Skip to main content
Log in

Opportunities and challenges in integrating 2D materials with inorganic 1D and 0D layered nanostructures

  • Invited Feature Paper-Review
  • MRS Fellows Focus
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The birth of nanoscience more than 50 years ago fueled the renaissance in layered materials research leading to many materials discoveries with unprecedented scientific and technological impacts. Following the early reports on carbon fullerenes and nanotubes, the discovery of inorganic one-dimensional (1D) nanotubes and zero-dimensional (0D) fullerenes created a major playground for new physicochemical observations. The meteoric rise of two-dimensional (2D) materials in concert set off outstanding advances in the synthesis and manipulation of layered materials with atomic precision. This review identifies new directions in materials science that emerge through integrating the two layered systems—2D with inorganic 1D and 0D. Summarizing the key developments in the two distinct nanomaterials families, we highlight preliminary instances of integrating them into functional nanostructures. A few gedankenexperiments regarding prospective applications of the integrated system are then introduced to stimulate further experimental and theoretical investigations that can potentially result in unforeseen scientific observations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Adapted from Ref. [75].

Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this review article are available from the corresponding authors (T.C. and R.T.) upon reasonable request.

References

  1. R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23(5), 22 (1960)

    Google Scholar 

  2. M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143(1–2), 3 (2007)

    CAS  Google Scholar 

  3. Z. Merali, Shooting for a star. Science 352, 1040 (2016)

    CAS  Google Scholar 

  4. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013)

    CAS  Google Scholar 

  5. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 461 (2016)

    CAS  Google Scholar 

  6. L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nested fullerene-like structures. Nature 365, 113 (1993)

    CAS  Google Scholar 

  7. R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992)

    CAS  Google Scholar 

  8. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267(5195), 222 (1995)

    CAS  Google Scholar 

  9. S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth 50, 675 (1980)

    CAS  Google Scholar 

  10. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature 318, 162 (1985)

    CAS  Google Scholar 

  11. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    CAS  Google Scholar 

  12. A. Pisoni, J. Jacimovic, R. Gaál, B. Náfrádi, H. Berger, Z. Révay, L. Forró, Anisotropic transport properties of tungsten disulfide. Scr. Mater. 114, 48 (2016)

    CAS  Google Scholar 

  13. Y. Rho, J. Pei, L. Wang, Z. Su, M. Eliceiri, C.P. Grigoropoulos, Site-selective atomic layer precision thinning of MoS2 via laser-assisted anisotropic chemical etching. ACS Appl. Mater. Interfaces 11(42), 39385 (2019)

    CAS  Google Scholar 

  14. Y. Liu, N.O. Weiss, X. Duan, H.C. Cheng, Y. Huang, X. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.42

    Article  Google Scholar 

  15. K. Kang, K.H. Lee, Y. Han, H. Gao, S. Xie, D.A. Muller, J. Park, Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550(7675), 229 (2017)

    Google Scholar 

  16. R. Frisenda, A.J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, H.S.J. van der Zant, Atomically thin p–n junctions based on two-dimensional materials. Chem. Soc. Rev. 47, 3339 (2018)

    CAS  Google Scholar 

  17. P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69(9), 38 (2016)

    CAS  Google Scholar 

  18. C.H. Lee, G.H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, P. Kim, Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676 (2014)

    CAS  Google Scholar 

  19. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. (2018). https://doi.org/10.1103/RevModPhys.90.021001

    Article  Google Scholar 

  20. X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014)

    CAS  Google Scholar 

  21. P. Rivera, H. Yu, K.L. Seyler, N.P. Wilson, W. Yao, X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004 (2018)

    CAS  Google Scholar 

  22. S.E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh, P. Poddar, A. Ray, C. Park, E. Fransson, Y. Zhong, D.A. Muller, P. Erhart, D.G. Cahill, J. Park, Extremely anisotropic van der Waals thermal conductors. Nature 597(7878), 660 (2021)

