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Boron nitride nanotubes (BNNTs) are emerging nanomaterials with analogous structures and similarly 
impressive mechanical properties to carbon nanotubes (CNTs), but unique chemistry and complimentary 
multifunctional properties, including higher thermal stability, electrical insulation, optical transparency, 
neutron absorption capability, and piezoelectricity. Over the past decade, advances in synthesis have 
made BNNTs more broadly accessible to the nanomaterials and other research communities, removing 
a major barrier to their utilization and research. Therefore, the field is poised to grow rapidly and see 
the emergence of BNNT applications ranging from electronics to aerospace materials. A key challenge, 
that is being gradually overcome, is the development of manufacturing processes to make “neat” 
BNNT materials. This overview highlights the history and current status of the field, providing both 
an introduction to this Focus Issue—BNNTs: Synthesis to Applications—as well as a perspective on 
advances, challenges, and opportunities for this emerging material.

Introduction
The history of boron nitride nanotubes (BNNTs) largely began 
in the mid-1990s with the first experimental realization of the 
nanotube form of BN in 1995 [1], following close on the heels of 
their theoretical prediction a year earlier [2]. That groundbreak-
ing work, which launched the present field of BNNTs, built on 
the foundation of carbon nanotubes (CNTs) [3] and the struc-
tural similarities between the C–C and B–N bonds. As shown 
in Fig. 1, BNNTs and individual hexagonal-BN (h-BN) sheets 
have structures analogous to CNTs and graphene. This structure 
and the similarly strong B–N bonds give BNNTs comparably 
impressive mechanical properties to CNTs; however, the differ-
ent composition and partially ionic bonding result in a unique 
and complementary suite of functional properties in comparison 

to CNTs (Table 1), including electrical insulation, transparency 
to visible light, high thermal stability, piezoelectricity, and neu-
tron absorption. 

The uniqueness of BNNTs stimulated early excitement and 
experimental activities, including fundamental physics studies 
and small-scale chemistry research. However, while the CNT 
field grew rapidly over the same time period, BNNTs received 
limited attention (Fig. 2). Notably [(Fig. 2(a)], the field grew 
slowly for the first half of its existence (i.e., until BNNTs reached 
their mid-to-late teen years) because of the relative difficulty 
of synthesizing BNNTs; hence, outside of particular locations 
(e.g., References [1, 4–9]), BNNTs were not widely investi-
gated. Change started in the 2010s, with the advent of synthesis 
approaches that could produce high-quality BNNTs, including 
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scalable methods with gram-to-kilogram/day production capac-
ity [10], and most recently the emergence of a growing list of 
commercial BNNT materials. This has led to increasing activity 
with a growing numbers of researchers and publications and 
mounting commercial activity. Now, BNNTs are a true emerging 
material that is accessible and available to a broad R&D com-
munity and is starting to generate commercial applications.

The complementary nature of BNNT properties in compari-
son to carbon nanomaterials, including CNTs, which for some 
time have been produced at worldwide annual rates measured in 
kilotons [11], can be expected to drive the current phase of the 
BNNT field. That is particularly true for early-stage applications 
outside of the lab environment. While the challenge of accessing 
BNNT materials for research purposes has been overcome, com-
mercial BNNTs remain costly, making CNTs (or even graphene) 
advantageous in cases where either type of nanomaterial can 
perform well—particularly so when the nanotubes are used as 
inclusions to improve the strength or thermal conductivity of a 
host material. Yet, the functional properties of BNNTs impart 
clear advantages or could even be the only options where carbon 
nanomaterials are unsuitable, including cases where electrical 
insulation, high thermo-oxidative stability, or transparency 
to visible light are essential. BNNTs can also be advantageous 
over CNTs and graphene nanomaterials in that they exhibit a 
piezoelectric effect; furthermore, boron offers a high neutron 
absorption cross-section, which is absent in CNTs. Therefore, 
in combination with CNTs, BNNTs contribute to an expanded 
set of complementary, multifunctional nanotube materials 
beyond what can be achieved with carbon nanomaterials. For 
this potential to materialize on a larger scale, scientific under-
standing will be needed on what subset of BNNTs may produce 
the advantages predicated on the properties of their idealized 
structures. Lack of clarity on structure–property relations was 
a main cause of the near-collapse of CNTs in the early 2010s 
[12, 13]. The application potential had been hyped based on the 
properties of structurally perfect single and few-walled CNTs, 
but initial scale-up efforts produced highly defective materials 
that had relatively small advantages over carbon black and car-
bon nanofiber fillers and hence failed to get commercial trac-
tion. Clarifying structure–property relations before embarking 
on extensive commercial scale-up will allow a more efficient use 

Figure 1:  Ball-and-stick structural models for a single-walled BNNT and 
an h-BN sheet (bottom), along with a single-walled CNT and a graphene 
sheet (top). The alternating B and N atoms, shown in red and green, 
respectively, form analogous structures to those formed with C atoms, 
shown in black. These models, which show zigzag (10, 0) nanotubes, 
were generated using Nanotube Modeler [19].

