
(ECM) as well as an improved ECM [25] and discussed their 
results along with the observed densification in the surface. 
They concluded that the densification was confined within the 
residual impression of the Berkovich indenter and, therefore, 
the deformation of porous metals by indentation testing can be 
considered similar to compression testing.

Beyond computationally expensive FE-solid models and MD 
simulations, FE-beam models are an efficient method to study 
complex structure-properties relationships [26, 27]. With this 
technique, nanoindentation has been recently studied with focus 
on the hardness to yield stress ratio in Ref. [28]. However, the 
densification below the indenter was not addressed. Therefore, 
in this work, we will investigate the distribution of densification 
over depth for a large variety of materials, starting out from the 
micromechanical model [28]. This avoids assumptions about 
the evolution of the yield locus and the densification behavior 
under multiaxial loading conditions, commonly needed in con-
tinuum modeling. Furthermore, this approach delivers detailed 
insights in the role of various microstructural and mechanical 
parameters. In the "Results and discussion" section, effects of the 
hardening behavior assigned to the solid phase, surface energy 
and microstructural parameters will be studied. The latter 
include microstructural and global descriptors, such as ligament 
shape, solid fraction, randomization of the ligament network 
and its connectivity density [17]. In the "Conclusions" section, 
the observed dependencies obtained with an extended model 
will be compared to results from nanoindentation experiments, 
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which are specifically designed to validate the findings from the 
simulation approach.

Results and discussion
Relevance of microstructural and mechanical 
parameters

For a qualitative study of the relevance of various microstruc-
tural and mechanical parameters on the densification behavior, 
the FE-beam nanoindentation model without embedding is 
used, described in "FE-beam nanoindentation model" section. 
The contour plot of the residual displacement after indenta-
tion in Fig. 1(a) shows hemispherical isolines that remind of 
the expansion cavity model (ECM) [29]. The ECM is based on 
the assumption that the material that is enclosed by the hemi-
sphere of the size of the contact radius. This region is in a state of 
hydrostatic pressure and deforms incompressible for an elastic-
perfectly plastic body. In this case, the radial displacement of 
particles lying on the boundary of the cavity must accommo-
date the volume of material displaced by the indenter during 
an increment of penetration dh . However, as concluded form 
experimental results by [25], this assumption does not hold for 
np-Au and this can be confirmed by Fig. 1(a). The deforma-
tion localizes within the cavity while the deformation outside is 
negligible, contradicting the assumption of volume conservation 
in the ECM. Furthermore, the displacement magnitude that is 
defined by the ECM at the boundary of the cavity is located far 

inside the cavity (red dashed curve), which indicates a compac-
tion of the material near the indenter.

The measurement of the densification profile after [19] 
requires visualizing the residual deformation after unloading, 
as shown Fig. 1(b). Qualitatively, a parabolic shape appears as 
a good approximation for the displacement isolines. However, 
comparing the parabolic segments with the aspect ratio as intro-
duced by Briot and Balk (white curves) with the deformation 
contour in the unloaded state (see e.g. blue dashed curve), the 
segments intersect the isolines of deformation. Averaging within 
a segment therefore can lead to averaging over a range of relative 
densities. Apparently, the densification isolines in the simula-
tion are not self-similar. Due to the difference found from the 
comparison with the shape of Briot and Balk [19], their shape 
potentially depends on material properties and structural prop-
erties of the indented material.

Furthermore, it is of interest how the yield stress σy,s , work 
hardening ET ,s and surface energy γ  individually control the 
densification behavior of np-Au in an indentation test. To this 
end, the model presented in Ref. [28] is extended by includ-
ing surface energy [15] , which also has an effect on the plastic 
Poisson ratio. The surface energy is modeled by adding a rub-
bery tube around the cylindrical elements defining the metallic 
ligaments, which superimpose an axial compressive stress that 
remains constant during elastic–plastic deformation. The value 
of the pre-stress is defined by the surface energy and the liga-
ment radius, see Ref. [15] for details. We use a parameter set of 
Es = 80 GPa,νs = 0.42 , σy,s = 200 MPa, ET,s = 1 GPa, A = 0 , 

Figure 1:  (a) Contour plot of the displacement field under load for Es = 80 GPa, νs = 0.42 , σy,s = 200 MPa, ET ,s = 6 GPa, A = 0.23 , and ζ = 0 . The red 
dashed curve corresponds to the displacement that is applied to the boundary of the cavity in the ECM according to Ref. [29] with maximum depth 
ht and radius of the cavity a . (b) Residual displacement after removal of the indenter with the effective surface after unloading indicated by the 
blue curve. The distance from the red to the blue curves correspond to the elastic recovery from maximum depth ht to the residual depth hr . White 
parabolic curves correspond to the shape of the segments for density analysis after Ref. [19].
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ζ = 0 , and γ = 0J/m2 (off), similar to Ref. [15]. The residual 
displacement after unloading of the indenter is shown in Fig. 2, 
labeled as “Reference”. The gradient of the displacement field 
indicates the degree of densification, i.e. the wider the displace-
ment field spreads into the specimen, the lesser is the local 
densification.

