
352        MRS BULLETIN • VOLUME 49 • APRIL 2024 • mrs.org/bulletin

Complexity, disorder, and functionality 
of nanoscale materials
Xiaoming Mao  and Nicholas Kotov* 

The world of biology created a wealth of complex materials intertwining order, disorder, and 
hierarchy. They are produced with minimal energy expenditures and display combinations of 
properties that surpass materials aimed to be perfectly ordered crystals or perfectly disordered 
glasses. De novo engineering of biomimetic materials with “impossible” combination of 
properties necessary for multiple technologies becomes possible considering complexity as 
a design parameter but this methodology lacks foundational principles. This article delineates 
the concept of complexity in the context of materials science. It examines the pathway to 
quantitative complexity–functionality relations and explores pragmatic approaches to scalable 
complex materials guided by discrete mathematics of nanoassemblies from imperfect 
components.
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Introduction
The need for complexity in materials engineering originates 
from the hard challenges posed by environmental, economic, 
and social boundary conditions for their design. Sustainable 
materials must exhibit a difficult-to-achieve balance of phys-
icochemical properties, such as strength, conductivity, trans-
parency, recyclability and environmental robustness, to satisfy 
seemingly unrealistic requirements from multiple technologies 
while minimizing their environmental footprint. It is becoming 
increasingly clear that traditional crystalline materials (char-
acterized by perfect order) and amorphous materials (charac-
terized by simple uncorrelated disorder) cannot address these 
needs. Learning from biology, incorporating complexity into 
materials design by combining order, disorder, and hierarchical 
organization enables the most advanced and adaptable systems 
in Nature – those of living organisms. To increase the com-
plexity of materials from accessible abiological components, 
whether or not directly repeating structural patterns found in 
living creatures – is a pragmatic pathway to new materials with 
enhanced performance while reducing resource consumption. 
A wide range of biological and abiological components can also 
self-assemble further reducing the energy footprint. Designing 

for complexity rather than structural perfection is, therefore, 
pivotal for a sustainable future.

Inorganic nanoparticles (NPs) are central to the subject of 
complexity because they (1) have a universal ability to self-
assemble; (2) possess essential properties such as electric 
conductivity, mechanical strength, and catalytic activity; (3) 
provide the unique opportunity to observe the emergence of 
complexity due to high electronic contrast; and (4) can be 
easily paired with a wide range of organic and biological 
nanoscale components to produce a nearly endless spectrum 
of hybrid materials also known as composites. As empiri-
cally found complex self-assembled nanostructures continue 
to benefit energy, environmental, water, biomedical, informa-
tion and other technologies, the search for quantitative rela-
tions between complexity and functionality of nanostructures 
that can purposefully accelerate their design becomes the 
focal point of materials science.

The objectives of this perspective are threefold: (1) to 
define the notion of complexity in the context of materials, 
(2) to establish methodology(ies) of its quantification, and 
(3) to provide pathways to complex yet easily scalable and 
energy-conscious materials via self-organized nanostructures.
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What is complexity?
The subject of complexity has many faces. It represents a 
ubiquitous yet vague notion that does not have a universal 
agreed-upon definition based on the physical description of 
matter. The earliest thought about complexity traces back 
to Aristotle, who defined complexity as “The whole is more 
than the sum of its parts” (Metaphysics, Vol. VII). Note that 
this is a function-based definition of complexity, which can 
provide intellectual guidance to the construction of complex 
systems including materials.

The first modern attempts to transition from colloquial 
to formal definitions of complexity are associated with the 
development of programming and information theory. The 
works of Kolmogorov,1 Solomonoff,2 and  Chaitin3 in the 
early 1960s described complexity as the minimal algorithm 
required to fully reproduce an object and its information 
content. Although all three of these scientists worked on this 
subject independently, this concept is often referred to as 
Kolmogorov complexity; we will refer to it as algorithmic 
and information complexity or AIC. As applied to chemical 
structures and generally to matter, AIC is a minimal 
algorithm that deterministically encodes the elemental 
composition, spatial coordinates, and point-of-time dynamics 
of atoms in the object. Repeatable patterns found in crystals, 
dramatically simplify the algorithms describing their 
atomic organization, and thus decreases AIC. In its classical 
interpretation, randomness of the atomic configurations of 
the materials increases AIC.