TABLE 1:  BNNT and CNT properties.

CNTs BNNTs

Electrical Single-walled CNTs: metallic with very high ampacity or semi-
conducting (0–3 eV bandgap, chirality dependent)
MWCNTs: nominally metallic

Insulating (wide bandgap semiconductor, > 5 eV when not 
doped)

Oxidation resistance Combustion between 400 and 600 °C Higher (stable up to 900 °C)

Tensile properties High strength (e.g., 65 GPa) and stiffness (Young’s modulus ~ 1.5 
TPa)

Similarly high strength and stiffness to CNTs

Thermal conductivity High (e.g., ~ 300 to 3000 W/m/K) High, but lower than CNTs due to lower isotopic purity of 
natural B (e.g., ~ 200 W/m/K)

Thermal neutron 
absorption cross-
sections

Very low; (C = 0.003 barns) High, dominated by boron; B = 770 barns (3800 barns for 
enriched 10B); N < 2 barns

Optical absorption
Bulk color

Absorbs across visible spectrum
Black

Non-absorbing in visible spectrum
White/off-white
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of resources and, likely, will mitigate or even prevent a hype-
disillusionment cycle for BNNTs.

For these reasons—the emergence of BNNT manufactur-
ing and the associated increases in material availability and 
researcher and commercial activity—now is a pertinent time 
for this Focus Issue—BNNTs: Synthesis to Applications. BNNTs 
have been the subject of a range of review articles, including sev-
eral in recent years [14–18], and exciting advances range from 
BNNT synthesis, to novel chemistry, to applied investigations 
in areas from space to medicine. The intent of this overview is 
not to duplicate existing and comprehensive reviews. Rather, this 
article serves as an introduction to the Focus Issue, highlighting 
recent advances to offer a current perspective and future outlook 
for the growing field of BNNTs.

BNNT highlights
In this section, we highlight recent progress beginning with (1) 
advances in synthesis and manufacturing, which have enabled 
the acceleration of the BNNT field in the past decade and fol-
lowed by (2) BNNT chemistry, (3) BNNT sheets and fibers, (4) 

BNNT-reinforced composites, (5) biological and medical, and 
(6) other novel applications.

Synthesis and manufacturing

Despite numerous efforts since their first synthesis in 1995, pro-
gress in the synthesis of high-quality BNNTs has been much 
slower compared to CNTs and still remains a significant chal-
lenge. The main challenges are lack of reliable BN sources that 
are processable at low temperatures, and controlled incorpora-
tion of B and N atoms into the hexagonal lattice. Inspired by the 
synthesis of CNTs, both low- (< 2000 K) and high-temperature 
methods (> 4000 K) have been extensively investigated for the 
production of BNNTs, and it is only recently that we have wit-
nessed the advent of large-scale synthesis methods that led to 
successful commercialization [10, 20]. Table 2 summarizes 
physico-chemical properties of several BNNT materials that 
are currently available commercially.

The high-temperature processes include arc discharge, 
laser vaporization, and thermal plasma jet methods. In these 
approaches, a direct BN source such as elemental B or h-BN 
powders can be employed and vaporized (e.g., via high-temper-
ature plasma) to produce BNNT seeds along with effective BN 
precursors. BNNTs are typically grown from boron droplets (i.e., 
BNNT seeds) via in-flight reactions with N-containing species 
without metal catalysts. The inherent slow kinetics in this re-
nitridation process has been largely addressed either by employ-
ing high pressure [22, 23] or using hydrogen as a gas-phase cata-
lyst [24]. A high production rate approaching 20 g/h has been 
achieved and led to successful commercialization of high-quality 
BNNTs with small diameters (∼5 nm) and few walls (3–4 walls). 
A production rate of ~ 22 g/h is reported in this issue using a 
DC plasma process with hydrogen gas injected to form a vortex, 
which increases residence time in addition to forming interme-
diates [25]. The average BNNT diameter varied from ~ 10 nm 
to almost 20 nm in different regions of the reactor, with poten-
tial to adjust residence time to vary diameter. However, BNNTs 
produced in high-temperature processes are still accompanied 
by the production of BN impurities (e.g., a-BN, BN shells, BN 
flakes), necessitating additional post-purification processes for 
their practical applications [26–28]. In this Focus Issue, Alston 
and colleagues [29] provide a comprehensive review of BNNT 
purification and show that improvements in both purification 
and purity assessment are key challenges in relation to broader 
use of high-temperature-produced BNNTs. A recent study has 
employed both experimental and numerical approaches for 
a mechanistic understanding of BN impurity formation in a 
high-temperature plasma jet process and suggested that the 
flow structure of the plasma jet (such as turbulence) plays a key 
role in the formation of BN impurities [30]. Very recently, it was 
reported that BN radicals can be effectively produced from the 

Figure 2:  Comparison of (a) BNNT and (b) CNT publications based on the 
Scopus search engine and a title–abstract–keyword search for “boron 
nitride nanotube*” or “BN nanotube*” (and “carbon nanotube*”).
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controlled decomposition of ammonia borane in a laser ablation 
process. BNNTs were grown from the BN radicals via homoge-
neous nucleation and thus resulted in a minimal formation of 
B impurities [31].

