Skip to main content

Advertisement

Log in

In situ ion irradiation of amorphous TiO2 nanotubes

  • Article
  • FOCUS ISSUE: In-situ Study of Materials Transformation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004)

    CAS  Google Scholar 

  2. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)

    CAS  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    CAS  Google Scholar 

  4. B.R. Weinberger, R.B. Garber, Titanium dioxide photocatalysts produced by reactive magnetron sputtering. Appl. Phys. Lett. 66(18), 2409–2411 (1995)

    CAS  Google Scholar 

  5. J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006)

    CAS  Google Scholar 

  6. Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102(52), 10871–10878 (1998)

    CAS  Google Scholar 

  7. H. Zhang, R. Lee Penn, R.J. Hamers, J.F. Banfield, Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J. Phys. Chem. B 103(22), 4656–4662 (1999)

    CAS  Google Scholar 

  8. H. Zhang, M. Finnegan, J.F. Banfield, Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett. 1(2), 81–85 (2001)

    CAS  Google Scholar 

  9. C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166(1), 239–243 (2007)

    CAS  Google Scholar 

  10. Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192(2), 588–598 (2009)

    CAS  Google Scholar 

  11. D. Guan, P.J. Hymel, Y. Wang, Growth mechanism and morphology control of double-layer and bamboo-type TiO2 nanotube arrays by anodic oxidation. Electrochim. Acta 83, 420–429 (2012)

    CAS  Google Scholar 

  12. J.-H. Kim, K. Zhu, J.Y. Kim, A.J. Frank, Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim. Acta 88, 123–128 (2013)

    CAS  Google Scholar 

  13. C. Adán, J. Marugán, E. Sánchez, C. Pablos, R. Van Grieken, Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim. Acta 191, 521–529 (2016)

    Google Scholar 

  14. S. Li, Y. Liu, G. Zhang, X. Zhao, J. Yin, The role of the TiO2 nanotube array morphologies in the dye-sensitized solar cells. Thin Solid Films 520(2), 689–693 (2011)

    CAS  Google Scholar 

  15. C.-W. Wang, W.-D. Zhu, J.-B. Chen, X. Hou, X.-Q. Zhang, Y. Li, J. Wang, F. Zhou, Low-temperature ammonia annealed TiO2 nanotube arrays: synergy of morphology improvement and nitrogen doping for enhanced field emission. Thin Solid Films 556, 440–446 (2014)

    CAS  Google Scholar 

  16. M. Kulkarni, A. Mazare, J. Park, E. Gongadze, M.S. Killian, S. Kralj, K. von der Mark, A. Iglič, P. Schmuki, Protein interactions with layers of TiO2 nanotube and nanopore arrays: morphology and surface charge influence. Acta Biomater. 45, 357–366 (2016)

    CAS  Google Scholar 

  17. R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology. Mater. Chem. Phys. 132(2–3), 957–966 (2012)

    CAS  Google Scholar 

  18. S.T. Nishanthi, E. Subramanian, B. Sundarakannan, D. Pathinettam Padiyan, An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays. Solar Energy Mater. Solar Cells 132, 204–209 (2015)

    CAS  Google Scholar 

  19. N.T. Nguyen, I. Hwang, T. Kondo, T. Yanagishita, H. Masuda, P. Schmuki, Optimizing TiO2 nanotube morphology for enhanced photocatalytic H2 evolution using single-walled and highly ordered TiO2 nanotubes decorated with dewetted Au nanoparticles. Electrochem. Commun. 79, 46–50 (2017)

    CAS  Google Scholar 

  20. S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, TiO2 nanotubes–annealing effects on detailed morphology and structure. Eur. J. Inorg. Chem. 2010(27), 4351–4356 (2010)

    Google Scholar 

  21. S. Berger, R. Hahn, P. Roy, P. Schmuki, Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys. Status Solidi B 247(10), 2424–2435 (2010)

    CAS  Google Scholar 

  22. D. Wang, L. Liu, Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem. Mater. 22(24), 6656–6664 (2010)

    CAS  Google Scholar 

  23. D. Wang, Y. Liu, Yu. Bo, F. Zhou, W. Liu, TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance. Chem. Mater. 21(7), 1198–1206 (2009)

    CAS  Google Scholar 

  24. K. Das, S. Bose, A. Bandyopadhyay, TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction. J. Biomed. Materials Res. A 90(1), 225–237 (2009)

