Skip to main content
Log in

Martensitic transformation and damping capacities of Ni50Mn40–xSn10+x (x = 0–4 at.%) ferromagnetic shape memory alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Martensitic transformation and damping capacities of inherent and intrinsic internal frictions (IFPT + IFI) of Ni50Mn40-xSn10+x (x = 0–4 at.%) ferromagnetic shape memory alloys (FSMAs) are investigated. The (IFPT + IFI)L21→14M peak height of Ni50Mn40Sn10 FSMA is higher than the other Ni50Mn40-xSn10+x FSMAs as there are more abundant movable twins dissipating energy during damping in 14M martensite than in 10M or 4O martensite. The Ni50Mn38Sn12 FSMA exhibits a lower (IFPT + IFI)L21→10(majority)+14M(minority) peak than the (IFPT + IFI)L21→4O peak of the Ni50Mn37Sn13 FSMA as there is a smaller number of movable twins in the 10M martensite than in the 4O martensite. Compared with the other SMAs, Ni50Mn40-xSn10+x FSMAs with 14M martensite not only exhibit a high damping at temperatures above 100 °C but also possess the advantage of easily controlling the transformation temperature by adjusting the Sn content of the alloy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Article  CAS  Google Scholar 

  2. O. Mercier, K.N. Melton, Y. De Préville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi. Acta Metall. 27, 1467–1475 (1979)

    Article  CAS  Google Scholar 

  3. S.K. Wu, H.C. Lin, T.S. Chou, A study of electrical resistivity, internal friction and shear modulus on an aged Ti49Ni51 alloy. Acta Metall. Mater. 38, 95–102 (1990)

    Article  CAS  Google Scholar 

  4. B. Coluzzi, A. Biscarini, R. Campanella, L. Trotta, G. Mazzolai, A. Tuissi, F.M. Mazzolai, Mechanical spectroscopy and twin boundary properties in a Ni50.8Ti49.2 alloy. Acta Mater. 47, 1965–1976 (1999)

    Article  CAS  Google Scholar 

  5. G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida, F. Yin, Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50−xCux shape memory alloys. Acta Mater. 54, 5221–5229 (2006)

    Article  CAS  Google Scholar 

  6. J.E. Bidaux, R. Schaller, W. Benoit, Study of the hcp-fcc phase transition in cobalt by acoustic measurements. Acta Metall. 37, 803–811 (1989)

    Article  CAS  Google Scholar 

  7. J. Van Humbeeck, J. Stoiber, L. Delaey, R. Gotthardt, The high damping capacity of shape memory alloys. Z. Metall. 86, 176–183 (1995)

    Google Scholar 

  8. W. Dejonghe, R. De Batist, L. Delaey, Factors affecting the internal friction peak due to thermoelastic martensitic transformation. Scr. Metall. 10, 1125–1128 (1976)

    Article  CAS  Google Scholar 

  9. S.H. Chang, S.K. Wu, Inherent internal friction of B2→R and R→B19′ martensitic transformations in equiatomic TiNi shape memory alloy. Scr. Mater. 55, 311–314 (2006)

    Article  CAS  Google Scholar 

  10. S.H. Chang, S.K. Wu, Internal friction of R-phase and B19′ martensite in equiatomic TiNi shape memory alloy under isothermal conditions. J. Alloys Compd. 437, 120–126 (2007)

    Article  CAS  Google Scholar 

  11. S.H. Chang, S.K. Wu, Internal friction of B2 → B19′ martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions. Mater. Sci. Eng. A 454–455, 379–383 (2007)

    Article  Google Scholar 

  12. S.H. Chang, S.K. Wu, Inherent internal friction of Ti51Ni39Cu10 shape memory alloy. Mater. Trans. 48, 2143–2147 (2007)

    Article  CAS  Google Scholar 

  13. S.H. Chang, S.H. Hsiao, Inherent internal friction of Ti50Ni50−xCux shape memory alloys measured under isothermal conditions. J. Alloys Compd. 586, 69–73 (2013)

    Article  Google Scholar 

  14. S.H. Chang, C. Chien, S.K. Wu, Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50−xFex (x = 2, 3, and 4) shape memory alloys. Mater. Trans. 57, 351–356 (2015)

    Article  Google Scholar 

  15. N. Glavatska, G. Mogylny, I. Glavatskiy, V. Gavriljuk, Temperature stability of martensite and magnetic field induced strain in Ni–Mn–Ga. Scr. Mater. 46, 605–610 (2002)

    Article  CAS  Google Scholar 

  16. S.H. Chang, S.K. Wu, Low-frequency damping properties of near-stoichiometric Ni2MnGa shape memory alloys under isothermal conditions. Scr. Mater. 59, 1039–1042 (2008)