The low-temperature approach includes CVD and ball 
milling processes. Owing to their low processing tempera-
tures, typical precursors include boric acid and melamine, 
boron powders and metal oxides, and gaseous boron-contain-
ing feedstock. The CVD process produces BNNTs with fewer 
impurities; however, low yield of around 1 g/h is an issue 
to be addressed for successful commercialization. The ball 
milling process has demonstrated a potential for large-scale 
production up to kg-scale, while, in that case, low quality of 
BNNTs and formation of impurities still remain challenges. 
Both methods usually produce BNNTs larger than 20 nm. 
Similar to CNT synthesis, the CVD method presents excellent 
opportunities for the controlled synthesis of BNNTs, including 
the production of vertically aligned BNNTs (VA-BNNTs). A 
recent review paper focused on CVD synthesis including the 
effect of precursors, catalysts, and gases in the CVD process 
[17]. Although BNNT growth models are critical for cata-
lyst design, their nucleation mechanism was less studied and 
still remains unknown. A recent non-equilibrium molecular 
dynamics (MD) simulation revealed how BNNT cap structures 
are created in a Ni-catalyzed CVD process [32]. Notably, CNT 
synthesis was scaled up via catalyzed CVD (floating catalyst 
for high-quality CNTs, supported catalyst for lower-quality 
material); hence, improvements in BNNT CVD synthesis 
may be the highest payoff pathway to scale, even though this 
route presently lags high-temperature synthesis in terms of 
productivity.

While production of high-quality BNNTs with the focus 
on increased yield and purity has been the main interest in 

the past decade, targeted syntheses of BNNTs with special-
ized features provide a third challenge for BNNT synthesis 
(Fig. 3). For example, VA-BNNTs forests have been manufac-
tured using VA-CNTs as a template [33, 34], which provides 
new opportunities in a wide range of applications, including 
electronics, nanocomposites, and thermal management. The 
synthesis of single-walled CNTs (SWCNTs) was quickly real-
ized at reasonable scales (e.g., in Smalley’s Tubes@Rice effort); 
conversely, such synthesis has been achieved only in limited 
and small-scale reports for BNNTs (e.g., Reference [35]). Nota-
bly, SWCNTs were expected to have dramatically different 

TABLE 2:  Commercial BNNT materials products based on information listed on supplier websites (BNNT LLC, Tekna, NAiEEL, BNNano, BNNT Technology 
LTD) [21].

Manufacturer/
product Method category BNNT type Morphology Purity (%BNNT) Main impurities Dimensions

Surface area 
 (m2/g)

BNNT LLC/Raw Laser ablation Few wall, crystal-
line; enriched 
10B/11B available

Puff ball 50% Elemental B
h-BN

1–5 Walls
L up to 200 μm

Up to 400

/Purified Puff ball/powder (99% BN) h-BN

/Mat Paper (99% BN) h-BN

Tekna/Raw Thermal plasma Few wall, crystal-
line

Fluff/powder 50% Elemental B
h-BN derivatives

d ~ 5 nm;
L ~ microns

 > 100

/Purified Fluff/powder 75% h-BN derivatives

/Buckypaper Paper 75% h-BN derivatives

NAiEEL Ball-milling Large, multiwall Powder 80%, 90% h-BN
Mg and Fe (< 1%)

d ~ 30–50 nm Unspecified

BNNano Not specified Few wall, irregular 
surface

Powder  > 90% h-BN d ~ 60 nm
L ~ 20 μm

Unspecified

BNNT Technology 
LTD

Not specified Large, multiwall Powder  > 90% Unspecified d ~ 20–100 nm
L ~ 10–100 μm

Unspecified

Figure 3:  Current challenges (inner ring) and recent progress (outer ring) 
in BNNT synthesis.
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electrical properties (metallic to semiconducting) depending 
on their diameter and chirality; whereas such properties are 
critical for electronics, their importance was over-estimated 
for the area of macroscopic materials, where aspect ratio and 
crystallinity proved more important to attain high-level mac-
roscopic properties [36]. In this respect, SWCNTs and few-
walled CNTs proved superior to their larger diameter, multi-
walled counterparts because of their inherently higher degree 
of crystalline order. The optical and electrical properties of 
SW-BNNTs do not depend appreciably on their structure; 
hence there is no anticipated difference between SW-BNNTs 
and their few-walled counterparts. However, SW-BNNTs may 
also have higher crystallinity because defects cannot lock in 
place by chemical bonding between walls, which would be 
advantageous in macroscale structures. Moreover, control of 
electronic/optical/adsorption properties of BNNTs by doping 
or creating heterostructure interfaces is of high interest for 
electronic or energy applications [37, 38]. Hybrid NTs such 
as BNNT@CNT have been demonstrated as one-dimensional 
van der Waals heterostructures [39, 40], and their properties 
have been investigated experimentally and by first-principles 
modeling [41–43].