Relative to the reference model, shown in Fig. 2(b), the 
variation of one parameter at a time reveals that an increase of 
the yield stress leads to a drastic concentration of the densifi-
cation towards the contacted surface, Fig. 2(a). The activation 
of the surface energy with a value of 1.4J/m2 (on) counteracts 
this effect, Fig. 2(c). This is consistent, because the surface 
energy reduces the yield stress in the ligament and the plastic 
Poisson ratio in macroscopic compression [15]. The amount 
of reduction depends on the ligament size and the applied 
plastic strain. For ligament sizes in the range of 40 to 70 nm, 
this effect is significant, whereas for larger ligament sizes � 
150 nm, it becomes negligible. Because for the smaller liga-
ment sizes, the effect on the densification behavior is already 

small compared to a variation of the yield stress, the surface 
energy and the discussion of possible size effects arising from 
this parameter can be omitted in the following. In contrast, 
an increase of the work hardening rate as shown in Fig. 2(f) 
acts inverse to the yield stress and has a comparable impact 
on the densification behavior. Therefore, the focus should be 
placed on the yield stress and the inverse work hardening rate.

The structural parameters that define the degree of rand-
omization, Fig. 2(d), and cut fraction, Fig. 2(e), seem to have 
overall little or no effect on the densification of the mate-
rial. Note that for large cut fractions, the random cutting can 
create disconnected ligaments or clusters of ligaments that 
are fully detached from the load bearing ligament network. 
One of those detached pieces can be seen in Fig. 2(e) above 
the indented surface. In addition, the effect of friction has 
been studied relative to the reference with friction coefficients 
of µ = 0 , 0.5 and 1.0 , see Fig. S3. Although this increased 
the hardness by ~ 10%, the effect in the densification was 
negligible.

Figure 2:  Qualitative study of the effect of different parameters on the residual displacement. The 3D RVE is rotated around the symmetry axis 
into < 110 > direction, allowing to look through the open pores of the diamond structure. The gradient of the displacement field indicates the degree 
of densification. Relative to the reference case (b), defined by σy,s = 200 MPa, ET ,s = 1 GPa, A = 0 , ζ = 0 , and γ = off, changes in the plastic properties 
(a) and (f ) show largest effects, followed by the surface energy (c). The structural parameters defining the randomization A = 0.3 in (d) and partial 
cutting of the ligaments ζ = 0.3 in (e) seem to have little or no effect.
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This study provides a first impression of effect of various 
parameters with respect to the densification of np-Au during 
nanoindentation. Clearly, the ratio ET ,s/σy,s is the most impor-
tant parameter controlling the densification. This is in line with 
the findings [28], where this ratio was found to the primary 
input for the prediction of the nominal hardness. The scaling 
law for macroscopic work hardening to yield stress ratio ET/σy 
was found to depend only on the properties of the solid phase 
and the initial solid fraction ϕ0 in the form

with b = 1.514 and β = 0.7 [28]. In this relation, the macro-
scopic yield stress σy and work hardening rate ET are determined 
from a linear fit of the stress vs. plastic strain response under 
macroscopic compression for 0.01 ≤ εp ≤ 0.2 . Based on Eq. (1) 
it can be speculated that the resistance of the indented volume is 
controlled by ET/σy and, according to the qualitative outcome of 
Fig. 2 it is conceivable that the densification spreads deeper into 
the material, the stronger the material work hardens. Further-
more, the microstructure seems to be sufficiently represented by 
the initial solid fraction ϕ0 . Therefore, the effect of microstruc-
ture and mechanical properties might be sufficiently represented 
by the ratio ET/σy , which can be determined from macroscopic 
compression or micropillar testing. Therefore, the set of inputs 
to be varied can be limited to the initial solid fraction ϕ0 and 
the ratio ET ,s/σy,s , which considerably reduces the number of 
simulations from ~ 200 in Ref. [28] to ~ 20 in this work.

Parametric study

Equation (1) suggests to relate the shape of the densified region 
after nanoindentation to the ratio of ET ,s/σy,s and ϕ0 or to the 
macroscopic property ratio ET/σy , which can be measured e.g. 
by macro compression or micropillar testing. The latter has 
the advantage of testing a similar sized volume of material as 
nanoindentation. Both types of tests can be used to validate the 
modeling results. For a quantitative investigation of the effect of 
ET/σy on the densification behavior, we carried out simulations 
for four different ligament shapes  G21,  G23,  G33,  G43, see Table 1, 
and Ref. [30, 31] for more details. These selected shapes are con-
cave ( rmid/rend = 0.5 ) or cylindrical ( rmid/rend = 1.0 ) and have 
different radii rend in the connecting nodes, Table S1 and Fig. S1. 
They define structures of initial solid fractions ranging from low 
to high solid fractions ( 0.12 ≤ ϕ0 ≤ 0.46) . In addition, for each 
initial solid fraction, the ratio ET ,s/σy,s was varied from 5 to 200 , 
which takes into account that for large ligament sizes, the yield 
stress of np-Au tends to very low values while the work harden-
ing rate remains finite.

