Skip to main content
Log in

Resistance to fracture in the glassy solid electrolyte Lipon

  • Invited Paper
  • Focus Issue: Materials Instabilities Limiting Performance of Electrochemical Systems
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

  1. P. Albertus, S. Babinec, S. Litzelman, A.J.N.E. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018)

    Article  CAS  Google Scholar 

  2. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019)

    Article  CAS  Google Scholar 

  3. Y. Zhu, V. Pande, L. Li, S. Pan, B. Wen, D. Wang, V. Viswanathan, Y.-M. Chiang, Design principles for self-forming interfaces enabling stable lithium metal anodes. arXiv preprint arXiv:1903.09593 (2019).

  4. N.J. Dudney, Approaches toward lithium metal stabilization. MRS Bull. 43, 752–758 (2018)

    Article  CAS  Google Scholar 

  5. E.J. Cheng, A. Sharafi, J. Sakamoto, Intergranular Li metal penetration through polycryctalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017)

    Article  CAS  Google Scholar 

  6. L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Fromling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter, Y.-M. Chiang, Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017)

    Article  CAS  Google Scholar 

  7. A.S. Westover, N.J. Dudney, R.L. Sacci, S. Kalnaus, Deposition and confinement of Li metal along an artificial lipon-lipon interface. ACS Energy Lett. 4, 651–655 (2019)

    Article  CAS  Google Scholar 

  8. K.B. Hatzell, X.C. Chen, C. Cobb, N.P. Dasgupta, M.B. Dixit, L.E. Marbella, M.T. McDowell, P. Mukherjee, A. Verma, V. Viswanathan, Challenges in lithium metal anodes for solid state batteries. ACS Energy Lett. 5(3), 922–934 (2020)

    Article  CAS  Google Scholar 

  9. J.B. Bates, N.J. Dudney, G.R. Gruzalsi, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993)

    Article  CAS  Google Scholar 

  10. X. Yu, J. Bates, G. Jellison, F. Hart, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997)

    Article  CAS  Google Scholar 

  11. B. Neudecker, N. Dudney, J. Bates, “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000)

    Article  CAS  Google Scholar 

  12. J. Bates, N. Dudney, B. Neudecker, A. Ueda, C. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000)

    Article  CAS  Google Scholar 

  13. J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

    Article  CAS  Google Scholar 

  14. E.G. Herbert, N.J. Dudney, M. Rochow, V. Thole, S.A. Hackney, On the mechanisms of stress relaxation and intensification at the lithium/solid-state electrolyte interface. J. Mater. Res. 34, 3593–3616 (2019)

    Article  CAS  Google Scholar 

  15. T. Swamy, R. Park, B.W. Sheldon, D. Rettenwander, L. Porz, S. Berendts, R. Uecker, W.C. Carter, Y.-M. Chiang, Lithium meta penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 Garnet. J. Electrochem. Soc. 165(16), A3648–A3655 (2018)

    Article  CAS  Google Scholar 

  16. L. Barroso-Luque, Q. Tu, G. Ceder, An analysis of solid-state electrodeposition-induced metal plastic flow and predictions of stress states in solid ionic conductor defects. J. Electrochem. Soc. 167, 020534 (2020)

    Article  CAS  Google Scholar 

  17. D. Harding, W. Oliver, G. Pharr, Cracking during nanoindentation and its use in the measurement of fracture toughness. MRS Online Proc Library Arch 1, 1 (1994). https://doi.org/10.1557/PROC-356-663

    Article  Google Scholar 

  18. T. Rouxel, Driving force for indentation cracking in glass: composition, pressure and temperature dependence. Philos. Trans. A 373, 20140140 (2015)

    Article  CAS  Google Scholar 

  19. V. Lacivita, N. Artrith, G. Ceder, Structural and compositional factors that control the Li-ion conductivity in LiPON electrolytes. Chem. Mater. 30, 7077–7090 (2018)

    Article  CAS  Google Scholar 

  20. V. Lacivita, A.S. Westover, A. Kercher, N.D. Phillip, G. Yang, G. Veith, G. Ceder, N.J. Dudney, Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018)

    Article  CAS  Google Scholar 

  21. J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2015)

    Article  CAS  Google Scholar 

  22. T. Rouxel, S. Yoshida, The fracture toughness of inorganic glasses. J. Am. Ceram. Soc. 100, 4374–4396 (2017)

    Article  CAS  Google Scholar 

  23. M. Sakai, T. Akatsu, S. Numata, K. Matsuda, Linear strain hardening in elastoplastic indentation contact. J. Mater. Res. 18(9), 2087–2096 (2003)

    Article  CAS  Google Scholar 

  24. A.C. Fischer-Cripps, Nano-Indentation (Springer, Berlin, 2002), pp. 159–173

    Google Scholar 

  25. B.A. Mound, G.M. Pharr, Nanoindentation of fused quartz at loads near the cracking threshold. Exp. Mech. 59, 369–380 (2019)

    Article  CAS  Google Scholar 

  26. B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics. J. Am. Ceram. Soc. 63(9–10), 574–581 (1980)

    Article  CAS  Google Scholar 

  27. J. Field, M. Swain, R. Dukino, Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412–1419 (2003)

    Article  CAS  Google Scholar 

  28. T.M. Gross, Deformation and cracking behavior of glasses indented with diamond tips of various sharpness. J. Non-Cryst. Solids 358, 3445–3452 (2012)