BNNT chemistry and functionalization

Chemical processing and modification are essential to utilize 
BNNTs in many applications. While the B–N bond is isoelec-
tronic with C–C, allowing the formation of analogous phases 
such as h-BN and BNNTs, the difference in composition and 
the partially ionic nature of the bonding means that BNNT 
chemistry differs from that developed for CNTs. Nonetheless, 
approaches similar to those used for CNTs have been investi-
gated to functionalize BNNTs, including surfactants, polymer 
wrapping, covalent functionalization, and others (Fig. 4), and 
several reviews (e.g., References [20, 44–46]) have addressed 
BNNT functionalization. Early reports used polymer wrapping 
[47] or covalent functionalization of BNNT edges and defects 
[48]. Among later reports, reductive chemistry has been shown 
to facilitate covalent functionalization [49, 50]. The electron-
deficient boron atoms can also act as Lewis acids. For example, 
in this issue, BNNTs are covalently functionalized using sonoly-
sis of a primary alcohol to form radicals that can covalently 
attach to the boron atoms of BNNTs [51]. Of particular impor-
tance across the BNNT field are (1) the purification of raw 
BNNT materials, which contain different impurities depend-
ing on the synthesis methods, and (2) dispersion of BNNTs, 

Figure 4:  Approaches for chemical modification of BNNTs. Reprinted by permission from Springer Nature, Journal of Materials Research, Reference [40], 
copyright 2022.
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which is often the critical step for the integration of BNNTs in 
composites. While boron impurities can be removed follow-
ing chemical purification (e.g., via oxidation), other BN nano-
materials different from BNNTs are more difficult to remove 
due to the similarity of chemical bonds and composition. 
Their purification is generally based on selective dispersion 
or solubility of either the BNNTs or impurities. For example, 
the preferential solubility of BNNTs in chlorosulfonic acid has 
been employed to purify BNNTs to produce films and aerogels 
[52]. In this issue, advances in BNNT purification and disper-
sion are addressed in comprehensive reviews by Maselugbo 
et al. [29] and Smith McWilliams et al. [46], respectively, and 
MD simulation is employed to study interfacial interactions 
of poly(4-vinylpyridine) with BNNTs and h-BN with the goal 
to understand and improve purification of BNNTs by selective 
dispersion [53].

Both purification and dispersion processes are essential to 
producing BNNT fibers in liquid spinning methods, and the 
properties of nanotube assemblies and composites typically 
correlate with the purity and dispersion quality. Additionally, 
due to their ionic character, multiwalled BNNTs exhibit higher 

resistance to pull out of inner walls [54] and BNNTs exhibit 
stronger interactions with common polymers [55, 56], both of 
which give BNNTs an inherent advantage over CNTs in the area 
of polymer nanocomposites.

BNNT sheets and fibers

Similar to CNTs, direct spinning of BNNT fibers during the 
synthesis process can find many important applications [57]. 
To facilitate in-flight alignment and coalescence of BNNTs 
from BNNT aerogels the formation of impurities must be 
minimized. In a recent study, BNNT fibers were formed spon-
taneously from the laser ablation of an ammonia borane tar-
get because of the absence of amorphous boron impurities 
[31]. BNNT yarns and tapes have also been collected during 
a CVD synthesis [58], which can provide for continuously 
drawn yarns or sheets. Supported thin films also have been 
synthesized directly by patterning the catalyst for CVD syn-
thesis [59] or painting using a boron ink precursor [60]. Along 
with assembly during synthesis, BNNTs have been assembled 
into fibers, yarns, or sheets through post-synthesis processing 