The results shown in Fig. 3 confirm that the shape of the 
densification field depends mainly on the macroscopic property 

(1)
ET

σy
= b

√
ϕ0

(

ET ,s

σy,s

)β

,
ratio ET/σy . The dependence for the penetration depth shown 
in Fig. 3(a) is nonlinear, changing from a flat to a tipped shape 
with increasing ET/σy that saturates for large values. As shown 
in Fig. 3(b), the degree of densification can be represented by an 
exponential decay function. This implies that the local densifica-
tion decreases for increasing ET/σy while it is spreading over a 
larger volume. In other words, the lower ET/σy is, the closer the 
densified region moves to the surface and the better it can be 
detected in an experiment.

Nanoindentation and FIB sectioning

For the experimental validation it is of interest to prepare sam-
ples with low and high values of ET/σy . At a given solid fraction 
of ϕ0 ≈ 0.3 , an increasing ligament size from ~ 20 to ~ 150 nm 
leads to a decreasing yield stress that can take very low values. 
At the same time, the work hardening rate also decreases but 
remains non-zero [5]. By increasing the solid fraction it is possi-
ble to increase the yield strength while reducing the work hard-
ening rate to values close to zero [32]. Combining both strategies 
allows for validating our findings by deliberately placing samples 
in the lower and in the upper range of ET/σy.

For performing nanoindentation and FIB sectioning fol-
lowed by image analysis, np-Au samples are produced by elec-
trochemical dealloying. For details we refer to Refs. [32, 33]. 
Samples #1 and #2 were produced from a Au25Ag75 with two 
ligaments sizes of L = 35 and 120 nm [33]. Sample #3 was pro-
duced from a Au35Ag65 master alloy [32]. Samples #1 and #2 
allow to compare the results with respect to different ligament 
sizes, whereas a comparison of samples #2 and #3 allow to com-
pare similar ligament sizes for different initial solid fractions.

Before nanoindentation, all samples were polished. 
Sample #3 showed a high roughness, which was removed 
by micromachining of the surface by Xenon Plasma beam 
(Helios G4 PFIB UXe, Thermo Fisher Scientific). Nanoin-
dentation testing was carried out using a Nanoindenter 
(Nano XP, KLA Tencor) equipped with a diamond Berko-
vich tip. Indentations were carried out at a constant strain 
rate of 0.05/s to a displacement of 20 µm, and then holding 
the load for 10 s followed by unloading. Load–displacement, 

TABLE 1:  Selected ligament geometries as defined in Ref. [30], described 
by radius at ligament end rend , measured relative to the unit cell size, and 
mid-to-end ratio rmid/rend . The value of the initial solid fraction ϕ0 applies 
to the perfect diamond structure before randomization.

Ligament shape rend/a[−] rmid/rend[−] ϕ0[−]

G21 0.125 0.5 0.1232

G23 0.125 1.0 0.2635

G33 0.15 1.0 0.3574

G43 0.175 1.0 0.4565
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hardness, and modulus curves are shown in Fig. 4(a). Aver-
ages for the elastic modulus E and hardness H in Table 2 were 
obtained from continuous stiffness measurement (CSM) 
with frequency of 45 Hz and harmonic displacement target 
of 2 nm. In the load–displacement curves shown in Fig. 4(a), 
the indents reached 30 to 100 times the average ligament size 
such that a sufficient number of pores are involved in the 
densification process under the indent.

For the measurement of the stress–strain behavior, micropil-
lar testing is preferred. In this way it is ensured that the tested 
volume is comparable to the nanoindentation experiments and 
both volumes contain similar type and density of features and 
defects. Micropillar tests from the same samples as used for 
nanoindentation were available from Ref.[33]. For sample #3 
new pillars of 8 µm in diameter are produced, shown in Fig. 4(c), 
following the same protocol. The measured stress–strain curves 
are presented in Fig. 4(d) for which the mechanical properties 
are collected in Table 2. The Young’s modulus measured from the 
unloading of the micropillars, the yield stress and work hard-
ening rate are denoted by Eu , σy , and ET , respectively. Interest-
ingly, the different ligament size (samples #1 and #2) lead to 
similar ratios of ET/σy , E/Eu and H/σy , whereas these values 
considerably differ for the two different initial solid fractions (cf. 
samples #2 and #3). Furthermore, the values of ET/σy as deter-
mined from micropillar testing agree very well with the flow 
curves measured in Ref. [32], from which ratios of 24 and 0.4 
are obtained for the samples of ϕ0 = 0.25 and 0.35, respectively. 
Because the ET/σy ratio controls the densification, we can argue 
that the changes in E/Eu and H/σy , which clearly distinguish 
samples #1 and #2 from sample #3, are directly related to the 
distribution of densification under the indenter.

