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to the important technological goal of designing the architecture 
to achieve a set of targetted macroscopic properties.

Coarse graining drastically reduces the degrees of free-
dom compared to an all-atom MD simulation by lumping 
selected atoms into super-atoms or beads [1–3], which serve as 

Coarse‑graining strategies for predicting properties 
of closely related polymer architectures: A case study 
of PEEK and PEKK
Sandipan Chattaraj1,a) , Sumit Basu2
1 Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
2 Department of Mechanical Engineering, IIT Kanpur, Kanpur, India
a) Address all correspondence to this author. e-mail: sandi.chattaraj@gmail.com

Received: 23 April 2021; accepted: 5 August 2021; published online: 25 October 2021

The ability of atomistic and coarse‑grained models to discern between two polymers of very similar 
architecture is examined. To this end, polyether ether ketone (PEEK) and polyether ketone ketone (PEKK) 
are chosen. The difference in glass transition temperature and the similarity in compressive responses 
of the two polymers are captured by all‑atom models. A coarse‑graining scheme, with 6 beads per 
monomer and 3 types of beads, leads to a good approximation of the structure and packing of chains of 
PEEK and PEKK. The CG model reproduces differences in weakly rate‑dependent properties such as Tg . 
Comparison between strongly rate‑dependent uniaxial stress–strain responses of these two polymers 
requires a knowledge of the scaling between physical strain rate in one to the effective rate in the other. 
The scaling can be approximately determined by comparing the variation of yield strength with strain 
rate, obtained from small‑sized simulations.
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Introduction
Coarse-grained (CG) molecular dynamics (MD) simulations are 
increasingly playing an important role in our efforts to under-
stand how macroscopic properties of glassy polymers depend on 
their molecular architecture. Such understanding takes us closer 
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interaction centres in computations. This has the potential to 
extend the time scale significantly and the length scale modestly 
when MD computations are conducted with the CG polymer. 
Coarse-graining techniques differ in the methods they use to 
calibrate the bonded and non-bonded force fields [2, 4–9]. All 
coarse-graining approaches are aimed at capturing specific static 
and dynamic properties of the underlying all-atom polymeric 
system [10–15]. CG MD simulations have enabled researchers to 
investigate problems such as polymer indentation [16], mechan-
ics of crosslinked amorphous polymer adhesives [17], mechani-
cal behaviour of polymer thin films [18], and thermomechanical 
properties of bulk polymers [19].

We have been interested in determining stress–strain 
responses of glassy, amorphous polymers starting from a 
description of their molecular architectures [20–22]. It has been 
shown that uniaxial stress–strain responses of glassy polymers 
(e.g. polystyrene and a class of polyimides) predicted from such 
carefully calibrated CG simulations do indeed qualitatively 
resemble their experimentally obtained responses. However, 
since uniaxial stress–strain responses of most glassy thermoset 
and thermoplastic polymers are sensitive to the applied strain 
rate and the CG simulations are conducted at strain rates that 
are many orders of magnitude higher than those used in experi-
ments, the stress-carrying capacities of the polymers are greatly 

overestimated, even though the features of the stress–strain 
responses are reproduced faithfully.

From CG simulations mostly on polymer melts, it is known 
that dynamic properties obtained from CG simulations tend to 
differ from detailed all-atom simulations. This is because the 
smooth beads generally lead to faster dynamics in the CG sys-
tem. As a result, the evolution of the detailed system and the 
all-atom one over time differ. Seen in another way, an unit of 
time in the CG system may correspond to a much longer time 
in the detailed system. Time- and temperature-scaling tech-
niques [23–27] have been devised to utilize the faster dynamics 
to extend the time scales accessible by CG simulations. Similarly, 
techniques to extend the CG force fields calibrated at a particu-
lar temperature to other temperatures have also been proposed 
[28–33].

In this paper, we explore the following question:
While CG simulations conducted at extremely high rates 

cannot be expected to quantitatively predict the experimen-
tal stress–strain response of a glassy polymer, is it possible to 
predict qualitative differences between the responses of two 
polymers? For instance, given two molecular architectures and 
similar CG schemes, is it possible to predict which of the two 
will have higher strength?

To this end, we have chosen two polymers with similar 
molecular architectures as test cases. These are, glassy, amor-
phous polyether ether ketone (PEEK) and polyether ketone 
ketone (PEKK). Both of these are thermoplastic polymers 
which find applications in various fields, such as aerospace, 
manufacturing, automotive, etc. These two polymers have the 
same functional groups in their molecular structures, but in 
different proportions, as depicted in Fig. 1. The ratio of ether 
to ketone groups is 2:1 in PEEK, whereas it is 1:2 in PEKK. An 
early all-atom MD study of PEEK [34] suggested that the ether-
ether rings are more mobile than the ether–ketone rings. Also, 
the ketone groups are more rigid than the ether groups. Thus, 
due to a greater proportion of ketone groups, PEKK chains are 
overall expected to be more rigid, and consequently PEKK has 
a glass transition temperature Tg that is about 20 ◦C higher than 
PEEK [35–37].