    CAS  Google Scholar 

  23. S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K.U. Lao, P. Poddar, C. Park, D.A. Muller, R.A. Distasio, J. Park, Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359(6380), 1131 (2018)

    CAS  Google Scholar 

  24. C. Herbig, C. Zhang, F. Mujid, S. Xie, Z. Pedramrazi, J. Park, M.F. Crommie, Local electronic properties of coherent single-layer WS2/WSe2 lateral heterostructures. Nano Lett. 21(6), 2363 (2021)

    CAS  Google Scholar 

  25. E.Y. Andrei, D.K. Efetov, P. Jarillo-Herrero, A.H. MacDonald, K.F. Mak, T. Senthil, E. Tutuc, A. Yazdani, A.F. Young, The marvels of moiré materials. Nat. Rev. Mater. 6, 201 (2021)

    CAS  Google Scholar 

  26. K.F. Mak, J. Shan, Semiconductor moiré materials. Nat. Nanotechnol. 17(7), 686 (2022)

    CAS  Google Scholar 

  27. A.Y. Cho, J.R. Arthur, Molecular beam epitaxy. Prog. Solid-State Chem. 10, 157 (1975)

    Google Scholar 

  28. M.J. Ludowise, Metalorganic chemical vapor deposition of III-V semiconductors. J. Appl. Phys. 58(8), R31 (1985)

    CAS  Google Scholar 

  29. T. Suntola, J. Hyviirinen, Atomic layer epitaxy. Ann. Rep. Mater. Sci. 58, R31 (1985)

    Google Scholar 

  30. A. Koma, Van der Waals epitaxy a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72 (1992)

    CAS  Google Scholar 

  31. Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, Y. Il-Song, B.H. Hong, J.H. Ahn, Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490 (2010)

    CAS  Google Scholar 

  32. K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015)

    CAS  Google Scholar 

  33. S.M. Eichfeld, L. Hossain, Y.C. Lin, A.F. Piasecki, B. Kupp, A.G. Birdwell, R.A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R.M. Wallace, M.J. Kim, T.S. Mayer, J.M. Redwing, J.A. Robinson, Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9(2), 2080 (2015)

    CAS  Google Scholar 

  34. T.A. Chen, C.P. Chuu, C.C. Tseng, C.K. Wen, H.S.P. Wong, S. Pan, R. Li, T.A. Chao, W.C. Chueh, Y. Zhang, Q. Fu, B.I. Yakobson, W.H. Chang, L.J. Li, Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579(7798), 219 (2020)

    CAS  Google Scholar 

  35. S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, J.H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17(5), 500 (2022)

    CAS  Google Scholar 

  36. P.C. Shen, C. Su, Y. Lin, A.S. Chou, C.C. Cheng, J.H. Park, M.H. Chiu, A.Y. Lu, H.L. Tang, M.M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C.I. Wu, T. Palacios, L.J. Li, J. Kong, Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211 (2021)

    CAS  Google Scholar 

  37. G. Jin, C.S. Lee, O.F.N. Okello, S.H. Lee, M.Y. Park, S. Cha, S.Y. Seo, G. Moon, S.Y. Min, D.H. Yang, C. Han, H. Ahn, J. Lee, H. Choi, J. Kim, S.Y. Choi, M.H. Jo, Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16(10), 1092 (2021)

    CAS  Google Scholar 

  38. T. Chowdhury, J. Kim, E.C. Sadler, C. Li, S.W. Lee, K. Jo, W. Xu, D.H. Gracias, N.V. Drichko, D. Jariwala, T.H. Brintlinger, T. Mueller, H.G. Park, T.J. Kempa, Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nat. Nanotechnol. 15(1), 29 (2020)

    CAS  Google Scholar 

  39. S. Li, Y.C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q.H. Xu, A.T.S. Wee, K. Suenaga, F. Ding, G. Eda, Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17(6), 535 (2018)