Figure 5:  Examples of BNNT assemblies: (a) first BNNT yarn produced by finger twisting of as-produced BNNTs (used with permission of IOP Science, 
from Ref. [22]; permission conveyed through Copyright Clearance Center, Inc.), (b) BNNT buckypaper and BNNT paper airplane in a flame (Reproduced 
from Ref. [1] with permission from the Royal Society of Chemistry), (c) BNNT film patterned using boron ink (used with permission of Royal Society 
of Chemistry, from Ref. [60]; permission conveyed through Copyright Clearance Center, Inc.), (d) collection of BNNT fiber during laser synthesis 
(reproduced and adapted, with permission, from Ref. [31] under a Creative Commons Licence: http:// creat iveco mmons. org/ licen ses/ by/4. 0/), (e) 
aligned BNNT-DNA film (reprinted and adapted with permission from Ref. [61]. Copyright 2019 American Chemical Society), and (f ) BNNT fiber 
produced from chlorosulfonic acid liquid crystal BNNT solution (reproduced and adapted, with permission, from Ref. [62] under a Creative Commons 
Licence: http:// creat iveco mmons. org/ licen ses/ by/4. 0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(Fig. 5). This includes twisting or compressing as-produced 
BNNT bundles or mats, and filtration-based methods to pro-
duce nonwoven nanotube sheets commonly called buckypa-
pers. Aligned BNNT films were created through surface coat-
ing using high concentration DNA-wrapped BNNTs that form 
an ordered phase during drying [61]. Most recently, the first 
BNNT liquid crystal was reported, using high-quality BNNTs 
in chlorosulfonic acid, and the nematic liquid crystal domains 
were processed into aligned films and fibers [62]. In addition to 
direct collection and liquid spinning, drawing and spinning of 
yarns from vertically aligned CNT arrays or forests have been 
used to produce CNT yarns [63]; however, there have yet to 
be any analogous reports showing drawable/spinnable BNNT 
arrays. The mechanical properties reported for BNNT assem-
blies to date are modest compared to the leading CNT yarn 
and sheet materials, but compare well to early reports for CNT 
fibers or to CNT buckypapers made from dispersion of similar 
aspect ratio CNTs. The properties of these BNNT assemblies 
already show promise for producing BNNT composites with 
high BNNT contents [64, 65] and the properties of the BNNT 
assemblies themselves can be expected to improve significantly 
as the synthesis and processing methods improve, including 
achieving high-quality BNNTs with higher purity and longer 
length. In this issue, high-resolution electron microscopy is 
employed to study the effect of defects in purified BNNTs on 
alignment to form the ordered domains necessary to produce 
ordered assemblies by liquid-phase processing [66] Addition-
ally, MD simulations of BN nanoribbons indicate that BNNT 
strength is strongly influenced by the location and orienta-
tion of preexisting cracks [67]. Such defects could reduce 
the strength or effective length of BNNTs, which impact per-
formance of the assembly. BNNT production costs also will 
become important once these macroscopic materials attain 
their potential properties—these are the most cost-sensitive 
applications because BNNTs are used in bulk rather than as a 
low-concentration dispersed agent.

BNNT‑reinforced composites

The advances in BNNT manufacturing leading to broader avail-
ability of gram-scale quantities of BNNTs achieved over the past 
decade, along with those for the production of BNNT assemblies 
(in particular fibers, films, and buckypapers) and for chemically 
purified and modified BNNTs, have enabled increased activity 
in BNNT composites. BNNT composites are addressed in sev-
eral recent reviews [15, 17]. Although the stronger interaction 
between BNNTs and polymers might ultimately make BNNTs 
the preferred nanotube for the mechanical reinforcement of 
polymers, CNTs are much more advanced in terms of synthe-
sis, functionalization, and composite integration. Therefore, the 
most promising cases for BNNT composites in the short-to-
medium term are those where the desired multifunctional prop-
erties make BNNTs advantageous or even render carbon-based 
nanomaterials unsuitable (Table 3).

In the case of multifunctional polymer nanocomposites, 
BNNTs have been shown to enhance the piezoelectric response 
of both piezoelectric and non-piezoelectric polymers [69–72]. 
Additionally, the optical properties of BNNTs allow for nano-
tube-reinforced polymers that remain highly transparent at 
modest thickness [73, 74]. This is of particular relevance for 
transparent coatings or adhesives, which are not achievable 
with CNTs due to their high absorption across the visible spec-
trum. Although not yet shown to offer transparent composites 
at bulk thicknesses, BNNT optical properties are also favora-
ble for nanotube-reinforced dental restorative materials, where 
color is important to the application and the potential bioactiv-
ity and non-cytotoxicity of BNNTs may also be advantageous 
[75]. BNNT–polymer composites are promising for substrates 
and packaging in particular for high power electronics where 
the heat dissipation challenge is increased and high electrical 
insulation is also needed. Composites with 10–40-wt% BNNTs 
have been shown to have thermal conductivities 20 × higher or 
more than typical polymers [76–78]. Relatively high loading as 
well as preferential alignment of BNNTs are beneficial for both 

TABLE 3:  Composites applications of BNNTs in comparison to CNTs.