However, PEEK and PEKK have very similar mechanical 
properties on account of their similar molecular architectures. 
Maintaining mechanical properties while offering a superior 
thermal resistance, PEKK can potentially replace PEEK in 
many applications. Will a CG scheme that sufficiently repro-
duces static properties of PEEK and PEKK be able to capture 
the fact that both have similar uniaxial stress–strain response 
at a given strain rate?

Similar questions have been asked by other researchers in 
different contexts. For example, Tschöp et al. [2] coarse grained 
three varieties of polycarbonate melts and showed that (by 

Figure 1:  Molecular structure of the monomer of (a) PEEK and (b) PEKK. 
The coarse-graining method adopted for the two polymers are also 
shown. The aromatic benzene and the ketone (C=O) groups have been 
considered as beads ‘A’ and ‘B’, respectively, whereas the ether group 
(–O–) has been considered as bead ‘O’.
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extrapolating the high-temperature diffusion constant to the 
zero diffusion limit) the Vogel Fulcher temperatures are in line 
with experimental values. Two different CG mapping schemes 
for polystyrene involving different apportioning of atomic 
masses have been used by Harmandaris et al. [12] to demon-
strate that the ratio of the masses of the beads has a bearing 
on the characteristic ratios and radial distribution functions 
(rdfs). As the number of beads used to coarse grain an all-atom 
polyimide is systematically increased, enhanced friction on 
individual beads leads to a better approximation of the uniaxial 
stress–strain response even without using artificially enhanced 
friction or time scaling [21]. The effect of the number of beads 
has been studied to determine both static and dynamic proper-
ties of polyethylene [27].

We have considered a coarse-graining scheme (see Fig. 1) 
where we assume three types of beads and six beads per mono-
mer. This model considers the aromatic rings (type A beads), 
ether (type O), and ketone groups (type B) as different beads. In 
this case, the point of difference between PEEK and PEKK is the 
sequence of CG beads along the backbone. The reduction in the 
number of atoms per monomer from atomistic to CG model is 
from 34 to 6 in PEEK and from 35 to 6 in PEKK.

The remainder of this paper has been organized as follows. 
In Sect. “Results and discussion”, we critically compare various 
predictions from CG simulations on the two polymers. Salient 
conclusions are presented in Sect. “Conclusions”. The CG pro-
cedure adopted here is similar to many others and a very brief 
description is given in Sect. “Computational methods”. Special 
emphasis is given to the differences in force field calibrations 
between PEEK and PEKK. Owing to their similar architecture, 
the differences are subtle.

Results and discussion
Reported properties of PEEK and PEKK

In amorphous form, the reported densities of PEKK [38] and 
PEEK [39] are 1270 and 1264kg/m3 respectively. But the glass 
transition temperature of PEKK is 160 ◦C compared to 147 ◦C 
for PEEK.

The intrinsic uniaxial stress–strain response of amorphous 
glassy polymers can be obtained from compressive tests where 
various localization phenomena like necking and crazing do not 
intervene [40]. Compressive strength of PEEK is well character-
ized over a wide range of strain rates [41–43]. At room tempera-
ture, PEEK is rate sensitive in compression with the compressive 
strength ranging from about 125MPa at ǫ̇ = 10−4s−1 to 175MPa 
at 102s−1 [43]. It shows some hardening at large compressive 
strains only when the rate of loading is high.

On the other hand, we could not locate a systematic study 
of rate dependence of compressive behaviour of amorphous 

PEKK. Compressive strength of amorphous PEKK reported in 
commercial datasheets [38] is slightly lower than amorphous 
PEEK—about 108MPa at a low strain rate. The rate dependence 
of the compressive response of PEKK has not been explored 
in the literature. The higher glass transition temperature, com-
bined with its comparable compressive strength, makes PEKK 
an important substitute for PEEK in several applications.

Coarse‑grained approximation of the structure 
of PEEK and PEKK

We start by examining the averaged end-to-end distance of the 
all-atom and CG molecules. The distance between the centre 
of mass of the terminal monomers is considered as the end-
to-end distance in both all-atom and CG molecules. In view 
of the fact that PEKK contains a greater proportion of the stiff 
ketone (C=O) linkages, its end-to-end distance is expected to 
be more than PEEK. For the all-atom as well as the CG model, 
the end-to-end distance of PEKK does indeed turn out to be 
larger than PEEK. The end-to-end distance in the CG model is 

a

b

Figure 2:  Radial distribution functions (rdf ) of monomers of (a) PEEK 
(solid lines) and (b) PEKK (dashed lines) in the CG model compared with 
those from the all-atom system (red curves).
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close to that of all-atom structures. The end-to-end distance in 
100-monomer-long PEEK is ∼ 58 Å in all-atom, with a standard 
deviation of 10.9 Å , and ∼ 59 Å in CG chains, with a standard 
deviation of 10 Å . For 100-monomer-long PEKK, the end-to-
end distance is ∼ 69 Å in all-atom, with a standard deviation of 
9.5 Å , and ∼ 66 Å in CG chains, with a standard deviation of 
14.5 Å (Supplementary Information, Fig. 3). The six beads per 
monomer ratio used in the CG model seems sufficient to capture 
the long-range structure of the polymer chains.