    CAS  Google Scholar 

  40. A. Aljarb, J.H. Fu, C.C. Hsu, C.P. Chuu, Y. Wan, M. Hakami, D.R. Naphade, E. Yengel, C.J. Lee, S. Brems, T.A. Chen, M.Y. Li, S.H. Bae, W.T. Hsu, Z. Cao, R. Albaridy, S. Lopatin, W.H. Chang, T.D. Anthopoulos, J. Kim, L.J. Li, V. Tung, Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19(12), 1300 (2020)

    CAS  Google Scholar 

  41. E.C. Sadler, T. Chowdhury, R. Dziobek-Garrett, C. Li, O. Ambrozaite, T. Mueller, T.J. Kempa, Role of H2 in the substrate-directed synthesis of size-tunable MoSe2 nanoribbons for exciton engineering. ACS Appl. Nano Mater. 5(8), 11423 (2022)

    CAS  Google Scholar 

  42. F. Cheng, H. Xu, W. Xu, P. Zhou, J. Martin, K.P. Loh, Controlled growth of 1D MoSe2 nanoribbons with spatially modulated edge states. Nano Lett. 17(2), 1116 (2017)

    CAS  Google Scholar 

  43. D.J. Rizzo, J. Jiang, D. Joshi, G. Veber, C. Bronner, R.A. Durr, P.H. Jacobse, T. Cao, A. Kalayjian, H. Rodriguez, P. Butler, T. Chen, S.G. Louie, F.R. Fischer, M.F. Crommie, Rationally designed topological quantum dots in bottom-up graphene nanoribbons. ACS Nano 15(12), 20633 (2021)

    CAS  Google Scholar 

  44. T. Chowdhury, E.C. Sadler, T.J. Kempa, Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 120, 12563 (2020)

    CAS  Google Scholar 

  45. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013)

    Google Scholar 

  46. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. (2017). https://doi.org/10.1038/natrevmats.2017.33

    Article  Google Scholar 

  47. K.F. Mak, D. Xiao, J. Shan, Light–valley interactions in 2D semiconductors. Nat. Photonics 12, 451 (2018)

    CAS  Google Scholar 

  48. X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4(10), 669 (2019)

    Google Scholar 

  49. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A.M. Lindenberg, K. Xiao, B.J. le Roy, M. Drndić, J.C.M. Hwang, J. Park, M. Chhowalla, R.E. Schaak, A. Javey, M.C. Hersam, J. Robinson, M. Terrones, 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater 3, 042001 (2016)

    Google Scholar 

  50. M.B. Sadan, L. Houben, A.N. Enyashin, G. Seifert, R. Tenne, S.G. Louie, Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. Proc. Natl. Acad. Sci. USA 105, 15643 (2008)

    CAS  Google Scholar 

  51. G. Seifert, T. Köhler, R. Tenne, Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497 (2002)

    CAS  Google Scholar 

  52. L. Guimarães, A.N. Enyashin, J. Frenzel, T. Heine, H.A. Duarte, G. Seifert, Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano 1(4), 362 (2007)

    Google Scholar 

  53. Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne, Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the Respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118(23), 5362 (1996)

    CAS  Google Scholar 

  54. M. Remškar, Inorganic nanotubes. Adv. Mater. 16, 1497 (2004)

    Google Scholar 

  55. P. Chithaiah, S. Ghosh, A. Idelevich, L. Rovinsky, T. Livneh, A. Zak, Solving the “MoS2 Nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production. ACS Nano 14(3), 3004 (2020)

    CAS  Google Scholar 

  56. F. Xu, N. Wang, H. Chang, Y. Xia, Y. Zhu, Continuous production of IF-WS2 nanoparticles by a rotary process. Inorganics (Basel) 2(2), 313 (2014)

    CAS  Google Scholar 

  57. Y. Yomogida, Y. Kainuma, T. Endo, Y. Miyata, K. Yanagi, Synthesis and ambipolar transistor properties of tungsten diselenide nanotubes. Appl. Phys. Lett. 116(20), 203106 (2020)