Making the next step, Wolfram in 1984,4 and Grassberger 
in  19865 explored the dependences of complexity on 
information theory and algorithm design that can be 
potentially exploited in the practical calculations of AIC. This 
work was continued by Çambel in 1992,6 Kauffman in 1993,7 
Gell-Mann in 1994,8 Lopez-Ruiz et al. in 1995,9 and Holland 
in 1995,10 who considered complexity as a derivative of 
theories of cellular automata, chaos, and fractals. While using 
AIC as a steppingstone, their papers and books dramatically 
changed the foundational interpretation of complexity. 
Considering randomness is one of algorithmic rule governing 
the organization of a system, Çambel, Kauffman, and Gell-
Mann argued that complexity is a combination of order and 
disorder (COD). We note that this view agrees with physical 
realities of large atomic structures described by statistical 
mechanics. It also agrees with information theory because 
the information content of two fully random distributions of 
the same atoms regardless of their amount is identical despite 
the difference in their coordinates. We also note that perfect 
crystalline materials in the context of both COD and AIC are 
similarly noncomplex because, on one hand their structural 
organization can be encoded by a short algorithm and, on 
another hand, crystals do not contain disorder as the second 
essential component. The difference between COD and AIC 
becomes vivid when the system’s randomness increases 
gradually starting from the perfect order and evolving into 

complete disorder. Starting from noncomplexity of crystals, 
COD initially increases and then decreases as the positions 
of atoms become fully randomized. The same trajectory of 
the system leads to a monotonical increase of AIC. Another 
difference between COD and AIC is that in its classical 
formulation AIC is dependent on the number of atoms in the 
structure and, therefore, is an extensive parameter. COD, on 
the contrary, is an intensive parameter as long as the increase 
of the number of atoms does not reveal a new level or 
organization of the atoms and a new pattern combining order 
and disorder at larger scale. If such hierarchical organization 
is present in matter, COD should abruptly increase as 
physical dimensions of the system become larger than the 
characteristic scale of the new organizational patterns.

Discussion of complexity in both interpretations enabled 
exploration of the relations between complexity and “big” 
subjects, such as the emergence of life and evolution of 
the universe, stimulated by an organization of the Santa 
Fe Institute. Expanding the ideas of Aristotle, Kauffman,7 
Grassberger, Holland, and Gell-Mann11 also introduce the idea 
of effective and function-based complexity, which is important 
in the context of materials design because it strengthens the 
connection between complexity and materials properties.

Elegant, instructive, and quantitative insights into the 
relationship between complexity and thermodynamics were 
also made. The direct connection between the complex 
multifractal systems of particles and their entropy and enthalpy 
were made by Stanley and Meakin in 1988.12 The relationships 
between statistical thermodynamics and complexity were 
expanded by Lopez-Ruiz et al. in 1995,9 who showed the rise 
of complexity as the system moves away from equilibrium. 
The pathway to complexity was further elaborated by Bak, 
Tang, and Wiesenfeld,13 who promulgated the idea of “self-
organized criticality” (SOC), which is considered to be a 
mechanism for the emergence of complexity in matter with 
a large degree of stochasticity. In this case, the trajectory of an 
open system starts from noncomplexity of random distribution 
of atoms or other particles and evolves toward consistent self-
correcting geometric patterns (e.g., sand piles) not crossing 
into formation of perfectly ordered crystals.