Application area CNTs BNNTs

Both Mechanical reinforcement Yes Yes

Thermal conductivity enhancement Yes Yes

CNT Electrical conductive composites Yes No

BNNT Thermally conductive electrical insulators (e.g., electronics packaging) No Yes

Transparent (or dye-able) composites No Yes

Neutron shielding Negligible absorption by CNTs Yes

BNNTs advan-
tageous

High-temperature materials processing (e.g., glass, metal, and ceramic processing) Limited by stability Yes

High-temperature applications (e.g., thermal barriers, fire resistance) Limited by stability Yes

Biocompatible composites Greater toxicity issue Yes

Piezoelectric sensing and energy harvesting Not piezoelectric themselves Yes
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mechanical and multifunctional properties. In recent years, 
BNNT–polymer composites have been made from BNNT 
papers/sheets [64, 65, 79] as well as BNNT-–composite fibers 
through composite fiber making approaches, including wet 
spinning and electrospinning [80–84]. BNNT-PAN fibers have 
also been converted to BNNT-enhanced carbon fiber through 
pyrolysis [83, 84]. While their functional properties provide 
nearer-term application potential, ultimately mechanical prop-
erties of BNNT-reinforced composites will also be important. 
In addition to exhibiting stronger interaction with polymers 
in comparison to CNTs [55, 56], new MD simulations in this 
issue show that BNNTs are expected to interact more strongly 
with bismaleimide (BMI) resins—an important case for high-
performance composite materials—than with either epoxy or 
cyanate ester resins [85]. The functional properties of BNNTs 
also favor their application in extreme environments and use 
in high-temperature manufacturing processes. This includes 
resistance to space-based radiation and the ability to provide 
mass-efficient neutron shielding [69, 86–89]. Additionally, the 
high thermal stability of BNNTs enables high-temperature 
nanocomposites [90], including high application temperature 
and/or high fabrication temperatures needed for many metals 
or ceramic matrix composites. Among other examples, BNNTs 
have been shown to reinforce ceramics, including reducing 
brittle fracture and increasing the toughness of aluminum 
oxide ceramics produced by spark plasma sintering [91], and 
to modify the dielectric properties of polymer-derived ceram-
ics for potential application as electromagnetic transparent 
materials in harsh conditions [92]. BNNTs are also promis-
ing for metal composites, including aluminum (e.g., Refer-
ences [93, 94]) and titanium (e.g., Reference [95]), the latter 
showing potential for improved neutron shielding and wear 
for lunar applications [89]. Recently, BNNTs have also been 
used in metal additive manufacturing, where incorporation 
of BNNT-decorated titanium alloy powders were employed 
with a laser-additive manufacturing system to produce BNNT-
reinforced alloys [96].

Biological and medical

Similarly to CNTs, BNNTs have shown great promise for bio-
medical applications. More than a decade ago, Ciofani et al. 
reported the first studies on the cytocompatibility of BNNTs 
with human neuroblastoma cells (SH-SY5Y) [97]. These BNNTs 
were dispersed in water using polyethyleneimine and showed 
good viability up to concentrations of 5 μg/mL of nanotubes. 
After this, a variety of studies have been performed in cells as 
discussed in greater detail in this issue by Kodali et al. [98] The 
presence of impurities, BNNT concentration, and exposure time 
have a remarkable effect on the viability of cells when exposed 
to this nanomaterial.

BNNTs have been explored also for drug delivery. Having 
a large surface area, these nanomaterials are the ideal vehicles 
for delivering molecules for medical treatments. For example, 
BNNTs coated with amine-modified silica have been used to 
deliver doxorubicin to prostate cells, increasing the efficiency of 
drug internalization and the efficacy of killing cells [99]. Alter-
natively, doxorubicin adsorbed on bare BNNTs shows a pH-
dependent release and increases toxicity for HeLa and HUVECs 
cells when conjugated to a cancer-targeting molecule (folate). 
Other drugs such as tamoxifen and paclitaxel drugs were loaded 
in BNNTs coated with Pluronic F127 and tested against MCF-7 
cells and A549, respectively, showing lower cell viability than 
the free drug [100]. In addition, taking advantage of the 10B 
naturally present in BNNTs, Nakamura et al. have used boron 
neutron capture therapy to kill B16 melanoma cells [101]. Other 
molecules have been used to cover BNNTs including single-
stranded DNA [102], Plasmids [103], and  NaGdF4:Eu [104], 
for a variety of therapeutic and diagnostic applications.

The effect of BNNTs in tissue and organisms has also been 
studied. BNNTs composites with hydroxyapatite have improved 
elastic modulus, wear resistance, and osteogenesis with applica-
tions to orthopedic implants [105, 106]. The effect of BNNTs has 
also been studied in organisms. For example, the interaction of 
BNNTs with planarians have been studied showing no adverse 
effects [107]. Research in mice using 99mTc-labeled BNNTs 
showed that BNNTs accumulate in the liver, spleen, and gut at 
30-min post-injection and appear as well as in the kidneys and 
bladder; however, after 1 and 4 h, images show a decrease of 
BNNTs due to clearance [108]. A thorough review on the toxic-
ity of BNNTs in a variety of models is provided in this issue by 
Kodali et al. [98].