Densification analysis

The indentation-induced densification was characterized via 
inspection of cross-sectional cuts made perpendicular to the 
indented surface, shown in Fig. 4(b). SEM imaging and FIB mill-
ing were performed using a dual-beam system (Nova Nanolab 
200, FEI Corp.) equipped with a platinum (Pt) gas injection 
system. Depositing a Pt layer on the indentation prevented the 
subsequent exposure of the analyzed surface to the Ga + ion 
beams, which has been reported to lead to coarsening of the liga-
ment structure [34]. Backscattered electrons using a low voltage 
(5 kV) were utilized to maximize visibility and to ensure appro-
priate contrast at the edge of the ligaments. Figure 4(b) shows an 
SEM micrograph taken at an angle of 52 degrees relative to the 
cross-section of an indent. The dashed lines indicate the edges 
between the faces of the indent. The inset shows a sketch of the 
relative positioning of the Pt deposition and the cross-section 
relative to the indenter triangular contact. The cross section (CS) 
was terminated at the mid-section of the indent, as indicated by 
the visibility of the sharp apex.

SEM images of as-prepared samples #1—3 were analyzed. 
The magnification was chosen such that the resolution of the lig-
aments was comparable. The approach consists of several steps 
for which the details can be found in Ref. [20]. First, shadows 
and gradients caused by the tilt angle are removed using the 
Niblack algorithm with a local segmentation area with radius 
of 15 pixel. The local solid fraction maps were calculated using 
a scan box size of 50 × 50 pixel. To calculate the densification 
map, a reference solid fraction was calculated from a larger rec-
tangular scan box, far away from the indent, surface, and bot-
tom part. The color map of these binarized images represents 
the distribution of the solid fraction in arbitrary scaling. It was 

(a) (b)

Figure 3:  (a) Shape of the densification isolines given as depth to radius ratio d/r , measured at two radial distances from the symmetry axis: dc/ac|1.0 
starts at r = ac and dc/ac|0.8 starts at r = 0.8ac (standard deviations are 0.15 and 0.17, respectively); (b) densification at the selected isolines at r = ac 
and r = 0.8ac as function of ET/σy (standard deviations are 0.05 and 0.11, respectively).
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shown in Ref. [20] that an absolute scaling is not needed, as 
long as only densification isolines shall be extracted. For a visual 
representation of the densification in Fig. 5, the values of the 

color map are overlayed onto the binarized image. This produces 
a non-colored boundary, which is half the size of the scanbox. 
The resulting color map of the densification field in Fig. 5 is 

(a) (b)

(c) (d)

Figure 4:  (a) Load–displacement, hardness, and modulus curves from the nanoindentation tests on samples #1–3. Load P and indentation depth h are 
normalized by Young’s modulus of Au ( Es = 80 GPa) and ligament size L . (b) SEM micrograph of a typical cross-section analyzed in this study. Angle 
of view is 52 degrees relative to the cross-sectional surface. The dashed lines indicate the edges between the faces of the indent. As confirmed by the 
sharp apex of the indent, the cross section was carried out until the mid-point of the indentation. (c) Micropillar of 8 µm in diameter produced from 
sample #3, the surface quality after micromachining with the PFIB is visible at the top face of the pillar; (d) stress-plastic strain curves measured from 
the micropillar tests after subtracting the elastic strains computed with the modulus Eu from unloading.

TABLE 2:  Overview of investigated 
samples and properties as 
measured by nanoindentation and 
micropillar testing.

Sample
# ϕ0[−]

L

[nm]
H

[MPa]
E

[MPa]
Eu

[MPa]
σy

[MPa]
ET

[MPa]
ET /σy

[−]
E/Eu
[−]

H/σy
[−]

1 0.25 35 38 822 2700 12 208 ±41 17.3 ±3.4 0.30 3.2

2 0.25 120 23 527 1250 7 142 ±33 20.3 ±4.7 0.42 3.3

3 0.35 106 72 5850 3900 48 50 ±25 1.04 ±0.5 1.50 1.5
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still irregular and reflects the inhomogeneity and microstruc-
tural randomness of the material. The red solid curves represent 
isolines drawn as guide to the eye, starting from the surface at 
r = 0.8ac towards the symmetry axis. The red dashed curves 
indicate the uncertainty that results from the inhomogeneity 
of the color map, from which the error bars in the quantitative 
analysis are derived.