    Article  CAS  Google Scholar 

  17. S.H. Chang, Low frequency damping properties of a NiMnTi shape memory alloy. Mater. Lett. 65, 134–136 (2011)

    Article  CAS  Google Scholar 

  18. Y.J. Huang, Q.D. Hu, J.W. Hou, J.G. Li, High isothermal internal friction over a large temperature range for dual-phase Ni–Mn–In magnetic shape memory alloy. Scr. Mater. 87, 21–24 (2014)

    Article  CAS  Google Scholar 

  19. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B 72, 014412 (2005)

    Article  Google Scholar 

  20. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006)

    Article  Google Scholar 

  21. P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K.-U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck, The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter. 18, 2249–2259 (2006)

    Article  CAS  Google Scholar 

  22. E.C. Passamani, V.P. Nascimento, C. Larica, A.Y. Takeuchi, A.L. Alves, J.R. Proveti, M.C. Pereira, J.D. Fabris, The influence of chemical disorder enhancement on the martensitic transformation of the Ni50Mn36Sn14 Heusler-type alloy. J. Alloys Compd. 509, 7826–7832 (2011)

    Article  CAS  Google Scholar 

  23. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X=In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004)

    Article  CAS  Google Scholar 

  24. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005)

    Article  CAS  Google Scholar 

  25. C. Lin, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy. J. Appl. Crystallogr. 49, 1276–1283 (2016)

    Article  CAS  Google Scholar 

  26. P. Czaja, M.J. Szczerba, R. Chulist, M. Bałanda, J. Przewoźnik, Y.I. Chumlyakov, N. Schell et al., Martensitic transition, structure and magnetic anisotropy of martensite in Ni-Mn-Sn single crystal. Acta Mater. 118, 213–220 (2016)

    Article  CAS  Google Scholar 

  27. V.G. Gavriljuk, O. Söderberg, V.V. Bliznuk, N.I. Glavatska, V.K. Lindroos, Martensitic transformations and mobility of twin boundaries in Ni2MnGa alloys studied by using internal friction. Scr. Mater. 49, 803–809 (2003)

    Article  CAS  Google Scholar 

  28. I. Aaltio, K.P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Söderberg, B. Löfgren, J. Seppälä, S.P. Hannula, Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scr. Mater. 59, 550–553 (2008)

    Article  CAS  Google Scholar 

  29. J. Liu, J. Wang, C. Jiang, H. Xu, Internal friction associated with the premartensitic transformation and twin boundary motion of Ni50+xMn25−xGa25 (x = 0–2) alloys. J. Appl. Phys. 113, 103520 (2013)

    Google Scholar 

  30. A. Nespoli, E. Villa, F. Passaretti, Quantitative evaluation of internal friction components of NiTiCu-Y shape memory alloys. Thermochim. Acta 641, 85–89 (2016)

    Article  CAS  Google Scholar 

  31. J.F. Delorme, R. Schmid, M. Robin, P. Gobin, Frottement intérieur et microdéformation dans les transformations martensitiques. J. Phys. Colloq. 32, 101–111 (1971)

    Google Scholar 

  32. S.H. Chang, Internal friction of Cu-13.5Al-4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions. Mater. Lett. 64, 93–95 (2010)

    Article  CAS  Google Scholar 

  33. S.H. Chang, Influence of chemical composition on the damping characteristics of Cu-Al-Ni shape memory alloys. Mater. Chem. Phys. 125, 358–363 (2011)

    Article  CAS  Google Scholar 

  34. S.K. Wu, W.J. Chan, S.H. Chang, Damping characteristics of inherent and intrinsic internal friction of Cu-Zn-Al shape memory alloys. Metals 7, 397 (2017)

    Article  Google Scholar 

  35. X. Liao, Y. Wang, G. Fan, E. Liu, J. Shang, S. Yang, H. Luo, X. Song, X. Ren, K. Otsuka, High damping capacity of a Ni-Cu-Mn-Ga alloy in wide ambient-temperature range. J. Alloys Compd. 695, 2400–2405 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research provided by the Ministry of Science and Technology (MOST), Taiwan, under Grants MOST 109-2221-E-197-020 (Shih-Hang Chang) and MOST109-2221-E-002-120-MY2 (Shyi-Kaan Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hang Chang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SH., Kuo, C., Lin, C. et al. Martensitic transformation and damping capacities of Ni50Mn40–xSn10+x (x = 0–4 at.%) ferromagnetic shape memory alloys. Journal of Materials Research 36, 1686–1694 (2021). https://doi.org/10.1557/s43578-021-00222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00222-5

Keywords

Navigation