Other novel applications

The BNNT community continues to explore and develop new 
applications and what can be captured in the scope of this brief 
overview only scratches the surface. Hydrogen storage was first 
investigated relatively early in the history of BNNTs [109], and 
there remains interest both in the storage of hydrogen and also 
in the addition of hydrogen to BNNTs to increase their neutron 
shielding capability. BNNTs also are being applied in the field 
of electronics, with BNNTs modified with quantum dots [110], 
encapsulating atomic chains [111], and other variations recently 
explored in nanoelectronics as reviewed in this issue by Zhang 
et al. [38]. BNNTs have also shown to be viable low-k dielec-
tric materials [112] and, in printed electronics, BNNTs were 
recently shown to improve the performance of photosintered 
metal ink traces for through improved thermal management 
[113]. BNNTs also have been reported to improve the stability 
of encapsulated dye molecules [114] and to be useful as car-
riers for high-brightness fluorophores wherein organizing dye 



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
37

  
 I

ss
ue

 2
4 

 D
ec

em
be

r 2
02

2 
 w

w
w

.m
rs

.o
rg

/jm
r

Overview

© Crown 2022 4411

molecules on the surface of BNNTs led to a dramatic increase in 
fluorescence [38], both of which could improve dye performance 
and imaging in biological applications. BNNTs, in particular in 
BNNT films/sheet form, can also be used as membranes, such 
as for water filtration [16, 18], and the high-temperature stabil-
ity of BNNTs can enable efficient re-use of membranes [115]. 
Alternatively, BNNTs have also been coated onto polymer mem-
branes and shown potential to improve the thermal stability of 
separator membranes for safer lithium ion and lithium–sulfur 
batteries [116, 117], representing a developing application case 
of BNNTs in the energy field.

Conclusions and outlook
One could simplify BNNT history to-date by grouping it into 
two phases. The first phase (ca. 1995 to ~ 2010) was supply‑lim‑
ited and marked by a focus on synthesis methods, fundamental 
properties, theoretical studies, and small-scale chemistry. The 
second phase (~ 2010 to present day) has been marked by the 
emergence of larger-scale synthesis and commercial BNNT 
materials, starting a shift toward a demand‑limited scenario 
with the availability of sufficient quantities of BNNTs (from a 
lab research perspective) to engage more researchers—including 
academic and industry laboratories not engaged in BNNT syn-
thesis—and to enable increased activity in areas, such as BNNT 
purification and BNNT composites, where larger quantities of 
raw BNNT materials (e.g., > 1 g) are critical. To put this into 
perspective, CNTs attained the second phase starting in the mid-
1990s, with Smalley’s synthesis of laser-oven SWCNTs [118, 119] 
and the subsequent establishment of Tubes@Rice [120], which 
supplied the academic community with much of the initial stud-
ies on high-quality CNTs.

Mars‑shot?

While considering how the BNNT field will advance over its 
next 10- to 15-year period, it is tempting to speculate about a 
Moon‑shot goal (or Mars-shot!), such as ultrastrong lightweight 
high-temperature composites. Such a BNNT composite would 
be revolutionary for multifunctional space structures; in fact, 
NASA continues to be a key leader in the BNNT field due in 
part to the unique advantages of BNNTs for space applications 
[121], including for radiation shielding on long-duration mis-
sions (e.g., Lunar Gateway and Mars missions) and for extreme 
temperature cases (e.g., re-entry and for hypersonic vehicles). 
However, ultrastrong nanocomposite space structures based on 
much more developed CNT materials remain a technological 
challenge and an active area of research today [122, 123]. BNNTs 
will certainly benefit from this work that is now at the frontier 
of the CNT composites field. Drawing additional parallels to the 
progress of CNTs, it is more likely that evolutionary applications 

(e.g., the use of CNT powders as a better filler or additive for 
conductive plastics and batteries) will spur the increased 
demand for BNNTs needed to reach economies of scale. An 
obvious leading candidate is thermally conductive plastics for 
electronics packaging, which also nicely parallels the use of 
CNTs electrically conductive plastics. Thermal conductivities in 
the range of a few to 20 W/m/K are lower than typical electrical 
conductors but would be transformative in electrically insulat-
ing plastics, particularly in high power electronics with high 
heat production rates and unmet needs for adequate electrical 
insulation. Reinforcement of commonly used metals would also 
spur large demand for BNNTs. Displacing even a tiny fraction of 
the aluminum alloy market with BNNT-reinforced alloys would 
require BNNT quantities in excess of current worldwide produc-
tion capacity. Successes in these area would greatly increase the 
demand for BNNTs. In the medium term, the use of BNNTs as 
reinforcement in metal additive manufacturing (3D printing) is 
more likely to find niche applications. Even with recent advances 
in commercial BNNTs, worldwide production of BNNTs is still 
low and the materials are high cost. Applications where BNNT 
composites provide useful and unique advantages are likely 
to drive the increase in production volume needed to achieve 
viable cost points.