For samples #1 and #2, the chosen resolution limited the 
analyzed region to a half of the cross-section. A visual com-
parison of Fig. 5(a) and (b) confirms that the shape of the 

densified region is very similar and appears tipped, even in 
the tilted perspective. This is in agreement with the simi-
lar ET/σy values for sample #1 and #2, which are expected 
to produce larger aspect ratios dc/ac|0.8 , see Fig. 3(a). In 
contrast, sample #3, presented in Fig. 5(c), clearly shows 
a much flatter region of densification that is concentrated 
closer to the indented surface. Also, the transition into the 
undeformed material below is more pronounced than for 
samples #1 and #2. Sample #3 shows a significant asymmetry 
in the contact radius and in the densification map, which is 

Figure 5:  Binarized SEM images with overlayed densification ϕ∗ = ϕ/ϕ0 as color map (arbitrary scaling) for (a) sample #1 ( ϕ0 = 0.25 , L = 35 nm), (b) 
sample #2 ( ϕ0 = 0.25 , L = 120 nm) and (c) sample #3 ( ϕ0 = 0.35 , L = 106 nm). The scan box size was 50 × 50 pixel, displayed as a white box in the 
upper left corner. Estimates for the shape of the isolines and error bars are added as red solid and dashed curves, respectively. (d) Zoom-in of the 
densified region of sample #3 showing multiple contacts below the surface.
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treated by separate estimates for the densification isolines. 
For this sample, multiple contacts can be found in the den-
sified region below the surface, see Fig. 5(d). The depth of 
this region is comparable to the densified region visible in 
the color map in Fig. 5(c).

The results for dc/ac|0.8 as function of ET/σy are shown 
in Fig. 6 along with the data from the simulations. First of 
all, the results confirm that the shape of the densified region 
depends on ET/σy as predicted by the numerical simulations. 
In contrast to the initial solid fraction ϕ0 , the ligament size 
has no effect for the investigated samples. Compared to the 
simulations, the experimental data are shifted to higher 
values. This means that the depth of the densified region 
penetrates about a factor of 2 deeper as it was predicted by 
the numerical model. For sample #3, this could be explained 
by the formation of contacts that limits a further approach 
of neighboring ligaments during the ongoing deformation. 
However, in samples #1 and #2, the deformation is distrib-
uted deep into the material, such that no formation of con-
tacts is visible and in this case the reason for the underpre-
diction remains unclear.

Independent of the this underprediction, we could con-
firm that the normalized depth of the densification field 
dc/ac|0.8 increases with increasing ET/σy . For the samples 
investigated in this work, this parameter can be varied via the 
solid fraction, whereas it is not sensitive to the ligament size. 
From the stress–strain curves provided in Ref. [32], it can 
be deduced that the strong variation of ET/σy results from 
an increase in the yield stress σy , while at the same time the 
work-hardening rate ET decreases for increasing initial solid 
fraction. This has a strong effect on the depth and degree of 
densification below the indenter.

Conclusions
In this work, we investigated the densification behavior of nano-
porous metals in nanoindentation. With the help of a two-scale 
model and under the assumption of axisymmetric deformation, 
the displacements of the FE-nodes were projected onto a sin-
gle cross-section. This allowed for a continuous mapping of the 
discrete displacement data and the computation of a smoothly 
distributed deformation gradient and densification field in 
cylindrical coordinates. Following the literature [18–20], in 
the experimental part of this work the densification under the 
indenter was made assessable to SEM by FIB milling. We tested a 
large range of ligament sizes from 35 to 150 nm and initial solid 
fractions of 0.25 to 0.35. Following the procedure described in 
Ref. [20], color maps for the densification were computed that 
allowed to determine the shape of the densification isolines by 
visual inspection. The work hardening rate to yield stress ratio 
ET/σy was measured via micropillar compression testing.

The simulations showed that the penetration depth of the 
densification field into the volume is mainly controlled by the 
ratio of the macroscopic work hardening rate to yield stress 
ET/σy . This parameter includes the work hardening behavior 
of the solid phase and the solid fraction. For the characteriza-
tion of the shape of the densification field, the aspect ratio of 
the densification isolines originating at the contact radius ac 
and at 0.8 ac are used. The shape of the outer isoline allows for 
a comparison with the approach of the data with those from 
Briot and Balk [19]. It is found that isolines further inside are 
not self-similar and they tend to align with the indented surface 
moving inwards. At the same time, the densification continu-
ously increases, i.e. a maximum below the surface as reported by 
Ref. [19] could not be confirmed. Similarly to the aspect ratio of 
the isoline dc/ac , the densification value on the isolines is a func-
tion of ET/σy , which can be modeled with an exponential decay 
function. For low ET/σy , internal contacts become relevant and 
this limits the degree of compaction.