The fidelity of the molecule obtained in the CG scheme 
also becomes evident when we plot the rdfs of the monomers 
of PEEK and PEKK, shown in Fig. 2. The rdf of the monomers 
in the CG sample match that of the all-atom case remarkably 
well for both PEEK and PEKK. The closeness of the end-to-
end distances and monomeric rdfs computed from the CG 
model to those in the all-atom cases show that a 6 beads per 
monomer mapping of PEEK and PEKK is adequate, as far as 
approximation of the long-range structures of the molecules 
is concerned.

Properties that depend on rate

We have established that the CG systems are structurally very 
close to corresponding all-atom ones as well as to each other. 
Consequently, amorphous, glassy PEEK, and PEKK have struc-
tural properties that are almost identical. But, in spite of this 
similarity, predicting properties like glass transition tempera-
ture and uniaxial stress–strain response of amorphous, glassy 
systems through CG simulations require careful considerations.

Though the energies of the CG and all-atom systems are 
matched at the initial state, their subsequent dynamics is dif-
ferent and they may evolve differently over time. Consequently, 
evolution of rate-dependent physical quantities with time, in 
general, will not be the same in the all-atom and CG systems.

The variation of the density with temperature is a case in 
point. At room temperature, the densities of CG and all-atom 
systems of PEEK and PEKK are identical. This is seen in Fig. 3a 
and b. However, when the samples are heated to a higher tem-
perature at a rate Ṫ  , the densities start to diverge from each 
other. As shown in Fig. 3a and b, the change in density between 
room temperature and 500 ◦C is maximum for the all-atom sys-
tems. With coarse graining, the density becomes less sensitive 
to temperature changes.

Also, the glass transition temperatures in the all-atom sys-
tems of PEEK and PEKK can be obtained by the familiar con-
struction shown in Fig. 3a and b. The intersection of the straight 
lines fitted to the low- and high-temperature data in the density 
versus temperature plots gives the value of Tg . The value of Tg 
obtained for PEEK (Fig. 3a) is about 30 ◦C lower than that for 
PEKK (Fig. 3b). This is consistent with experiments [35, 44]. 
Expectedly, the absolute values of Tg obtained for both PEEK 
and PEKK are higher than the experimental values due to the 
very high rates of change of temperature used in the MD simu-
lations [45].

a

b

Figure 3:  Variations of the density of  a PEEK and  b PEKK with 
temperature are shown for the all-atom and the CG model. The 
intersections of the straight lines fitted to the low-temperature and 
high-temperature data points give the value of Tg , which are marked by 
vertical lines dropped onto the horizontal axes.

Figure 4:  The mean squared displacement of the monomers of PEEK 
(solid lines) and PEKK (dashed lines) in the all-atom and CG model is 
plotted in log–log scale against time.
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As the decrease in density with temperature is gentler for 
CG systems, the change in slope at Tg is hardly visible. Similar 
results have been reported by other authors. Coarse graining 
makes the determination of Tg difficult. In case of polyimides, 
Pandiyan et al. [21] had to perform coarse graining with 8 beads 
per monomer in order to discern the value of Tg . Significantly 
lower values of the coefficient of thermal expansion for CG poly-
styrene has also been reported by Hsu et al. [15]. In our case, 
the CG scheme does exhibit a barely discernable slope change, 
yielding values of Tg that are somewhat higher than for the all-
atom system.

The example above demonstrates the difficulties in predict-
ing rate-dependent properties with CG simulations. ‘Time’ in 
the CG system is different from the physical time in the all-atom 
one. Thus, the Ṫ that the all-atom and CG samples ‘feel’ are dif-
ferent. Hence, the density versus temperature behaviour is also 
different in each case.

The effective rate of change of a physical quantity in a CG 
system can be estimated if the scaling between physical time and 

that in the CG system is known. The mean squared displacement 
(msd) is often used to determine the scaling between the physi-
cal and CG time. The msd is defined as

where ri(t) denote the position vectors of the centre of mass 
of the i  th chain, or the i  th monomer in the sample. In poly-
mer melts, the scaling between the times is often determined 
by demanding that the evolution of the msd of the CG chain 
centroids in scaled time is identical to that of the all-atom chain 
centroids in physical time.