The interest in complexity continued between 1990 and 
2000 and expanded to chemical and biological matter. These 
studies included brain and neuronal networks,14 biological 
organisms,15 chemical systems,16–18 and nanoscale structures.19

Complexity and functionality
Complexity with purpose
Let us consider now the rationale for the use of complexity as 
a design metric for materials. The best examples of amazingly 
complex and universally useful chemical structures excelling in 
both performance and longevity are biological composites. They 
can be found in all parts of the biosphere and are typically made 
from renewable earth-abundant nanoscale components, which 
makes a particularly good case for complexity in the context 
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of sustainability. High-performance biological composites are 
exemplified by seashell nacre,20 tooth enamel,21 articular carti-
lage,22 tree  roots23 (Figure 1), and animal  bones24 (Figure 2). 
Their complexity manifests in sophisticated geometrical patterns, 
multiplicity of the components, abundance of interfaces, and 
multiple scales of organization. All these structural aspects are 
needed for them to perform their intended duties while reducing 
the energy burden on the organism and maximizing access to 
the material’s components. For instance, organizational motifs 
of bones span multiple scales from  10–10 m to 10 m with all 
of them being essential for their combination of functionalities 
that include lightweight load-bearing, stem cell differentiation, 
immune response modulation, and connectivity with soft tissues 
(Figure 2).25,26 At the atomic and nanoscale levels, bones are 
based on NPs with distinct crystallinity. 25 The NP shape is asym-
metric and they are exceptionally polydisperse.26 The mesoscale 
organization of the bone-forming NPs in different projections 
includes mutual alignment and complex stochastic patterns with 
pronounced helicity (Figure 2c–d).26 The microscale and sub-
millimeter scale organization display characteristic diameter of 
pores, asymmetry of niches, and thickness of pore walls.27 What 
emerges from an overview of these and other biomaterials as 
well as their human-made replicas, such as layered organic inor-
ganic composites from nanocarbons,37 is that the organizational 
pattern and constitutive building blocks can be different, but the 
combination of order and disorder is universal. 

The omnipresence of the order–disorder combination (that 
can also be described as correlated or non-random disorder) and 
its direct connection to complexity as the design parameter for 
high-performance materials can be seen at the different scales 
of organization of load-bearing materials. Their architecture 
exhibits (Figures 1 and 2) several universal structural traits: 
(1) Atomic periodicity of NPs is paired with amorphous layer 
at their interfaces;28 disorder shows up at the molecular and 
nanoscale level when inorganic NPs are templated by organic 
components surrounding them, which is typical for biominer-
alization.29–34 (2) Inorganic nanocomponents of biomaterials 
display consistent anisotropy manifesting as axial asymmetry, 
but they are never the same size or shape; the mismatch at the 
interfaces is mitigated by the amorphous sections and the locally 
guided reorganization of atoms in the NPs and oriented attach-
ment.35,36 (3) Mesoscale alignment of nanorods or nanofibers 
is distinct and common, but it is also variable and imperfect 
even for tissue segments with similar functional requirements. 
(4) Microscale and millimeter-scale patterns have nonrandom 
pore dimensions, but their percolating patterns and wall con-
nectivity are seemingly disordered. Identical observations can 
be extended to all high-performance biomaterials.

One of the reasons for the universality of these structural 
traits is that the combination of order and disorder enables hier-
archical organization, which would be associated with high 
thermodynamic penalties or outright impossible in perfectly 

a b c d

Figure 1.  Examples of complex biomaterials. Scanning electron microscopy images of (a) nacre,20 (b) tooth enamel,21 (c) articular cartilage,22 
and (d) tree roots (poplar).23

ea b c d

Figure 2.  Examples of hierarchical organization of complex biomaterials. Transmission (a–d) and scanning (e) electron microscopy images of 
bone structure at different scales: (a, b) constitutive hydroxyapatite nanoparticles; 25,26 (c, d) mesoscale assemblies of nanoparticles in different 
projections; 26 and (d) microscale organization of hydroxyapatite nanocomposite.27 The arrows in Figure 2c point to individual inorganic crystal-
lites self-assembled into the complex composite biomaterial.
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ordered atomic, molecular, nanoscale, or microscale crystals. 
For example, filling a spherical void in a perfect crystalline 
material with perfect cubes is not possible without some imper-
fections at the interface. Likewise, the disorder is needed for the 
change of the structural patterns at different scales. The forma-
tion of an interconnected dendritic network of curved pores at 
nanometer, micron, and millimeter scales (Figure 2d) requires 
some break in the perfect space filling packing of nanoscale 
parallelepipeds of cellulose. The same is true for nanoscale 
rods and microscale pores in bone in Figure 2. Some of the best 
examples of high functionality disorder occur when it is pres- 
ent in otherwise crystalline materials, including the inclusions 
of amorphous calcium  carbonate31 and calcium  phosphate32 
in load-bearing biocomposites of marine organisms. Similar 
purpose is associated with disordered organic layers between 
the partially ordered inorganic platelets in layered biological 
composites and nacre-like human-made materials.37 The disor-
dered sections are necessary for mechanical properties of squid 
sucker  ring33 and spider silk.34 More generally, the disorder 
facilitates the scale-dependent “switch” from one organiza-
tional pattern to another required for survival-critical physical 
properties. These properties are determined by organization of 
matter at different scales and include, for example, hardness, 
toughness, density, light-scattering and nutrient transport being 
affected by all the structural parameters present in Figure 2.

