Skip to main content
Log in

Tunable lattice distortion in MgCoNiCuZnO5 entropy-stabilized oxide

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lattice distortion in high-entropy alloys is postulated to have major effects on their thermophysical properties. There are limited studies that have looked at the effect of lattice distortion on entropy-stabilized oxides. In this study, lattice distortion in the entropy-stabilized oxide, MgCoNiCuZnO5, is explored as a function of temperature. This work uses molecular dynamics (MD) to identify the explicit distances that each atom and atom type distorts from its parent rocksalt crystal structure. Our goal in this work is to understand how the manipulation of the interatomic potential parameters used to define the structure can effectively change the lattice distortion in this system. The results show that lattice distortion increases with temperature and that it can be increased or decreased by changing the atomic composition, the equiatomic ratio, or by judiciously replacing some atoms with alternative elements. Such optimization can potentially modify thermophysical properties of the alloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available upon request. The processed data required to reproduce these findings are available upon request.

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377(1–2), SPEC. ISS., pp. 213–218. (2004). https://doi.org/10.1016/j.msea.2003.10.257.

  2. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189(1–3) SPEC.ISS, 193–200. 2004. https://doi.org/10.1016/j.surfcoat.2004.08.023.

  3. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  5. C.M. Rost et al., Entropy-stabilized oxides. Nat. Commun. (2015). https://doi.org/10.1038/ncomms9485

    Article  Google Scholar 

  6. P. Sarker et al., High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9(1), 1–10 (2018). https://doi.org/10.1038/s41467-018-07160-7

    Article  CAS  Google Scholar 

  7. M.H. Hsieh, M.H. Tsai, W.J. Shen, J.W. Yeh, Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings. Surf. Coatings Technol. 221, 118–123 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.036

    Article  CAS  Google Scholar 

  8. J. Gild et al., A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Mater. 5(3), 337–343 (2019). https://doi.org/10.1016/j.jmat.2019.03.002

    Article  Google Scholar 

  9. B. L. Musicó et al., “The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties,” APL Materials, vol. 8, no. 4. American Institute of Physics Inc., p. 040912, 01-Apr-2020, doi: https://doi.org/10.1063/5.0003149.

  10. L.R. Owen, N.G. Jones, Lattice distortions in high-entropy alloys. J. Mater. Res. 33(19), 2954–2969 (2018). https://doi.org/10.1557/jmr.2018.322

    Article  CAS  Google Scholar 

  11. H. Song et al., Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 23404 (2017). https://doi.org/10.1103/PhysRevMaterials.1.023404

    Article  Google Scholar 

  12. K.N. Lee et al., Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J. Am. Ceram. Soc. 86(8), 1299–1306 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03466.x

    Article  CAS  Google Scholar 

  13. N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15(8), 804–809 (2016). https://doi.org/10.1038/nmat4687

    Article  CAS  Google Scholar 

  14. N. Al Nasiri, N. Patra, D. Horlait, D.D. Jayaseelan, W.E. Lee, Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites. J. Am. Ceram. Soc. 99(2), 589–596 (2016). https://doi.org/10.1111/jace.13982

    Article  CAS  Google Scholar 

  15. W.G. Fahrenholtz, G.E. Hilmas, Ultra-high temperature ceramics: Materials for extreme environments. Scr. Mater. 129, 94–99 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  16. L.K. Bhaskar, V. Nallathambi, R. Kumar, Critical role of cationic local stresses on the stabilization of entropy-stabilized transition metal oxides. J. Am. Ceram. Soc. 103(5), 3416–3424 (2020). https://doi.org/10.1111/jace.17029

    Article  CAS  Google Scholar 

  17. G. Anand, A.P. Wynn, C.M. Handley, C.L. Freeman, Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018). https://doi.org/10.1016/j.actamat.2017.12.037

    Article  CAS  Google Scholar 

  18. M. Lim et al., Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. J. Appl. Phys. 125(5), 55105 (2019). https://doi.org/10.1063/1.5080419

    Article  CAS  Google Scholar 

  19. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  20. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation. J. Chem. Phys. 110(17), 8254–8282 (1999). https://doi.org/10.1063/1.478738

    Article  CAS  Google Scholar 

  21. A. Walsh, A.A. Sokol, J. Buckeridge, D.O. Scanlon, C.R.A. Catlow, Oxidation states and ionicity. Nat. Mater. 17(11), 958–964 (2018). https://doi.org/10.1038/s41563-018-0165-7

    Article  CAS  Google Scholar 

  22. G.V. Lewis, C.R.A. Catlow, Potential models for ionic solids. J. Phys. C 18, 1149–1161 (1985)

    Article  CAS  Google Scholar 

  23. J. Chen et al., Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. J. Phys. Chem. C 123(29), 17735–17744 (2019). https://doi.org/10.1021/acs.jpcc.9b04992

    Article  CAS  Google Scholar 

  24. J.L. Braun et al., Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805004

    Article  Google Scholar 

  25. A. Van De Walle et al., Efficient stochastic generation of special quasirandom structures. Calphad Comput. Coupling Phase Diagrams Thermochem. 42, 13–18 (2013). https://doi.org/10.1016/j.calphad.2013.06.006

    Article  CAS  Google Scholar 

  26. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 8577 (1994). https://doi.org/10.1063/1.467468

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Hamed Attariani for helping to fit the potential parameters during the initial stages of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kaufman.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufman, J., Esfarjani, K. Tunable lattice distortion in MgCoNiCuZnO5 entropy-stabilized oxide. Journal of Materials Research 36, 1615–1623 (2021). https://doi.org/10.1557/s43578-021-00198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00198-2

Keywords

Navigation