    Google Scholar 

  25. D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130(49), 16454–16455 (2008)

    CAS  Google Scholar 

  26. J. Yu, G. Dai, B. Cheng, Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J. Phys. Chem. C 114(45), 19378–19385 (2010)

    CAS  Google Scholar 

  27. X. Luan, D. Guan, Y. Wang, Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116(27), 14257–14263 (2012)

    CAS  Google Scholar 

  28. T. Toyoda, Q. Shen, Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J. Phys. Chem. Lett. 3(14), 1885–1893 (2012)

    CAS  Google Scholar 

  29. A.G. Kontos, A.I. Kontos, D.S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology. Nanotechnology 20(4), 045603 (2008)

    Google Scholar 

  30. A. Nakahira, T. Kubo, C. Numako, Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorg. Chem. 49(13), 5845–5852 (2010)

    CAS  Google Scholar 

  31. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11(1–2), 3–18 (2007)

    CAS  Google Scholar 

  32. G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd edn. (Springer, New York, 2018)

    Google Scholar 

  33. B. Uberuaga, X. Bai, Defects in rutile and anatase polymorphs of Tio2: kinetics and thermodynamics near grain boundaries. J. Phys. 23(43), 435004 (2011)

    Google Scholar 

  34. X. Bai, B. Uberuaga, The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies. JOM 65(3), 360–373 (2013)

    CAS  Google Scholar 

  35. K.A. Smith, A.I. Savva, K.S. Mao, Y. Wang, D.A. Tenne, D. Chen, Y. Liu et al., Effect of proton irradiation on anatase TiO2 nanotube anodes for lithium-ion batteries. J. Mater. Sci. 54(20), 13221–13235 (2019)

    CAS  Google Scholar 

  36. K.A. Smith, A.I. Savva, C. Deng, J.P. Wharry, S. Hwang, D. Su, Y. Wang et al., Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries. J. Mater. Chem. A 5(23), 11815–11824 (2017)

    CAS  Google Scholar 

  37. B.I. Kharisov, O.V. Kharissova, U.O. Méndez (eds.), Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2016)

    Google Scholar 

  38. H.M. Kim, H.S. Kim, S.K. Park, J. Joo, T.J. Lee, C.J. Lee, Morphological change of multiwalled carbon nanotubes through high-energy (MeV) ion irradiation. J Appl. Phys. 97, 026103 (2005)

    Google Scholar 

  39. E. Rui, J. Yang, X. Li, C. Liu, Change of surface morphology and structure of multi-walled carbon nanotubes film caused by proton irradiation with 170 keV. Appl. Surf. Sci. 287, 172–177 (2013)

    CAS  Google Scholar 

  40. A. Singh, R. Kumari, V. Kumar, L. Krishnia, Z. Naqvi, A.K. Panwar, U.M. Bhatta, A. Ghosh, P.V. Satyam, P.K. Tyagi, Electron irradiation induced buckling, morphological transformation, and inverse Ostwald ripening in nanorod filled inside carbon nanotube. Appl. Surf. Sci. 360, 1003–1008 (2016)

    CAS  Google Scholar 

  41. M. Shirai, K. Tsumori, M. Kutsuwada, K. Yasuda, S. Matsumura, Morphological change in FePt nanogranular thin films induced by swift heavy ion irradiation. Nuclear Instrum Methods Phys Res B 267(10), 1787–1791 (2009)

    CAS  Google Scholar 

  42. A.G. Perez-Bergquist, K. Li, Y. Zhang, L. Wang, Ion irradiation-induced bimodal surface morphology changes in InSb. Nanotechnology 21(32), 325602 (2010)

    Google Scholar 

  43. J.P. Wharry, H.C. Xiong, T.O., C.Y., Radiation effects in battery materials, in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819723-3.00109-8

  44. K.E. Sickafus, Comprehensive Nuclear Materials (Elsevier Ltd, 2012), p. 28.

  45. S. Dey, J.W. Drazin, Y. Wang, J.A. Valdez, T.G. Holesinger, B.P. Uberuaga, R.H.R. Castro, Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia. Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  46. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, K.E. Sickafus, Enhanced radiation tolerance in nanocrystalline Mg Ga2O4. Appl. Phys. Lett. 90(26), 263115 (2007)

    Google Scholar 

  47. A. Meldrum, L.A. Boatner, R.C. Ewing, Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J. Mater. Res. 12(7), 1816–1827 (1997)