Note that the intricate multiscale organizations have, 
however, enthalpic and entropic penalties. Noncomplex 
materials, for instance, perfectly crystalline minerals or 
perfectly disordered glasses, may be more advantageous 
with respect to the free energy and component availability. 
Nevertheless, the materials with high complexity are the ones 
that make a difference between existence and nonexistence 
for living organisms. They support life because they excel not 
in only one task but in multiple ones at the same time. Nacre, 
enamel, bone, cartilage, etc., require complexity because 
they must display high strength, high toughness, high ionic 
selectivity, high flux of nutrients, low weight longevity, 
and selectivity in cellular adhesion – all at the same time. 
Monolithic blocks of calcium fluorophosphate, collagen, or 
their mixture exhibiting complete disorder or perfect order 
(crystallinity) will not provide the hardness, strength, and 
longevity of enamel.21 This property set requires it to be made 
from hydroxyapatite nanorods oriented along the dominant 
direction and interlaced with protein “cushions.”

Besides examples from Nature, there are numerous human-
made materials, and more generally, materials systems, that 
are neither fully periodic nor random, which is essential for 
their performance, robustness, and manufacturing. They span 
a vast range of technologies from neuromorphic computers to 
desalination membranes.

Considering the prior studies of complexity in the context 
of “big questions,” a parallel can be made with other complex 
systems evolving under multiple boundary conditions modeled 
by  Kauffman38 and Holland.10 Similarly, complexity in bio-
materials emerges because they must perform multiple tasks 

and conform to multiple functional requirements that would 
otherwise be impossible to fulfill.

Thus, in the context of materials science complexity 
can be defined as purposeful performance-oriented 
structural organization of matter, combining order and 
disorder. This definition is applicable to biological and 
nonbiological materials, static or dynamic matter, and open 
or closed systems. It also incorporates atomic, nanoscale, 
mesoscale, microscale, and macroscale structures relevant to 
understanding the interactive and malleable hierarchy in living 
and technological systems.39 The combination of order and 
disorder makes possible combining different structural motifs 
at multiple scales, which de facto incorporates the notion of 
“The whole is more than the sum of its parts,” where at each 
scale, bringing together different parts of the material gives 
rise to new complex properties, maximizing functionality.

Quantification of complexity
The approach to complexity as a parameter relating materials 
organization and performance can be described as a generic 
“Goldilocks” curve (Figure 3). Based on the necessity of 
materials structure to satisfy multiple requirements giving 
rise to multiple properties, the complexity and performance 
reaches a maximum somewhere between order (i.e., perfect 
continuous crystallinity) and disorder (i.e., uncorrelated iso-
tropic randomness).8 The earliest version of such a curve was 
found in Huberman and Hoggs’ 1986 publication.40 Similar 
curves also appeared in subsequent publications by Lopez-
Ruiz et al. in 1995,9 Edmonds in 1995,41 and Tononi et al. in 
1998.14 Analogous conceptual antagonism between complex-
ity and order also appears in art.42,43