    CAS  Google Scholar 

  58. M. Weng, M. Zhang, T. Yanase, F. Uehara, T. Nagahama, T. Shimada, Catalytic chemical vapor deposition and structural analysis of MoS2 nanotubes. Jpn. J. Appl. Phys. 57(3), 030304 (2018)

    Google Scholar 

  59. L. Rapport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997)

    Google Scholar 

  60. M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000)

    CAS  Google Scholar 

  61. M. Naffakh, Z. Martín, N. Fanegas, C. Marco, M.A. Gómez, I. Jiménez, Influence of inorganic fullerene-like WS2 nanoparticles on the thermal behavior of isotactic polypropylene. J. Polym. Sci. B Polym. Phys. 45(16), 2309 (2007)

    CAS  Google Scholar 

  62. C.S. Reddy, A. Zak, E. Zussman, WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J. Mater. Chem. 21(40), 16086 (2011)

    CAS  Google Scholar 

  63. F. Qin, W. Shi, T. Ideue, M. Yoshida, A. Zak, R. Tenne, T. Kikitsu, D. Inoue, D. Hashizume, Y. Iwasa, Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017)

    CAS  Google Scholar 

  64. R. Levi, O. Bitton, G. Leitus, R. Tenne, E. Joselevich, Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 13(8), 3736 (2013)

    CAS  Google Scholar 

  65. S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan, S. Vishwanath, S. Rouvimov, W.S. Hwang, H.G. Xing, D. Jena, A. Seabaugh, Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors. Appl. Phys. Lett. 106(2), 022114 (2015)

    Google Scholar 

  66. S.S. Sinha, A. Zak, R. Rosentsveig, I. Pinkas, R. Tenne, L. Yadgarov, Size-dependent control of exciton-polariton interactions in WS2 nanotubes. Small 16(4), 1904390 (2020)

    CAS  Google Scholar 

  67. D.R. Kazanov, A.V. Poshakinskiy, V.Y. Davydov, A.N. Smirnov, I.A. Eliseyev, D.A. Kirilenko, M. Remškar, S. Fathipour, A. Mintairov, A. Seabaugh, B. Gil, T.V. Shubina, Multiwall MoS2 tubes as optical resonators. Appl. Phys. Lett. 113(10), 101106 (2018)

    Google Scholar 

  68. Y.J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J.H. Smet, Y. Iwasa, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570(7761), 349 (2019)

    CAS  Google Scholar 

  69. Y. Sun, S. Xu, Z. Xu, J. Tian, M. Bai, Z. Qi, Y. Niu, H.H. Aung, X. Xiong, J. Han, C. Lu, J. Yin, S. Wang, Q. Chen, R. Tenne, A. Zak, Y. Guo, Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system. Nat. Commun. 13(1), 5391 (2022)

    CAS  Google Scholar 

  70. Y. Ben-Shimon, V. Bhingardive, E. Joselevich, A. Ya’Akobovitz, Self-sensing WS2 nanotube torsional resonators. Nano Lett. 22(19), 8025 (2022)

    CAS  Google Scholar 

  71. M. Serra, R. Arenal, R. Tenne, An overview of the recent advances in inorganic nanotubes. Nanoscale 11, 8073 (2019)

    CAS  Google Scholar 

  72. R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Ed. 42, 5124 (2003)

    CAS  Google Scholar 

  73. M.B. Sreedhara, S. Hettler, I. Kaplan-Ashiri, K. Rechav, Y. Feldman, A. Enyashin, L. Houben, R. Arenal, R. Tenne, Asymmetric misfit nanotubes: chemical affinity outwits the entropy at high-temperature solid-state reactions. Proc. Natl. Acad. Sci. (PNAS) 118(35), e2109945118 (2021)

    CAS  Google Scholar 

  74. M.B. Sreedhara, K. Bukvišová, A. Khadiev, D. Citterberg, H. Cohen, V. Balema, A.K. Pathak, D. Novikov, G. Leitus, I. Kaplan-Ashiri, M. Kolíbal, A.N. Enyashin, L. Houben, R. Tenne, Nanotubes from the Misfit Layered Compound (SmS)1.19TaS2: atomic structure, charge transfer, and electrical properties. Chem. Mater. 34(4), 1838 (2022)