Unfortunately, in glassy state, the msd of the chain cen-
troids or, for that matter monomers, is extremely small and 
remains almost constant over time. This is apparent from 
Fig. 4 where the evolution of msd of the monomeric units 
in all-atom and CG systems are shown. It is clearly not pos-
sible to use the monomeric msd’s to determine the scaling 
between physical time and the time in the CG system. Alter-
nate routes to determine the scaling need to be explored for 
glassy systems.

Let us turn to uniaxial compressive stress–strain responses 
of the all-atom and CG polymers. The responses of both PEEK 
and PEKK as well as the values of their compressive strengths 
are strongly strain rate-dependent. The response in uniaxial 
deformation can be described by

where σ and ǫ are the uniaxial stress and strain, respectively. The 
strain rate exponent is denoted by m . The prefactor C can be a 
function of strain ǫ and temperature T . It determines the shape 
of the uniaxial stress–strain curve, while the second term on the 
right decides the extent of hardening with strain rate.

Expectedly, the all-atom systems of PEEK and PEKK [shown 
in Fig. 5a and b respectively] exhibit almost similar uniaxial 
compressive responses. The compressive strength of both PEEK 
and PEKK is ∼ 200MPa , about twice the experimental value 
at low strain rate. The uniaxial compressive simulations are 
conducted in a NσxxσyyLz ensemble, where the virial stresses 
σxx = σyy = 0 (simulating a pure uniaxial situation) and Lz is 
reduced to half its initial value (i.e. a compressive strain of 0.5 
is imparted) in 0.1ns . For the all-atom system, this translates to 
an extremely high strain rate of about 5ns−1.

The CG systems, when deformed at the same applied strain 
rate of ǫ̇ = 5ns−1 , produce stress–strain responses that qualita-
tively resemble the all-atom as well as experimental ones. For 
example, the peak compressive stress occurs at a strain of about 
10% as in the all-atom and a hardening response is seen at high 
compression.

However, quantitatively at ǫ̇ = 5 ns−1 , the compres-
sive strengths for PEEK and PEKK in the CG systems are 

(1)��2(t)� =
1

N

∑

i

|ri(t)− ri(0)|2,

(2)σ = C(ǫ,T)(ǫ̇)m,

a

b

Figure 5:  Uniaxial compressive response of (a) PEEK and (b) PEKK at 
300K are shown. In both the figures, solid curves pertain to all-atom 
simulations. For PEEK in (a), the all-atom response is plotted at rate of 
5ns−1 . For PEKK in (b) all-atom responses are shown at 50 and 5ns−1 . The 
dashed curves pertain to the CG scheme. For PEEK, these are shown for 5 
and 0.5ns−1 . For PEKK, responses at 5, 0.5, 0.05 and 0.005ns−1 are shown.
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considerably higher than the corresponding all-atom systems. 
Also, though the all-atom systems of PEEK and PEKK exhibit 
similar compressive strengths (a fact seen in experiments, as 
discussed earlier), in the CG systems at the same applied strain 
rate of 5ns−1 , PEKK has higher strength than PEEK.

The scaling between the physical strain rate and the CG rate 
can be determined from relatively small-sized simulations on 
all-atom and CG samples. To this end, variations of the strengths 
(the maximum stress borne by a sample) with strain rate are 
plotted on a log–log scale in Fig. 6a–c. The plot for PEEK in 
Fig. 6a shows two slopes, indicating two different values of the 
exponent m in Eq. 2. The slopes denoting the values of m are 
indicated on the log–log plots and are approximately same for 
the all-atom and CG cases. In case of PEEK (see, Fig. 6a), to 
achieve a uniaxial response identical to that of an all-atom simu-
lation at a physical strain rate of ǫ̇ = 5ns−1 , the CG system will 
have to be deformed at a strain rate about 10 times slower. The 
scaling factor α between the physical strain rate and that felt by 
the CG system is approximately 10.

Guided by the simple analysis above, the CG system for 
PEEK is run at a strain rate one order of magnitude lower than 
the all-atom. As shown in Fig. 5a, this brings the entire uniaxial 
compressive stress–strain response of PEEK very close to that of 
the corresponding all-atom system simulated at 5ns−1.

The value of m is lower than PEKK, indicating a somewhat 
weaker strain rate hardening. As seen from Fig. 6b, to mimic 
the response of an all-atom sample at ǫ̇ = 5ns−1 , the CG sam-
ple has to be subjected to an effective strain rate much smaller 
than 0.005 , the slowest rate at which we could conduct the 
simulations. But, an all-atom sample deformed at ǫ̇ = 50ns−1 
corresponds to a CG sample deformed at 0.005ns−1 . This is 
again shown in Fig. 5b, where the solid curve for ǫ̇ = 50ns−1 
matches the dashed one for 0.005ns−1.