With regard to the dependence of the ET/σy ratio, the exper-
imental data confirm the trend of an increase of dc/ac|0.8 with 
increasing ET/σy , as derived from the numerical simulations. 
In our experiments, the initial solid fraction ϕ0 delivered a sub-
stantial variation of ET/σy , whereas the ligament size had no 
influence. The enhancement of local densification and internal 
contacts during compression for increasing ϕ0 and decreasing 
ET/σy is also in agreement with the findings of Liu et al. [35], 
who reported an unexpected transition from homogeneous 
to localized deformation under compression as ϕ0 increases 
to above ∼ 1/3 . As can be seen from Eq. (1), it should also be 
possible to modify ET/σy via ET ,s/σy,s , i.e. the work hardening 
behavior of the solid phase at constant ϕ0 . This is supported by 
the results from Leitner et al. [18], where the distribution of the 
densification field was considerably changed from localized to 

Figure 6:  Aspect ratios of the densification isolines at r = 0.8ac compared 
with the simulation results.
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extended alone by the temperature at which the nanoindenta-
tion was performed.

The simulations underpredict the experimental results for 
dc/ac|0.8 . This could in part be explained by contacts in the den-
sified material that form at low values of ET/σy . Independent of 
this, the FE-beam modeling approach might have some limi-
tations, although the nodal correction [31] was used. A solid 
model with internal contacts could be able to close this gap, 
but such a model is computationally demanding. As simplifica-
tion, the knowledge from this work allows to further reduce the 
number of required simulations considerably, because it should 
be sufficient to vary just one out of the three parameters solid 
fraction ϕ , yield stress σy,s , or work hardening rate ET ,s . Still, 
such simulations imply the availability of highly efficient and 
scalable FE codes that allow to model realistic microstructures 
including internal contacts.

On the experimental side, further work on the image pro-
cessing as pointed out in Ref. [20] would be very beneficial for 
the reliable extraction of densification profiles. Images of a FIB 
cross-section taken at an inclination of 52° lead to different illu-
mination and gradients when samples with very different liga-
ment sizes are analyzed. In part, this could be resolved with the 
Niblack algorithm, but the quality of segmentation is still not 
sufficient for a robust extraction of the densification profiles via 
line scans. Here, the application of deep neural networks as e.g. 
developed in Ref. [36] could be very useful.

Methods
The modeling of nanoindentation of np-Au is carried out in two 
ways. For qualitative investigations, the quarter model based 
on the RVE as presented in Ref.[28] is used to study the effect 
of various parameters on the densification under the indent. 
Second, a more sophisticated model for a refined quantitative 
analysis of the densification is presented. Here, the microme-
chanical model is embedded in a continuum model that deliv-
ers the elastic foundation of a cylindrical volume. Finally, the 
densification analysis is described for providing measures that 
can be used for comparison with experimental results.

FE‑beam nanoindentation model

The FE-beam model for nanoindentation without embedding is 
shown in Fig. S2 and is described in detail in Ref. [28]. Through-
out this work, a rigid indenter with a cone angle of 140.6° is 
used. The modeling of the nanoporous material and builds on 
ordered and randomized diamond structures that were origi-
nally established as ball-and-stick models [26, 37] and general-
ized to ligament shapes that can have convex, cylindrical, or 
concave shape [30, 31]. This approach allows predicting the 
macroscopic elastic–plastic deformation behavior of np-Au for 

given properties, denoted in the following with subscript s for 
the solid, namely Young’s modulus Es , Poisson’s ratio νs , yield 
stress σy,s , and work hardening rate ET ,s . The degree of the ran-
domization of the structure is defined by the parameter A , which 
applies a random distortion of the connecting nodes as fraction 
of the unit cell size [26]. Random cutting of ligaments is pos-
sible by choosing a cut fraction ζ , by which a percentage of the 
ligaments are randomly selected and disconnected by element 
removal. In this way, the average coordination number per node 
and the scaled genus density of the ligament network can be 
continuously tuned from fully connected (diamond structure) 
down to the percolation to cluster transition [27].

Spherical-parabolic ligament shapes are represented by the 
mid-to-end ratio of the ligament radius r∗sym = rmid/rend [30], 
see Table S1 and Fig. S1. With the incorporation of the nodal 
correction by [31], the FE-beam model allows for predicting 
elastic–plastic stress–strain curves that are in good agreement 
with a FE-solid model at the efficiency of the FE-beam model. 
The nodal correction is applied to those FE beam elements, 
which form the nodal region connecting several elements, 
colored in orange in Fig. S1. The extension of this zone and the 
element properties are defined such that the mechanical behav-
ior of foams with stout struts, as depicted in Fig. 1, can be cor-
rectly predicted. For details on the nodal correction, the reader 
is referred to Ref. [31].