We note that the axis of complexity in all the Goldilocks 
curves proposed in this field lack a quantitative assessment 
of complexity. This vagueness represents a major roadblock 
for future studies. Multiple approaches to quantify complexity 
have been proposed in the past.44 Some of the earliest were 
related to AIC that despite the limitations, can be used to 
approximate the left part of a Goldilocks curve. A string of 
symbols with minimal possible length for an ideal Turing 
computer to reproduce an object was a logical measure of 
AIC. One obvious problem here is that AIC is dependent on 
a programing language. A bigger problem, however, is that 
AIC is incomputable for any realistic object,45 which becomes 
particularly obvious in case of dynamic macromolecular 
structures relevant for chemistry or biology or nanoscale 
particles surrounded by water molecules. On the positive side, 
AIC can be related to entropy and entropy-related measure(s) 
of complexity were proposed by  Grassberger5 and Rajaram 
and Castellani.46 AIC-inspired measures of complexity based 
on statistics integrated with thermodynamics were put forward 
by Crutchfield and Young in 1989 47 as well as by Lopez-Ruiz, 
Mancini, and Calbet in 1995.9

The examples of biomaterials shown in Figures 1 and 2 indi-
cate that COD would be a better choice as a design parameter 
for materials engineering than AIC. Geometry-based measures 
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of COD were proposed by Tononi et al. in 1994,14,48 Ay et al. in 
2011,49 and Wolf et al. in  201815 Notably, all these approaches 
were inspired by biological systems. Cumulatively, they can 
be described as different methods to partition the actual physi-
cal system (Tononi, Ay) or its photographic  image50 with sub-
sequent quantification of the lost information due to the sec-
tioning. Following Aristotle, the authors tested whether the 
complete system (object, image, etc.) has more information 
than a sum of its parts. In this regard, the emergence of new 
structural patterns combining order and disorder occurring at 
specific scale (i.e. partition) amounts to the emergence of addi-
tional functionalities differentiating one complex material from 
another. This approach capture the idea of and can theoretically 
lead to a quantitative Goldilocks curve.

Complexity of nanoscale assemblies
NPs can serve as a convenient model to decipher relationships 
between complexity and functionality because they can self-
assemble into a large spectrum of structures combining order 
and disorder ranging from nearly perfect colloidal crystals 
with singular functionalities associated with the left side of 
the Goldilocks curve, to imperfect but multifunctional assem-
blies from polydispersed NPs in the middle part of the curve 
and eventually to nearly random agglomerates with limited 
functionalities for the right side of the curve. Additionally, the 
structures of inorganic nanoscale assemblies are convenient for 
various microscopy methods because of their higher contrast 
compared to organic materials. Finally, there are numerous 
NPs synthesized so far, and the family of composites based on 
their combinations and permutations between themselves and 
organic components is gigantic. As a conservative estimate, 
there are at least 100 reported nanoscale components. If they 

are to be tested for five different mix-
ing ratios in a single polymeric matrix, 
there will be  2500 = 3.27·10150 test sam-
ples. Even with the proliferation of 
robotic laboratories and artificial intel-
ligence, a universal approach to their 
design would significantly simplify the 
job of materials scientists.

Prior studies of complexity were 
not adapted to nanoscale structures in 
part because a methodology for the 
structural description of nanoscale 
systems that combined both order and 
disorder had not yet been defined.15,49 
In one recent case, the architecture of 
nanoassemblies were analyzed using 
the toolbox of graph theory (GT).51 In 
this approach, NPs are represented as 
nodes, while the structural connectivity 
between them (both static and dynamic) 
is represented by edges (Figure 4). This 
general description can be universally 

applied across all material platforms with nanoscale organiza-
tion. Importantly, the different shapes of the NPs, despite their 
variability in size, can be represented using simple GT formal-
isms. For example, nanospheroids, nanorods, and nanosheets 
(nanoplatelets) can be described as fully connected K1, K2, and 
K3 graphs. Chiral 3D structures with mirror asymmetric shapes 
can be represented by K5 graphs. All these representations of the 
constituent nanoscale building blocks correspond to the graphs 
of minimal complexity. Minimization of GT representations is 
needed to calculate complexity measures that would be compa-
rable between different systems.