    CAS  Google Scholar 

  48. M. Libera, Local amorphous thin-film crystallization induced by focused electron-beam irradiation. Appl. Phys. Lett. 68(3), 331–333 (1996)

    CAS  Google Scholar 

  49. W. Qin, T. Nagase, Y. Umakoshi, Electron irradiation-induced nanocrystallization of amorphous Fe85B15 alloy: evidence for athermal nature. Acta Mater. 57(4), 1300–1307 (2009)

    CAS  Google Scholar 

  50. E. Akcöltekin, T. Peters, R. Meyer, A. Duvenbeck, M. Klusmann, I. Monnet, H. Lebius, M. Schleberger, Creation of multiple nanodots by single ions. Nat. Nanotechnol. 2(5), 290–294 (2007)

    Google Scholar 

  51. W. Qin, J.A. Szpunar, Y. Umakoshi, Electron or ion irradiation-induced phase-change mechanism between amorphous and crystalline state. Acta Mater. 59(5), 2221–2228 (2011)

    CAS  Google Scholar 

  52. K. Dyrbye, J. Bo, K. Pampus, B. Torp, Radiation-enhanced diffusion in amorphous Pd-Cu-Si. Phys. Rev. B 38(13), 8562 (1988)

    CAS  Google Scholar 

  53. S. Bellini, A. Montone, M. Vittori-Antisari, Radiation-enhanced diffusion in amorphous Ni-Zr studied by in situ electron irradiation in a transmission electron microscope. Phys. Rev. B 50(14), 9803 (1994)

    CAS  Google Scholar 

  54. Y. Zhang, H. Xue, E. Zarkadoula, R. Sachan, C. Ostrouchov, P. Liu, X. Wang, S. Zhang, T.S. Wang, W.J. Weber, Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr. Opin. Solid State Mater. Sci. 21(6), 285–298 (2017)

    CAS  Google Scholar 

  55. M. Toulemonde, Ch. Dufour, E. Paumier, Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46(22), 14362 (1992)

    CAS  Google Scholar 

  56. M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nuclear Instrum. Methods Phys. Res. B 166, 903–912 (2000)

    Google Scholar 

  57. R.L. Fleischer, P.B. Price, R.M. Walker, Ion explosion spike mechanism for formation of charged-particle tracks in solids. J. Appl. Phys. 36(11), 3645–3652 (1965)

    CAS  Google Scholar 

  58. R.E. Johnson, B.U.R. Sundqvist, A. Hedin, D. Fenyö, Sputtering by fast ions based on a sum of impulses. Phys. Rev. B 40(1), 49 (1989)

    CAS  Google Scholar 

  59. F. Seitz, J.S. Koehler, Displacement of atoms during irradiation. Solid-State Phys. 2, 307 (1956)

    Google Scholar 

  60. G. Rizza, A. Dunlop, G. Jaskierowicz, M. Kopcewicz, Nucl. Instrum Methods B 224, 609–621 (2004)

    Google Scholar 

  61. G. Rizza, A. Dunlop, G. Jaskierowicz, M. Kopcewicz, J. Phys. Cond. Matter 16, 1547 (2014)

    Google Scholar 

  62. C.M. Lopatin, T.L. Alford, V.B. Pizziconi, M. Kuan, T. Laursen, Ion-beam densification of hydroxyapatite thin films. Nucl. Instrum. Methods Phys. Res. Sect. B 145(4), 522–531 (1998)

    CAS  Google Scholar 

  63. K. Meinander, K. Nordlund, Irradiation-induced densification of cluster-assembled thin films. Phys. Rev. B 79(4), 045411 (2009)

    Google Scholar 

  64. D.R. Gomes, A.A. Turkin, D.I. Vainchtein, JTh.M. De Hosson, Size-dependent ion-induced densification of nanoporous gold. Scr. Mater. 164, 17–20 (2019)

    CAS  Google Scholar 

  65. E. Snoeks, A. Polman, C.A. Volkert, Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation. Appl. Phys. Lett. 65(19), 2487–2489 (1994)

    CAS  Google Scholar 

  66. E.P. EerNisse, Compaction of ion-implanted fused silica. J. Appl. Phys. 45(1), 167–174 (1974)

    CAS  Google Scholar 

  67. A. Wootton, B. Thomas, P. Harrowell, Radiation-induced densification in amorphous silica: a computer simulation study. J. Chem. Phys. 115(7), 3336–3341 (2001)