    Article  CAS  Google Scholar 

  29. A.R. Garcia, C. Clausell, A. Barba, Oxynitride glasses: a review. Ceram. Vidr. 55, 209–218 (2016)

    Article  CAS  Google Scholar 

  30. P. Sellappan, T. Rouxel, F. Celarie, E. Becker, P. Houizot, R. Conradt, Composition dependence of indentation deformation and indentation cracking in glass. Acta Mater. 61, 5949–5965 (2013)

    Article  CAS  Google Scholar 

  31. K. Januchta, R.E. Youngman, A. Goel, M. Bauchy, S.J. Rzoska, M. Bockowski, M.M. Smedskjaer, Structural origin of high crack resistance in sodium aluminoborate glasses. J. Non-Crystalline Solids 460, 54–65 (2017)

    Article  CAS  Google Scholar 

  32. T. Rouxel, H. Ji, T. Hammouda, A. Moreac, Poisson’s ratio and the densification of glass under high pressure. Phys. Rev. Lett. 100, 225501 (2008)

    Article  CAS  Google Scholar 

  33. J. Sehgal, S. Ito, Brittleness of glass. J. Non-Cryst. Solids 253, 126–132 (1999)

    Article  CAS  Google Scholar 

  34. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinemants to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    Article  CAS  Google Scholar 

  35. E.G. Herbert, W.E. Tenhaeff, N.J. Dudney, G.M. Pharr, Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520, 413–418 (2011)

    Article  CAS  Google Scholar 

  36. O. Benzine, S. Bruns, Z. Pan, K. Durst, L. Wondraczek, Local deformation of glasses is mediated by rigidity fluctuation on nanometer scale. Adv. Sci. 5, 1800916 (2018)

    Article  CAS  Google Scholar 

  37. J. Wolfenstine, H. Jo, Y.-H. Cho, I.N. David, P. Askeland, E.D. Case, H. Kim, H. Choe, J. Sakamoto, A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors. Mater. Lett. 96, 117–120 (2013)

    Article  CAS  Google Scholar 

  38. J. Wolfenstine, J.L. Allen, J. Sakamoto, D.J. Siegel, H. Choe, Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2018)

    Article  CAS  Google Scholar 

  39. F.P. McGrogan, T. Swamy, S.R. Bishop, E. Eggleton, L. Porz, X. Chen, Y.M. Chiang, K.J. Van Vliet, Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017)

    Article  CAS  Google Scholar 

  40. J.F. Nonemacher, S. Naqash, F. Tietz, J. Malzbender, Micromechanical assessment of Al/Y-substefituted NASICON solid electrolytes. Ceram. Int. 45, 21308–21314 (2019)

    Article  CAS  Google Scholar 

  41. S.D. Jackman, R.A. Cutler, Effect of microcracking on ionic conductivity in LATP. J. Power Sources 218, 65–72 (2012)

    Article  CAS  Google Scholar 

  42. K.G. Schell, F. Lemke, E.C. Bucharsky, A. Hintennach, M.J. Hoffman, Microstructure and mechanical properties of Li0.33La0.567TiO3. J. Mater. Sci. 52, 2232–2240 (2017)

    Article  CAS  Google Scholar 

  43. Y.H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, J. Sakamoto, Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.567TiO3. J. Mater. Sci. 47, 5970–5977 (2012)

    Article  CAS  Google Scholar 

  44. C.E. Athanasiou, M.Y. Jin, C. Ramirez, N.P. Padture, B.W. Sheldon, High-toughness inorganic solid electrolytes via the use of reduced graphene oxide. Matter 3, 212–229 (2020)

    Article  Google Scholar 

  45. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B. 110, 11780–11795 (2006)

    Article  CAS  Google Scholar 

  46. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117, 1–19 (1995) http://lammps.sandia.gov

  47. S. Goel, G. Cross, A. Stukowski, E. Gamsjäger, B. Beake, A. Agrawal, Designing nanoindentation simulation studies by appropriate indenter choices: case study on single crystal tungsten. Comput. Mater. Sci. 152, 196–210 (2018)

    Article  CAS  Google Scholar 

  48. J. Luo, K.D. Vargheese, A. Tandia, J.T. Harris, J.C. Mauro, Structural origin of intrinsic ductility in binary aluminosilicate glasses. J. Non-Cryst. Solids 452, 297–306 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the U.S. Department of Energy, Advanced Research Projects Agency for Energy (ARPA-E) through the IONICS program led by Paul Albertus, Award No. DE-AR0000775 and completed with support by the U.S. Department of Energy Vehicle Technologies Office (VTO) Advanced Battery Materials Research Program (Tien Duong, Program Manager). Alexis Flores-Betancourt and Takaaki Koyanagi are acknowledged for their expertise in setting up the equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Kalnaus.

Additional information

Erik Herbert was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 3079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalnaus, S., Westover, A.S., Kornbluth, M. et al. Resistance to fracture in the glassy solid electrolyte Lipon. Journal of Materials Research 36, 787–796 (2021). https://doi.org/10.1557/s43578-020-00098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00098-x

Keywords

Navigation