In simple cases, GT models of nanoscale structures and 
nanoassemblies can be extracted from their TEM images 
exemplified by the particle chains in Figure 4b.36 For 
hierarchically organized structures with organization at 
multiple scales TEM and SEM images are required.52 High-
resolution 3D reconstructions of nanoscale materials using 
electron microscopy or super-resolution optical microscopy 
are currently possible that will also provide the required 
information about the structural patterns. Note that graph 
descriptions of nanoscale structures can be applied to both 
size-limited nanoscale assemblies from NPs, nanorods and 
nanoplatelets, such as supraparticles, as well as to (semi)
infinite materials, such as composites, gels, etc. The GT 
approach can be extended to continuous materials, such as 
nacre, enamel, and bone.51 For long-range structural patterns 
with high stochasticity, descriptions of nanoassemblies can be 
made in terms of random graphs and networks.53–55

The GT representations of different NPs in Figure 4 are given 
for the same level and scale of organization. The GT toolbox can 
also describe the hierarchical organized matter. For example, 
the atomic-scale structure of NPs, their interface with polymers, 
and the particle chains that form the polymer can be captured by 

Figure 3.  COD or functional complexity peaks between ordered and disordered limits, 
defining the “Goldilocks” zone (solid blue line). AIC complexity monotonically increase with 
disorder (orange dashed line). NP, nanoscale particle. The scanning electron microscopy 
images in this figure are adapted with permission from Reference 71, Jiang et al., Science, 
 2020,51 and Kumar et al., Nature  2023.103 Other images are the original art forms of X. Mao.



COMPLExIty, dIsORdER, And fUnCtIOnALIty Of nAnOsCALE MAtERIALs

MRS BULLETIN • VOLUME 49 • APRIL 2024 • mrs.org/bulletin              357

deconvolution of single nodes into their own graphs built, for 
instance, with atoms as nodes. This can lead, of course, to very 
large graphs and in practice, it will be practical to collapse them 
into an additional NP characteristic – a nodal weight, wn. The sta-
tistical distribution of wn will incorporate the measure of order and 
disorder characteristic of the specific NPs. Similarly, one can add 
atomistic specificity to interparticle interactions by introducing 
edge weights, we, descriptive of nonrandom structural patterns of 
covalent and supramolecular bonds between them.

Once a representative graph of a nanostructure, or more generally, 
a material, is created, its complexity can be calculated. However, 
there is no universally accepted measure of complexity (see “Quan-
tification of complexity”). Additionally, measures developed in the 
classical studies of complexity have not yet been applied to materi-
als – nanoscale or otherwise. Several complexity measures could 
potentially be applicable to nanostructures. Among them are fractal 
exponents that describe self-similarity across the scales calculated 
from the GT representations.56–60 The quantitative parameters of 
resulting fractal exponents, that is, the prefactor and fractal dimen-
sion, df, are often associated with  complexity61 but neither prefactor 
nor fractal dimension are actually measures of AIC or COD. The 
concept of fractality could be suitable for the description of hier-
archical organization of materials when the patterns are repeatable 
at different scales. However, this is not true for the actual materials 
because the structural patterns do change (Figures 1, 2). Additionally, 
df, is typically calculated from original microscopy images, which 
also severely limits the range of scales essential for fractality. Under 
these circumstances, node-based multifractal spectra, f(α), extracted 
from GT representations developed by  Bogdan62 are recom-
mended. They describe a continuum of fractal dimensions changing 

depending on scale and location. The 
value of the Lipschitz-Hölder exponent, 
α, when f(α) reaches maximum is reflec-
tive of complexity and is promising for 
structure–property relations for complex 
materials.63–65 This approach can also be 
very effective for complex hierarchical 
graphs combining atomic, nanometer, 
and micrometer scales.

Another approach is the develop-
ment of specialized indexes, such as 
the complexity index (CI).51,66 The 
calculation of CI is based on GT rep-
resentations of nanoscale structures 
for which the complex organization 
of the material combining order and 
disorder are described based on the 
Kn formalism for nanoscale structures. 
The use of Kn enables one to abstract 
the structural imperfections and vari-
ability of the components that make 
up the material. CI for nanostructures 
is designed to identify the repeatable 
patterns of their organization. For 
example, the structure of NP chain can 

