Skip to main content
Log in

Probing structure–property relationship in chemical vapor deposited hybrid perovskites by pressure and temperature

  • Article
  • Focus Issue: Multifunctional Halide Perovskites
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD), a low-cost and a scalable deposition technique, allows the growth of methylammonium lead iodide (MAPbI3) films without the use of solvents, substantially increasing air stability while also inducing the stable cubic phase at room temperature and at pressures as low as 0.25 GPa. MAPbI3 thin films were grown by a facile two-step low-pressure vapor deposition process in a single reactor. This method results in films, which are usually in the tetragonal phase (space group: I4/mcm) and occasionally in the cubic phase under ambient conditions. High-pressure synchrotron-based X-ray diffraction studies from CVD-grown MAPbI3 crystallites show that the sample remains in the cubic phase (space group: Im\(\bar{3}\)) between 0.25 and 3.0 GPa. Temperature-dependent transport measurements show sharp anomalies, correlating with the structural changes. The transport measurements from the CVD-grown cubic MAPI3 film is further compared with a film in the tetragonal phase.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  1. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)

    Article  CAS  Google Scholar 

  2. D. Weber, Z. Naturforsch B 33, 1443 (1978)

    Article  Google Scholar 

  3. H. Cho, Y.-H. Kim, C. Wolf, H.-D. Lee, T.-W. Lee, Adv. Mater. 30, 1704587 (2018)

    Article  Google Scholar 

  4. S. Yesudhas, R. Burns, B. Lavina, S.N. Tkachev, J. Sun, C.A. Ullrich, S. Guha, Phys. Rev. Mater. 4, 105403 (2020)

    Article  CAS  Google Scholar 

  5. F. Capitani et al., J. Phys. Chem. C 121, 28125 (2017)

    Article  CAS  Google Scholar 

  6. S. Bai et al., Nature 571, 245 (2019)

    Article  CAS  Google Scholar 

  7. J.E. Bishop, J.A. Smith, D.G. Lidzey, A.C.S. Appl, Mater. Interfaces 12, 48237 (2020)

    Article  CAS  Google Scholar 

  8. C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Adv. Mater. 26, 6647 (2014)

    Article  CAS  Google Scholar 

  9. R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, J. Phys. Chem. C 119, 3545 (2015)

    Article  CAS  Google Scholar 

  10. P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, ACS Appl. Mater. Interfaces. 7, 2708 (2015)

    Article  CAS  Google Scholar 

  11. M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, Z. Fan, Sci. Rep. 5, 14083 (2015)

    Article  Google Scholar 

  12. M.R. Leyden, Y. Jiang, Y. Qi, J. Mater. Chem. A 4, 13125 (2016)

    Article  CAS  Google Scholar 

  13. J. Qiu, L.L. McDowell, Z. Shi, Cryst. Growth Des. 19, 2001 (2019)

    Article  CAS  Google Scholar 

  14. M.T. Hoerantner et al., ACS Appl. Mater. Interfaces. 11, 32928 (2019)

    Article  CAS  Google Scholar 

  15. S. Ngqoloda, C.J. Arendse, T.F. Muller, P.F. Miceli, S. Guha, L. Mostert, C.J. Oliphant, A.C.S. Appl, Energy Mater. 3, 2350 (2020)

    CAS  Google Scholar 

  16. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)

    Article  CAS  Google Scholar 

  17. F. Brivio et al., Phys. Rev. B 92, 144308 (2015)

    Article  Google Scholar 

  18. M. Szafrański, A. Katrusiak, J. Phys. Chem. Lett. 7, 3458 (2016)

    Article  Google Scholar 

  19. A. Jaffe, Y. Lin, C.M. Beavers, J. Voss, W.L. Mao, H.I. Karunadasa, ACS Cent. Sci. 2, 201 (2016)

    Article  CAS  Google Scholar 

  20. R.J. Elliott, Phys. Rev. 108, 1384 (1957)

    Article  CAS  Google Scholar 

  21. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific Publishing Company, 2009)

  22. J.-H. Lee, A. Jaffe, Y. Lin, H.I. Karunadasa, J.B. Neaton, ACS Energy Lett. 5, 2174 (2020)

    Article  CAS  Google Scholar 

  23. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas, M.K. Crawford, Sci. Rep. 6, 35685 (2016)

    Article  CAS  Google Scholar 

  24. A. Musiienko et al., Energy Environ. Sci. 12, 1413 (2019)

    Article  CAS  Google Scholar 

  25. G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel, J. Maier, Nat. Mater. 17, 445 (2018)

    Article  CAS  Google Scholar 

  26. M. Keshavarz et al., Adv. Mater. 31, 1900521 (2019)

    Article  Google Scholar 

  27. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

    Article  CAS  Google Scholar 

  28. V. Campanari, M. Lucci, L.A. Castriotta, B. Paci, A. Generosi, M. Guaragno, R. Francini, M. Cirillo, A.D. Carlo, Appl. Phys. Lett. 117, 261901 (2020)

    Article  CAS  Google Scholar 

  29. F. Palazon, D. Pérez-del-Rey, B. Dänekamp, C. Dreessen, M. Sessolo, P.P. Boix, H.J. Bolink, Adv. Mater. 31, 1902692 (2019)

    Article  Google Scholar 

  30. C.C. Stoumpos, M.G. Kanatzidis, Acc. Chem. Res. 48, 2791 (2015)

    Article  CAS  Google Scholar 

  31. M. Knaapila, S. Guha, Rep. Prog. Phys. 79, (2016)

Download references

Acknowledgments

We acknowledge the support of this work through the U.S. National Science Foundation (NSF) under Grant No. DMR-1807263. DKS acknowledges the support by US Department of Energy, Office of Science, Office of Basic Energy Sciences under the grant no. DE-SC0014461. CJA was supported by the South African National Research Foundation (Grant No. 103621, 92520, and 93212) and the University of Missouri-University of Western Cape Linkage Program. Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the NSF– Earth Sciences (EAR – 1634415) and Department of Energy- GeoSciences (DE-FG02-94ER14466). Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR -1606856 and by GSECARS through NSF grant EAR-1634415 and DOE grant DE-FG02-94ER14466. This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Dr. Sorb Yesudhas for valuable discussions and fitting of the ambient room-temperature XRD data, Dr. Steven Kelley for the low-temperature laboratory-based XRD measurements, and Dr. Sergey Tkachev, GSECARS, APS for Ne gas loading in the DAC.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Suchismita Guha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, R., Ngqoloda, S., Arendse, C.J. et al. Probing structure–property relationship in chemical vapor deposited hybrid perovskites by pressure and temperature. Journal of Materials Research 36, 1805–1812 (2021). https://doi.org/10.1557/s43578-021-00229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00229-y

Keywords

Navigation