    CAS  Google Scholar 

  75. R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E.I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama, One-dimensional van der Waals heterostructures. Science 367, 537 (2020)

    CAS  Google Scholar 

  76. M.G. Burdanova, M. Liu, M. Staniforth, Y. Zheng, R. Xiang, S. Chiashi, A. Anisimov, E.I. Kauppinen, S. Maruyama, J. Lloyd-Hughes, Intertube excitonic coupling in nanotube Van der Waals heterostructures. Adv. Funct. Mater. 32(11), 2104969 (2022)

    CAS  Google Scholar 

  77. V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, Charge transfer in the MoS2/carbon nanotube composite. J. Phys. Chem. C 115(43), 21199 (2011)

    CAS  Google Scholar 

  78. A.Y. Polyakov, D.A. Kozlov, V.A. Lebedev, R.G. Chumakov, A.S. Frolov, L.V. Yashina, M.N. Rumyantseva, E.A. Goodilin, Gold decoration and photoresistive response to nitrogen dioxide of WS2 nanotubes. Chem. A Eur. J. 24(71), 18952 (2018)

    CAS  Google Scholar 

  79. A. Bruno, C. Borriello, S.A. Haque, C. Minarini, T. di Luccio, Ternary hybrid systems of P3HT-CdSe-WS2 nanotubes for photovoltaic applications. Phys. Chem. Chem. Phys. 16(33), 17998 (2014)

    CAS  Google Scholar 

  80. S. Sandoval, D. Kepić, Á. Pérez Del Pino, E. György, A. Gómez, M. Pfannmoeller, G. van Tendeloo, B. Ballesteros, G. Tobias, Selective laser-assisted synthesis of tubular van der Waals heterostructures of single-layered PbI2 within carbon nanotubes exhibiting carrier photogeneration. ACS Nano 12(7), 6648 (2018)

    CAS  Google Scholar 

  81. P.N. Immanuel, S.-J. Huang, P. Taank, A. Goldreich, J. Prilusky, A. Byregowda, R. Carmiel, A. Zak, N. Aggarwal, K.V. Adarsh, L. Yadgarov, Superior photocatalytic activity of cesium lead bromide/tungsten disulfide hybrid nanocomposite. ChemRxiv. Cambridge: Cambridge Open Engage (2022).

  82. I. Kim, S.W. Park, D.W. Kim, Onion-like crystalline WS2 nanoparticles anchored on graphene sheets as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 375, 122033 (2019)

    CAS  Google Scholar 

  83. S. Wei, M. Serra, S. Mourdikoudis, H. Zhou, B. Wu, L. Děkanovský, J. Šturala, J. Luxa, R. Tenne, A. Zak, Z. Sofer, Improved electrochemical performance of NTs-WS 2 @C nanocomposites for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 14(41), 46386 (2022)

    CAS  Google Scholar 

  84. S.H. Bae, H. Kum, W. Kong, Y. Kim, C. Choi, B. Lee, P. Lin, Y. Park, J. Kim, Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550 (2019)

    CAS  Google Scholar 

  85. D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170 (2017)

    CAS  Google Scholar 

  86. S.L. Li, K. Tsukagoshi, E. Orgiu, P. Samorì, Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118 (2016)

    CAS  Google Scholar 

  87. A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195 (2015)

    CAS  Google Scholar 

  88. J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X (2014). https://doi.org/10.1103/PhysRevX.4.031005

    Article  Google Scholar 

  89. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, Single nanotube Raman spectroscopy. Acc. Chem. Res. 35, 1070 (2002)

    CAS  Google Scholar 

  90. J.P. Mathew, G. Jegannathan, S. Grover, P.D. Dongare, R.D. Bapat, B.A. Chalke, S.C. Purandare, M.M. Deshmukh, Light matter interaction in WS2 nanotube-graphene hybrid devices. Appl Phys Lett 105(22), 223502 (2014)