    CAS  Google Scholar 

  68. S. Klaumünzer, Ion-beam-induced plastic deformation: a universal phenomenon in glasses. Radiat. Effects Defects Solids 110(1–2), 79–83 (1989)

    Google Scholar 

  69. M. Ghaly, R.S. Averback, Effect of viscous flow on ion damage near solid surfaces. Phys. Rev. Lett. 72(3), 364 (1994)

    CAS  Google Scholar 

  70. G. Buscarino, S. Agnello, F.M. Gelardi, Structural modifications induced by electron irradiation in SiO2 glass: local densification measurements. EPL (Europhysics Letters) 87(2), 26007 (2009)

    Google Scholar 

  71. G. Buscarino, S. Agnello, F.M. Gelardi, R. Boscaino, The role of impurities in the irradiation induced densification of amorphous SiO2. J. Phys. 22(25), 255403 (2010)

    CAS  Google Scholar 

  72. M. Mačković, F. Niekiel, L. Wondraczek, E. Spiecker, Direct observation of electron-beam-induced densification and hardening of silica nanoballs by in situ transmission electron microscopy and finite element method simulations. Acta Mater. 79, 363–373 (2014)

    Google Scholar 

  73. M.D. Freshley, D.W. Brite, J.L. Daniel, P.E. Hart, Irradiation-induced densification of UO2 pellet fuel. J. Nucl. Mater. 62(2–3), 138–166 (1976)

    CAS  Google Scholar 

  74. M.V. Speight, Point defects and irradiation-enhanced densification. Philos. Mag. 32(6), 1101–1105 (1975)

    CAS  Google Scholar 

  75. I. Greenquist, M. Tonks, Y. Zhang, Analysis of the impact of fuel microstructure on irradiation-enhanced densification using grand potential simulations. Ann. Nucl. Energy 151, 107858 (2021)

    CAS  Google Scholar 

  76. M.E. Cazado, A.C. Denis, Model of nuclear fuel pellets densification under irradiation and isothermal conditions: application to UO2 fuels. J. Nucl. Mater. 510, 585–595 (2018)

    CAS  Google Scholar 

  77. P. Barnes, A. Savva, K. Dixon, H. Bull, L. Rill, D. Karsann, S. Croft, J. Schimpf, H. Xiong, Electropolishing valve metals with a sulfuric acid-methanol electrolyte at low temperature. Surf. Coat. Technol. 347, 150–156 (2018)

    CAS  Google Scholar 

  78. K. Hattar, D.C. Bufford, D.L. Buller, Concurrent in situ ion irradiation transmission electron microscope. Nuclear Instrum. Methods Phys. Res. B 338, 56–65 (2014)

    CAS  Google Scholar 

  79. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268(11–12), 1818–1823 (2010)

    CAS  Google Scholar 

  80. S. Agarwal, Y. Lin, C. Li, R.E. Stoller, S.J. Zinkle, On the use of SRIM for calculating vacancy production: quick calculation and full-cascade options. Nucl. Instrum. Methods Phys. Res. Sect. B 503, 11–29 (2021)

    CAS  Google Scholar 

  81. J. Anthony, Handbook of Mineralogy (Volume III) (Mineral Data Publ, Tuscon, Ariz, 1995)

    Google Scholar 

  82. S. Monti, V. Carravetta, H. Ågren, Simulation of gold functionalization with cysteine by reactive molecular dynamics. J. Phys. Chem. Lett. 7(2), 272–276 (2016)

    CAS  Google Scholar 

  83. H. Li, Y. Guo, J. Robertson, Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional. J. Phys. Chem. C 119(32), 18160–18166 (2015)

    CAS  Google Scholar 

  84. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Comm 271(2022), 10817 (2022)

    Google Scholar 

  85. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation awards DMR-1838604 and DMR-1838605. The authors thank Dr. Chris Gilpin at Purdue University for his assistance with electron microscopy. The authors also thank Prof. Kejie Zhao for fruitful discussion on mechanical responses of nanotubes. A.S. was supported by the Center for Thermal Energy Transport Under Irradiation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. In situ TEM irradiation was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under contract DE-NA-0003525. This research also made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janelle P. Wharry or Hui Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4832 kb).

Supplementary file2 (AVI 168657 kb).

Supplementary file3 (AVI 183437 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Olsen, T., Lau, M.L. et al. In situ ion irradiation of amorphous TiO2 nanotubes. Journal of Materials Research 37, 1144–1155 (2022). https://doi.org/10.1557/s43578-022-00516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00516-2

Keywords

Navigation