Particle to article

Again drawing on the CNT field, where pre-formed assemblies 
of CNTs (i.e., buckypaper, films, tapes, and yarns) have enabled 
some of the highest performance CNT materials, the BNNT field 
is beginning to see more examples and improved properties for 
BNNT sheets and fibers. As for CNTs, macroscopic articles made 
of BNNTs (e.g., fibers, sheets or arrays) simplify the introduction 
into material manufacturing chains (relative to BNNT particles 
or powders) and can achieve high content of BNNTs and BNNT 
alignment in composite materials, which is essential to better 
leverage their structural and functional properties. Much like 
in synthesis, the BNNT field lags by about 15–20 years the CNT 
area, where macroscopic CNT fibers were attained in the early 
2000s [124] and properties were achieved a decade later [125]. 
Early reports of BNNT fibers were published in the past year [31, 
62]; the development of structure–processing–property relation-
ships for BNNT fibers is now critical. As for CNTs, it will rely 
on improvements in BNNT purity, quality, and availability. Such 
anticipated improvements in BNNT assemblies will translate to 
broader application development, including new and improved 
BNNT composites with high contents of aligned BNNTs.

Understanding and control

The recent advances in BNNT development and applications 
are built on ~ 25 years of foundational studies on BNNT growth, 
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chemistry, and properties. Fundamental research remains essen-
tial to improve understanding and control of BNNTs. Improved 
in situ assessment and diagnostics are likely to impact BNNT 
synthesis and manufacturing, including the less developed areas 
of BNNT fibers, BNNT arrays, and doped BNNTs. Spinnable 
arrays, which are highly sensitive to synthesis conditions but 
are now fairly well established for the case of CNTs [126], have 
yet to be reported for BNNTs. There is also a need for more 
control in terms of scalable and green methods for chemical 
purification and functionalization, as well as better methods to 
characterize BNNTs.

Standardized methods and standard materials

Part of the unmet needs and challenges in comparing different 
BNNT studies are related to the difficulty of comparing results 
obtained with different BNNT materials or even due to vari-
ability between batches of nominally the same material. While 
a variety of techniques are commonly used for characterizing 
BNNTs (i.e., electron microscopy, thermogravimetric analysis, 
FTIR spectroscopy, UV–Vis absorption spectroscopy, Raman 
spectroscopy, X-ray photoelectron spectroscopy, etc.) there are 
currently no broadly accepted and employed methods to assess 
and compare BNNTs between studies. Individual studies can 
be performed with BNNTs from a single batch, which is advan-
tageous for identifying trends, but this limits comparisons with 
other studies. Easily accessible spectroscopy-based methods 
using FTIR spectroscopy [127] and UV–Vis–NIR spectros-
copy [128] have recently been described for assessing BNNT 
purity and quality; however, no method has yet proven to be 
broadly useful across BNNT materials or been used extensively 
by many groups. Therefore, the mere reporting of the purity of 
BNNT materials can be unclear. In addition to field-accepted 
methods of characterizing and comparing BNNT materials, 
standard reference materials (e.g., BNNT-1) [129] also have a 
role to play in enabling inter-lab comparison and the develop-
ment of improved characterization methods for BNNTs. Nota-
bly, lack of clarity in nomenclature and characterization will 
hold back the growth of the field because resources—e.g., gov-
ernment funding and venture capital—will be scattered over 
a broad set of efforts with the same name yet fundamentally 
different properties and potential. This could lead to the same 
hype-disillusionment cycle that was experienced in the CNT 
field in the 2010s.

Strength in diversity

Uniformity and consistency are essential in terms of standard 
materials and for achieving broad consensus on how to char-
acterize, report, and make comparisons between studies; how-
ever, diversity is also an advantage in finding application niches 

for BNNTs. In general, BNNTs are less a competitor to CNTs 
(or graphene and other related nanomaterials) than part of an 
expanded set of related nanomaterials with complementary 
advantages. Even within BNNTs, the current and mostly pow-
der-like commercial materials can be expected to be suitable for 
some applications, while emerging macroscopic articles (bucky-
papers, aligned sheets and fibers, and vertical BNNT arrays) 
will be advantageous or necessary in other cases. Continuing 
to increase the number of researchers joining the field, as was 
done over the past decade, will be critical for adding diversity 
of expertise and ideas, which will push the field to new heights 
in ways beyond those considered here.

In summary, remarkable progress has occurred since the 
discovery of BNNTs and increasing availability of BNNTs and 
research activity makes this an exciting time for the field. BNNTs 
have already earned a place as a leading nanomaterial and there 
is no doubt that the 2020s will see a significant growth of the 
field as well as the emergence of commercial applications based 
on or enabled by BNNTs.
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