The fact that PEEK and PEKK have almost similar uniax-
ial responses cannot be seen from CG simulations if both are 
subjected to the same strain rate. As seen from Fig. 6c, a CG 
sample of PEEK subjected to 5ns−1 should correspond to a CG 
sample of PEKK subjected to a rate between 0.5 and 0.05ns−1 . 
As is apparent from Fig. 5a and b, the entire uniaxial response 
in Fig. 5a at 5ns−1 falls between curves pertaining to 0.5 and 
0.05ns−1 in Fig. 5b.

Due to closeness of the molecular architectures of PEEK 
and PEKK, a closer correspondence between strain rates was 
expected between their CG simulations in Fig. 6c. However, as 
indicated by the arrow in Fig. 6c, the factor is close to 1000. The 
strain rate sensitivity of PEKK, to the best of our knowledge, 
has not been characterized experimentally. However, the large 
difference in strain rate sensitivities of PEEK and PEKK seems 
to be an artefact of the coarse-graining procedure. We believe 
that the strain rate sensitivity of such CG systems is related to 
the rate at which LJ non-bonded interactions break and reform 
when the ensemble is strained.

A final point about the CG scheme is in place. The force 
fields for this scheme were calibrated at 27 ◦C , while the glass 
transition temperature is determined as ∼ 250 (280) ◦C in PEEK 

a

b

c

Figure 6:  Variations of the maximum stress-carrying capacity or strength 
of (a) PEEK and (b) PEKK with uniaxial strain rate ǫ̇ are plotted on a log–
log scale. In (c) the variations for PEEK and PEKK are compared for the CG 
case. In (a) and (b) the slopes of the curves, i.e. the values of the strain 
hardening exponent m , are indicated. The horizontal arrows show the 
approximate correspondence between a physical strain rate of ǫ̇ = 5ns−1 
in the curve on the right to the effective strain rate on the left.
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(PEKK). In the glassy regime, the forcefields seem to be transfer-
able as far as predicting the uniaxial response is concerned. This 
is shown in the Supplementary Information.

Conclusions
CG MD simulations of long chained amorphous, glassy poly-
mers can be used for predicting their mechanical properties. 
The question that we ask in this work is whether, given two 
polymers with similar architectures, a suitable CG model can 
be designed that allows us to make a comparative assessment of 
their mechanical properties? This question is important because 
often, like in the case of PEEK and PEKK that we studied, subtle 
changes in the structure of the monomer are seen to lead to 
technologically significant changes in key properties. It is use-
ful to be able to predict if a proposed change in the molecular 
architecture will lead to, e.g. higher glass transition temperature 
or mechanical strength.

The first step to answer the above question is designing a CG 
scheme that reproduces the overall structure of the all-atom sys-
tem with high fidelity. We have shown that for PEEK and PEKK, 
markers of the long-range structure like monomeric rdf ’s and 
average end-to-end lengths are reproduced well with a 6 beads 
per monomer coarse-graining scheme with 3 different beads.

Though the structure and initial energy of the glassy poly-
mers are approximated well, rate dependence of many physi-
cal properties like glass transition temperature and mechanical 
strength poses further challenges. This is mainly a result of the 
extremely sluggish dynamics of dense, glassy systems. In such 
cases, quantitative prediction of strongly rate-dependent prop-
erties like uniaxial stress–strain response is uncertain. These 
challenges arise from the fact that time in CG systems do not 
represent physical time. The scaling between the physical time 
and that in CG systems depend on the degree of coarse grain-
ing as well as the molecular architecture of the polymers. Even 
slightly different architectures like PEEK and PEKK may lead to 
significantly different scalings (see, Figs. 5 and 6).

As far as uniaxial stress–strain response is concerned, in 
order to obtain the scaling between a physical strain rate in an 
all-atom system and apparent strain rate in the corresponding 
CG one, we propose conducting a set of all-atom and CG simu-
lations at different strain rates (see, Eq. 2). From these simula-
tions, the factor α that decides the effective strain rate ǫ̇/α that 
a CG sample should be subjected to in order to mimic uniaxial 
response at a physical strain rate of ǫ̇ can be determined (see, 
Fig. 6).

Our proposed coarse-graining scheme, while providing 
computational advantages, leads to good approximation of 
the average end-to-end distance of the polymer chains and the 

general structure. The rdfs are closely approximated and even 
dynamic properties with weak rate sensitivity like glass transi-
tion temperature can be predicted.

It is, however, clear that CG systems at glassy temperatures 
find it difficult to capture the rate sensitivity of their uniaxial 
stress–strain behaviour. As future work, one of the following 
two modifications are worth persuing:

(1) An iterative Boltzmann inversion technique for the 
non-bonded interactions, leading to a tabulated non-
bonded potential (rather than the harder LJ potential 
used by us). However, it must be noted that, the time 
in CG systems is still expected to be different from real 
time. A time scaling between all-atom and CG will still 
be necessary.

(2) Use of time-dependent LJ parameters as used by Hsu 
et al. [15] and Song et al. [31] could help in capturing 
the rate dependence of uniaxial response better.