The Poisson’s ratio under macroscopic compression depends 
on the randomization as well as the connectivity of the structure 
[26, 27]. It is expected that the parameters defining the rand-
omization A and cut fraction ζ both can have an effect on the 
densification of the material during indentation. For simplicity, 
the model was generated such that the unit cell size corresponds 
to a unit size of 1 mm [28]. Realistic microstructural dimen-
sions of the ligament and the pore size can be achieved by self-
similar scaling of the model to a desired characteristic size, e.g., 
a ligament diameter of 20–150 nm [5]. With the exception of the 
surface energy, the elastic–plastic material law does not account 
for size effects, the resulting macroscopic behavior is not affected 
by such a scaling. Where relevant, the surface energy is intro-
duced indirectly by an axial compressive residual stress in the 
ligaments, which is computed for the chosen nominal ligament 
size [15].

The nanoindentation simulation includes multiple contacts 
of individual ligaments with the indenter, which leads to conver-
gence problems in the early stages of an implicit FE simulation 
approach. This problem is solved by using an explicit integra-
tion scheme in a dynamic simulation [28], which efficiently 
copes with the individual contacts as they emerge. The maxi-
mum indentation depth ht is set to a depth of 2 diamond unit 
cells, which corresponds to 25% of the model dimension. Fig. 
S2 shows an example of an indentation simulation into a RVE, 
built as a quarter model with symmetry boundary conditions. It 
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consists of 8× 8× 8 diamond unit cells with a randomization of 
A = 0.23 and a cut fraction of ζ = 0 , i.e. the ligaments are ran-
domly distorted but remain fully connected. It can be seen that 
the displacement within the ligament network is concentrated 
within the boundaries. Due to sink-in, a small negative radial 
displacement appears at the free boundary near the surface of 
the model, as the material is drawn inwards towards the indent. 
This radial displacement at the boundary is around 5% of a unit 
cell size.

Two‑scale nanoindentation model

For the model presented in the  "FE-beam nanoindentation 
model" section, the translation of the displacement field into 
the depth can become unsteady around the symmetry axis, 
when the structure is randomized. This is an effect of the lim-
ited number of unit cells along the depth coordinate, which 
leads to an inhomogeneous densification in case of distorted 
or broken load paths, see also Fig. 1. This is amplified around 
the symmetry axis, because a larger pore is mirrored four times 
by the symmetry boundary conditions. For a refined analysis, a 
new nanoindentation model is developed that delivers a more 
continuous deformation field. To this end, the micromechani-
cal model presented in the "FE-beam nanoindentation model" 
section is extended in the xy-plane towards 16 × 16 × 8 unit cells 
and then cut to a cylinder with a radius of 8 unit cells, labeled 
as FE-beam model in Fig. 7. In analogy to the window-method 
[38], the FE-beam model (152,482 beam elements, type B31) is 
embedded in a FE-solid model (14,123 tetrahedral elements, 
type C3D10) that is generated in Abaqus CAE with an overlap 
of 0.25 unit cells using the *EMBED command in Abaqus. For 
the elements of the embedded FE-beam model, isotropic elas-
tic–plastic deformation behavior with elastic properties Es, νs , 
yield stress σy,s and linear work hardening with work-hardening 
rate ET ,s is assumed, where the index s denotes the mechanical 
properties of the solid phase.

Boundary conditions are applied to the bottom nodes of 
the FE-solid model, fixing the displacements in all degrees of 
freedom. The elastic properties of the solid elements are set to 
the effective macroscopic elastic properties of the microme-
chanical model computed from macroscopic compression of 
0.1% strain a cubic RVE (8 × 8 × 8 unit cells) assuming isotropic 
elastic behavior. Figure 7 shows the contour plot of the residual 
deformation after indentation, which is concentrated within the 
FE-beam model. One simulation run requires 230 CPUh and 
can be solved parallel on 16 CPUs in less than one day.

The cylindrical model, which is loaded by a rigid conical 
indenter, allows for a circumferential projection and averaging 
of the nodal displacements of the micromechanical model onto 
a single cross-section within a cylindrical coordinate system, 
where R,Z and r, z denote the coordinates of the undeformed 

reference configuration and the deformed configuration, respec-
tively. This delivers a smooth and continuous displacement field 
for vertical displacements uz(R,Z) and radial displacements 
ur(R,Z) shown in Fig. 7(b) and (c), respectively. The projection 
also averages the remaining anisotropic behavior of the diamond 
structure after randomization. The comparison confirms that 
the radial displacements are more than a magnitude lower than 
the vertical displacements and it is possible to neglect radial 
displacements in the analysis of the densification. The error 
uerr =

√

u2z + u2r − |uz | from neglecting the radial displace-
ments is shown in Fig. 7(d). The largest error is ∼ 1% of the 
maximum displacement, concentrated at the contact radius. 
Another region of increased error appears inside the volume 
and is related to the preferred transmission of deformation 
in < 111 > direction, due to the orientation of the ligaments in 
the diamond structure.