    Google Scholar 

  91. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885 (2007)

    CAS  Google Scholar 

  92. A. Henning, V.K. Sangwan, H. Bergeron, I. Balla, Z. Sun, M.C. Hersam, L.J. Lauhon, Charge separation at mixed-dimensional single and multilayer MoS2/silicon nanowire heterojunctions. ACS Appl. Mater. Interfaces 10(19), 16760 (2018)

    CAS  Google Scholar 

  93. G. Sun, B. Li, J. Li, Z. Zhang, H. Ma, P. Chen, B. Zhao, R. Wu, W. Dang, X. Yang, X. Tang, C. Dai, Z. Huang, Y. Liu, X. Duan, X. Duan, Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res. 12(5), 1139 (2019)

    CAS  Google Scholar 

  94. T.J. Kempa, B. Tian, D.R. Kim, H. Jinsong, Z. Xiaolin, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456 (2008)

    CAS  Google Scholar 

  95. T.P. Darlington, C. Carmesin, M. Florian, E. Yanev, O. Ajayi, J. Ardelean, D.A. Rhodes, A. Ghiotto, A. Krayev, K. Watanabe, T. Taniguchi, J.W. Kysar, A.N. Pasupathy, J.C. Hone, F. Jahnke, N.J. Borys, P.J. Schuck, Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15(10), 854 (2020)

    CAS  Google Scholar 

  96. T. Chowdhury, K. Jo, S.B. Anantharaman, T.H. Brintlinger, D. Jariwala, T.J. Kempa, Anomalous room-temperature photoluminescence from nanostrained MoSe2 monolayers. ACS Photonics 8(8), 2220 (2021)

    CAS  Google Scholar 

  97. G. Kim, H.M. Kim, P. Kumar, M. Rahaman, C.E. Stevens, J. Jeon, K. Jo, K.H. Kim, N. Trainor, H. Zhu, B.H. Sohn, E.A. Stach, J.R. Hendrickson, N.R. Glavin, J. Suh, J.M. Redwing, D. Jariwala, High-density, localized quantum emitters in strained 2D semiconductors. ACS Nano 16(6), 9651 (2022)

    CAS  Google Scholar 

  98. S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, T. Machida, Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018)

    Google Scholar 

  99. A.J. Mannix, A. Ye, S.H. Sung, A. Ray, F. Mujid, C. Park, M. Lee, J.H. Kang, R. Shreiner, A.A. High, D.A. Muller, R. Hovden, J. Park, Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17(4), 361 (2022)

    CAS  Google Scholar 

  100. S.J. Yang, J.H. Jung, E. Lee, E. Han, M.Y. Choi, D. Jung, S. Choi, J.H. Park, D. Oh, S. Noh, K.J. Kim, P.Y. Huang, C.C. Hwang, C.J. Kim, Wafer-scale programmed assembly of one-atom-thick crystals. Nano Lett. 22(4), 1518 (2022)

    CAS  Google Scholar 

  101. D.B. Strukov, H. Kohlstedt, Resistive switching phenomena in thin films: materials, devices, and applications. MRS Bull. 37, 108 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sudarson S. Sinha for simulating the IF and INT structures. T.C. acknowledges funding from the Kadanoff-Rice Postdoctoral Fellowship at the University of Chicago Materials Research Science and Engineering Center (DMR 2011854). R.T. is grateful to the support of The Estate of Manfred Hecht and the Estate of Diane Recanati. He is also grateful to Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, the Perlman Family Foundation, and the Kimmel Center for Nanoscale Science (Grant 43535000350000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomojit Chowdhury or Reshef Tenne.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, T., Tenne, R. Opportunities and challenges in integrating 2D materials with inorganic 1D and 0D layered nanostructures. Journal of Materials Research 38, 267–280 (2023). https://doi.org/10.1557/s43578-022-00843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00843-4

Navigation