Computational methods
The procedures adopted for calibrating CG force fields for PEEK 
and PEKK are similar to those reported earlier [2, 4, 11, 22, 46]. 
All MD simulations have been conducted with the large-scale 
atomic/molecular massively parallel simulator (LAMMPS) [47]. 
In cases where temperature or pressure in the ensembles are 
constant, Nose–Hoover thermostat or barostat has been utilized. 
Velocity Verlet algorithm has been employed to integrate the 
Newton’s equations of motion. The steps involved in the process 
are discussed in Sects. “Step 1: All-atom simulations with PEEK 
and PEKK” through “Comparison between the calibrated CG 
forcefields of PEEK andPEKK” with a time step, �t, of 0.1 and 
5 fs for all-atom and coarse-grained simulations, respectively. 
The CG model simulations are 3–4 times faster than the all-atom 
simulations due to fewer interaction centres and combined with 
the 10–50 times increase in timestep, the CG simulations offer 
a speedup of around 50–200, i.e. O(100). The following sub-
sections describe the preparation method of the all-atom and 
coarse-grained samples.

Step 1: All‑atom simulations with PEEK and PEKK

Physical quantities obtained from detailed all-atom MD simula-
tions on PEEK and PEKK serve as benchmarks that the CG simu-
lations reported later should match up to. The procedures adopted 
towards this end, for the two polymers, are exactly identical.

(1) Initially, an energy-minimized chain of PEEK and 
PEKK, consisting of 100 monomers is prepared using 
the “Amorphous Cell” module of Biovia Materials Stu-
dio, employing the polymer consistent force field, PCFF 
[48].
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(2) Inside a periodic box, 10 copies of this chain are placed. 
The box contains 10 chains, each 100 monomers long 
with a total of 3402 atoms in PEEK and 3502 in PEKK.

(3) MD simulations using the NPT ensemble are per-
formed on LAMMPS [47]. After initial equilibration 
at 300K and 1atm pressure, the starting density of the 
sample turns out to be quite low. To bring its density 
closer to the experimentally observed density, the 
sample is taken to a very high pressure ( ∼ 104atm ) 
in steps to increase the density to a value sufficiently 
higher than the experimentally reported density of each 
polymer.

(4) The pressure is then reduced to one atmosphere. If the 
desired density is not attained, the pressure is again 
increased to a higher value. The cycling between the 
high pressure and atmospheric is continued till the 
experimentally observed density under atmospheric 
conditions is attained. In all-atom samples, attaining 
close to the correct experimentally observed density at 
glassy temperatures and atmospheric pressure is often 
difficult [49]. A similar strategy has been used by Lyulin 
et al. [50] to prepare all-atom samples of polyimides.

(5) Once the desired density is achieved, the sample is fur-
ther equilibrated in an NPT ensemble at 300K and one 
atmosphere pressure. The all-atom equilibration simu-
lations have been performed for ∼ 1000ps . The energy 
evolution plots for PEEK and PEKK are provided in 
Fig. 1 of Supplementary Information. During this pro-
cess, the density and total energy remained unchanged 
while the bond lengths, angles and dihedrals fluctuated 
slightly about their targetted equilibrium values. Dur-
ing the entire sample preparation procedure, the chains 
moved distances in the order of their lengths, causing 
change in density of two orders of magnitude (from 
0.04 to the desired 1.2g/cm3).

Step 2: Coarse graining: calibrating the bonded force 
field

The CG configuration is characterized by a set of bonded 
parameters R,Θ and Φ . In the CG scheme, the bond 
length R can denote ROA or RAB . The bond angles Θ may be 
ΘOAO,ΘBAB,ΘOAB, . . . while the dihedrals Φ represents 
ΦAOAO,ΦOABA,ΦAOAB . . ..

The basic assumption inherent in calibrating the bonded 
potentials is that the scaled probability distributions for the 
bond length PS(R,T) , angle PΘ(Θ ,T) and dihedral PΦ(Φ ,T) 
at a temperature T are independent so that the joint probability 
distribution factorizes as [2]:

(3)P(R,Θ ,Φ ,T) = PS(R,T)PΘ(Θ ,T)PΦ(Φ ,T).

The validity of this assumption is often verified once the 
CG procedure is complete [11, 12, 21]. The scaled probability 
distributions are obtained from unscaled ones as [11],

for bond lengths,

for bond angles, and,

for dihedrals. The unscaled probability distributions are denoted 
by a prime. For a generic configuration variable ζ (where 
ζ = R,Θ or Φ ), the unscaled probability distributions are deter-
mined by simply counting N(ζ ) , the number of instances where 
the variable ζ lies between ζ −� and ζ +� , � being sufficiently 
small.

A simple Boltzmann inversion [2, 51] then yields the respec-
tive free energy differences, i.e.