Densification field

Next, we develop an approach that allows for interpolating the 
displacement field from the discrete positions of the numerical 
simulation for delivering a continuous mapping of the volume 
change. This provides access to the densification profile as func-
tion of depth and the development of characteristic measures 
for the in-depth investigation following in the "Conclusions" 
section. In continuum mechanics, the densification ϕ∗ , which 
is volume change from an undeformed volume element dV0 to 
a deformed volume element dV1 , can be computed from the 
deformation gradient F = I +∇u as

 where I is the unit tensor, ∇u is the velocity gradient tensor, 
and det denotes the determinant of a tensor of second order 
[39]. It should be noted that after unloading of the indenter, the 
computed deformation gradient still includes elastic and plastic 
components, because the inhomogeneous deformation of the 
indentation process has a residual stress field. For axisymmetry 
in a cylindrical coordinate system and negligible radial displace-
ments, the deformation gradient simplifies to (Appendix A)

A polynomial fit of the displacement data uz(Z) at constant 
radial coordinate R allows to compute the deformation gradient 
and the densification by combining Eqs. (3) and (2). Figure 8 
presents two examples for the computed densification field for 
a low and a high value of ET ,s/σy,s , demonstrating the impact 
of this parameter on the penetration depth of the densification.

For the analysis of images from experiments, it is use-
ful to have a well-defined reference value for which we can 

(2)ϕ∗ =
ϕ1

ϕ0
=

dV0

dV1
=

1

det F
,

(3)det F =
(

1+
∂uz

∂Z

)
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use the position of the contact radius ac and the densification 
measured in this point. As seen in Fig. 8, the shape of the 
isoline can be characterized by the ratio of the two distances 
dc/ac , which increases for increasing ET ,s/σy,s . However, the 
densification that is measured at ac has the highest uncertainty 
due to neglecting the radial displacements, see Fig. 7(d). Fur-
thermore, the value is naturally close to 1, which makes it 

very difficult to reliably detect the distance dc in the vertical 
direction. Therefore, we suggest to use the isoline measured 
at 80% of the contact radius ac0.8 , which is located in a region 
with a higher densification gradient. Along this isoline, the 
data are more robust to scatter, while there is still a detectable 
sensitivity of the position of this isoline to ET ,s/σy,s along the 
symmetry axis.

Figure 7:  (a) Cut view of the two-scale nanoindentation model with the micromechanical FE-beam model embedded in a FE-solid model. Boundary 
conditions are applied at the bottom of the FE-solid model far from the micromechanical model. Shown is the magnitude of the residual displacement 
after unloading of the indenter, (b–d) Mapping of the displacement field onto a cross-section of a cylindrical coordinate system in undeformed 
configuration ( R , Z ) with the origin in the top center of the full model with (b) z-displacement, (c) radial displacement, and (d) error for neglecting the 
radial displacements—note that the color map is scaled by factor 10.
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Appendix
A. Deformation gradient

In a cylindrical coordinate system the components of ∇u can be 
expresses as [39], p. 62,

where coordinates (R,Z) and (r, z) denote the coordinates in 
the undeformed reference configuration and in the deformed 
configuration, respectively. The variables ur , uθ , and uz denote 
the displacements in radial, circumferential, and vertical direc-
tion. For axisymmetry, uθ = 0 and ∂(.)

∂θ
= 0 , such that Eq. (A.1) 

can be simplified to

From Eq. (A.2), we obtain

(A.1)F =









1+ ∂ur
∂R

1
R

�

∂ur
∂θ

− uθ

�

∂ur
∂Z

∂uθ
∂R 1+ 1

R

�

∂uθ
∂θ

+ ur

�

∂uθ
∂Z

∂uz
∂R

1
R
∂uz
∂θ

1+ ∂uz
∂Z









,

(A.2)F =







1+ ∂ur
∂R 0 ∂ur

∂Z

0 1+ ur
R 0

∂uz
∂R 0 1+ ∂uz

∂Z






.

(A.3)

det F =
(

1+
∂ur

∂R

)

(

1+
ur

R

)

(

1+
∂uz

∂Z

)

−
∂ur

∂Z

(

1+
ur

R

)∂uz

∂R
,

Figure 8:  (a) Contour plot of ϕ∗ in the deformed configuration for ϕ0 = 0.357 , σy,s = 200 MPa, A = 0.23 . Isolines added in red color allow deriving a 
measure for the penetration depth of the residual densification field relative to the contact radius. (a) ET,s/σy,s = 5 , b) ET,s/σy,s = 50.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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which serves for the computation of the volume change accord-
ing to Eq. (3). When the radial displacement ur and its derivative 
∂ur
∂R  in Eq. (A.3) can be neglected, this equation simplifies to

Supplementary Information
The online version contains supplementary material avail-

able at https:// doi. org/ 10. 1557/ s43578- 022- 00870-1.
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