Here, kB is the Boltzmann constant and V(ζ ) is a measure 
of the free energy difference, or potential energy in vacuum [4]. 
Finally, the bonded potentials are fitted with class 2 forcefield 
equations provided in LAMMPS [47].

Step 3: Coarse graining: calibrating the non‑bonded 
force field

To calibrate the non-bonded force fields, beads are placed at the 
geometric centres of the group of atoms in the all-atom sample 
which the bead represents. This implies that 6000 beads of 3 
types (A, B or O) are placed. The beads A, B and O have masses 
76, 28 and 16 respectively.

Consider a bead pair formed by species I and J  (where I 
and J can be one of A, O and B). We denote a generic IJ pair 
by α . Consider that the ensemble has Nα such bead pairs,1 with 
the distance between the centroids of the iαth pair denoted by 
Riα (iα ∈ [1,Nα]) . Then the non-bonded interaction between the 
beads I and J is taken to have the form

(4)PS(R,T) ∝
PS

′(R,T)

R2 ,

(5)PΘ(Θ ,T) ∝
PΘ

′(Θ ,T)

sinΘ

(6)PΦ(Φ ,T) ∝ PΦ
′(Φ ,T),

(7)V(ζ ) ∝ −kBT lnp(ζ ).

1 Assume that there are Nc chains in the ensemble, each with 
N monomers. For PEEK, each chain has 3N beads of type A. 
If I = A and J = A, a species of type A in any chain m has non-
bonded interactions with 3N species of type A that lie in another 
chain q. Additionally, it has non-bonded interactions with 3N-p 
beads of type A in chain m itself, where p = 3 if it lies inside 
the chain or p = 2 if it is the first or the last monomer of m. So, 
each pair of chains has 3N(6N-p) interactions of type A–A. Thus 
Nα = 3

2
Nc(Nc − 1)N(6N − p).
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where Rc is the cut-off distance.
If p atoms of the all-atom polymer are mapped onto bead of 

type I and q in J , we fit the parameters σα and ǫα by minimizing, 
in a least squares sense,

Here UPCFF
ij  is the non-bonded potential in PCFF. So, the 

parameters σij , ǫij are known.
In practice, the above ‘energy matching technique’ is applied 

to cases when I = J . Figure 7(a) and (b) depict the non-bonded 
energy matching of the benzene (type ‘A’) and ketone (type ‘B’) 
beads, respectively. When I  = J , and the pair IJ is designated by 
α , σα and ǫα are determined from:

(8)

U
�

σα , ǫα;Riα
�

=







ǫα

�

2

�

σα
Riα

�9

− 3

�

σα
Riα

�6
�

for Riα < Rc

0 Riα ≥ Rc,

(9)

�(σα , ǫα) =
Nα
�

iα=1



U
�

σα , ǫα;Riα
�

−
p

�

i=1,i∈I

q
�

j=1,j∈J
UPCFF
ij

�

rij , σij , ǫij
�





2

.

and,

In the above, the pair II is denoted by β and the pair JJ is 
denoted by γ . In Fig. 7a and b, the blue points are obtained from 
Nα pairs of type A− A or type B− B (i.e. interaction between 
two benzene rings or two ketone groups), each plotted at the 
distance (i.e. the distance between the centres of the benzene 
rings or ketone groups) at which it was detected in the equili-
brated all-atom ensemble. The red curves are the fits assuming 
LJ interaction between the corresponding A− A or B− B beads.

We have heuristically modified the parameters in the CG 
LJ potentials to ensure that the target density is attained in 
the CG systems at an isotropic stress–state corresponding to 
atmospheric pressure. A discussion regarding the necessity of 
heuristic modification after energy matching is provided in 

(10)σα =
(

σβ
6 + σγ

6

2

)1/6

(11)ǫα =
2
√
ǫβǫγ σβ

3σγ
3

σβ6 + σγ 6
.

a

b

Figure 7:  Non-bonded interaction energy based on Eqs. 8 and 9 for (a) 
benzene bead ( α represents AA) and (b) CO bead ( α represents BB) in 
PEEK.

a

b

Figure 8:  Contours of density of the CG system of (a) PEEK and (b) PEKK 
are plotted on the σAA − σBB plane. The paths that we have chosen to 
reach the desired density from the one obtained after energy matching, 
are shown in red lines.
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the Supplementary Information. The parameters that affect 
density are σAA and σBB , for benzene beads (type ‘A’) and 
ketone beads (type ‘B’) respectively. Contours of density of 
PEEK and PEKK on the σAA and σBB plane are shown in Fig. 8. 
The paths from the initial values obtained from the energy 
matching technique and the final values at which the desired 
density is attained, are shown with red lines.

All bonded and non-bonded calibrated parameters for CG 
model are presented in Table 1. The values of σ obtained for 
benzene beads are close to those obtained by Harmandaris 
et al. [12] ( σ=5.2 Å ) and Hsu et al. [15] ( σ=5.3–5.7 Å for a 
temperature range of 200–500 K) for polystyrene molecules. 
Please note that atomic charges have not been considered 
in the CG model and it is assumed that the effect of atomic 
charges of the atomistic model is embedded in the non-
bonded interaction between beads. Also, the monomer of 
PEEK and PEKK is charge neutral.

Comparison between the calibrated CG forcefields 
of PEEK and PEKK

The bonded and non-bonded potentials obtained in the CG 
model, lead to stiff molecules. The bond AB, shown in Fig. 9a has 
a fixed length of 3.3Å for both the molecules. Though not shown 
here, potential functions for bond AO is also identical for PEEK 
and PEKK. The angle potentials are also stiff. The potentials for the 
angle ABA that occurs in both the polymers is shown in Fig. 9b. 
Even though they are derived from separate coarse-graining proce-
dures (as a result the parameters pertaining to the angle are slightly 
different for PEEK and PEKK), for both polymers the equilibrium 
value is ∼ 100◦ for this angle. The potentials for angle OAO, which 
is present in PEEK and BAB, which appears only in PEKK are also 
shown in Fig. 9b. While the latter is slightly more flexible, both 
these angles have values of 166◦ . The non-bonded potential for 
beads of type ‘A’ is identical for both polymers (Fig. 9d). For beads 

TABle 1:  Calibrated parameters for bonded and non-bonded forcefields for PEEK and PEKK pertaining to the CG model with three beads A, B, and O.

In the functional forms given, R represents the distance between geometric centres of two beads, Θ the angle between three beads and Φ 
the dihedral angle made by four.

Bond stretching: Us(R) = Ks(R − R0)
2

R0 in Å , Ks in kcal/molÅ2

PEEK PEKK

AB 3.29, 133.0 3.35, 223.5

AO 2.78, 305.0 2.88, 734.8

Angle bending: Ub(Θ) = Kb(Θ −Θ0)
2

Θ0 in degrees, Kb in kcal/mol(rad)2

PEEK PEKK

ABA 98 ◦ , 231.0 101.6 ◦ , 220.0

AOA 111.8 ◦ , 168.0 110.7 ◦ , 148.0

BAO 170.7 ◦ , 379.0 170.8 ◦ , 343.0

OAO 166 ◦ , 930.0

BAB 166 ◦ , 377.0

Torsion: Uφ(Φ) =
∑3

n=1Kn(1− cos(nΦ −Φn))

Φ1,Φ2,Φ3 in degrees, K1, K2, K3 in kcal/mol

PEEK PEKK

AOAB 0.0 ◦ , 64.6 ◦ , 0.0 ◦ , 0.18, 0.06, 0.0 0.0 ◦ , 180.0 ◦ , 0.0 ◦ , 0.19, 0.03, 0.0

OABA 0.0 ◦ ,−9.5 ◦ , 21.4 ◦ , 1.52, 0.4, 0.13 3.6 ◦ ,−17.1 ◦ , 53.5 ◦ , 1.46, 0.33, 0.1

AOAO −170.0 ◦ ,−7.4◦ ,−8.7◦ 0.07, 0.13, 0.07

ABAB −3.1◦ , 37.9◦ , 95.0◦ , 0.97, 0.06, 0.04

Non-bonded: 
Unb(R) =

{

ǫ

[

2
(

σ
R

)9 − 3
(

σ
R

)6
]

forR ≤ Rc

0 R > Rc

ǫ in kcal/mol , σ in Å and rc = 20Å

PEEK PEKK

A–A 1.19, 5.56 2.46, 5.49

B–B 0.62, 4.75 0.6, 4.73

O–O 0.24, 3.5 0.24, 3.5
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of type ‘B’, the non-bonded potential has the same value of σ but 
PEKK has a somewhat deeper potential well.

The torsional potentials AOAB and OABA, that occur in 
both molecules, exhibit potentials that are identical in spite 
of the difference in parameters shown in Table 1. The differ-
ence between PEEK and PEKK manifests only in the torsion 
potentials for AOAO in PEEK and ABAB in PEKK (Fig. 9c). 
For PEEK, AOAO is a freely rotating dihedral angle. For PEKK, 
the angle ABAB is considerably stiffer with an equilibrium value 
close to 0◦.

In summary, the difference in potential between PEEK and 
PEKK is limited to the dihedrals that are present in one but not 
in the other and a deeper potential well for beads of type ‘B’ in 
PEKK.
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Figure 9:  Potential functions calibrated at T = 300K and normalized with 
kBT  are shown for the CG model. Solid lines pertain to PEEK and dashed 
to PEKK. The potentials shown are for (a) stretching of bond AB in both 
PEEK and PEKK, (b) bending of angles ABA in both polymers, OAO in 
PEEK and BAB in PEKK, (c) torsion of AOAO in PEEK and ABAB in PEKK 
and (d) non-bonded interactions for beads of type ‘A’ and ‘B’ in both
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