be represented by a simple graph formula in Figure 4c. The simi-
larity with common chemical formulae is not accidental because 
they are indeed atomic graphs. The structure of more complex 
nanostructured materials, such as supraparticles from achiral 
nanosheets and nacre can be represented by the GT formulae 
in Figure 4a, where the platelets or platelet-like components 
are represented by K3 graphs. Two key differences with atomic 
graphs are that (1) the NPs can have variable shapes including 
those that are atypical for atoms (Figure 4a); (2) equality of sizes 
is not required and, unlike atoms, individual NPs are expected to 
have imperfections. Furthermore, these imperfections are ben-
eficial for functionalities as can be observed for mechanical and 
electrical proprieties of layered composites from human-made 
and natural two dimensional (2D) materials.37,67,69

The repeatable organizational pattern of nacre or nacre-like 
human-made composites, that is, the stacking of nanoplatelets 
with organic layers in between, is uniformly described by a 
graph where K3 segments are interconnected by additional edges 
(Figure 5a). Such representation is universally applicable to the 
nacre-like composites from graphite oxide,67 graphene,68 clay,69 
 hydroxyapatite70 etc. The random distribution of nanoplatelets 
in supraparticles with repeatable nonrandom size is described by 
the loop with K3 segment inside (Figure 5b). GT representations 
of other complex particles both human-made (Figure 5c–d) and 
natural (Figure 5e) can also be built. CI is then calculated as the 
limited sum of (½)n progression for the total number of edges 
connecting each type of node to it nearest neighbors, next-near-
est neighbors, second-next-nearest neighbors, etc. If there are 
more than one type of node, the CI for each of them are added 
together. Calculations of CI were first used when the materials 

a
b

c

Figure 4.  (a) Basic concept of graph theory (GT) description of assemblies of imperfect 
nanoparticles (NPs) represented as Kn complete graphs with increasing number of nodes 
depending on the shape and symmetry elements.50 (b) Transmission electron microscopy 
image of chains of CdTe NPs forming a network. Adapted with permission from Refer-
ence Tang et al., Science, 2002,36 and (c) their GT representation based on Kn formalism.51 
Adapted with permission  from51Jiang et al., Science 2020.
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with a combination of order and disorder, for instance, nacre 
with polydispersed platelets with stochastic yet nonrandom 
shapes were considered.51 Similarly, complex hedgehog supra-
particles with randomly organized cores and a nonrandomly 
organized halo of spikes were successfully described by GT 
formalism where random portions of the particle with nonran-
dom diameter was described by loops.

As demonstrated by Jiang et al.,51 CI can serve as a measure 
of COD complexity being equal to 1 for randomized agglomer-
ates and 6 for one-dimensional crystals (i.e., particle chains), 
while rising up to 24 for nacre-like composites and 87 for hier-
archically organized particles (Figure 4). Working toward the 
quantification of the Goldilocks curve in Figure 3, the rise in 
CI can be directly associated with their functionality because it 
leads to acquisition of new properties controllable by organiza-
tion at new levels and scales. The addition of atomic scale that 
describes the nanoparticles, nanorods, nanosheets, and the het-
erogeneity over the volume of the supraparticles will increase 
the degrees of freedom, the number of nodes in GT representa-
tions, and thus, the complexity. Concomitantly, this will also 
increase the number of properties that can be combined for a 
particle and the range of parameters that one property can be 
tuned independently of others. A recent proposal in this work-
space was to perform real space renormalization on images 
and calculate the distances (i.e., dissimilarities) between images 
across consecutive steps of renormalization, and use the sum of 
these distances across the scales to define a multiscale structural 
complexity.50 This definition captures the variation of the struc-
ture as one zooms into smaller and smaller scales, which aligns 
with our definition of complexity in nanomaterials in terms of 
structural variation across scales.

GT representations of nanoassemblies enable applications 
of a versatile toolbox of discrete mathematics and network 
theory to characterize and predict properties of complex 

materials. For example, by assigning resistance and rigidity 
to edges of the graph, one can forecast electric and mechani-
cal properties of the material across different scales. This 
opens the door to not only studying the relations between 
complexity and functionality, but also provide practical tools 
for materials design.

Pathways to complexity
Although many views on complexity have been proposed 
and many methods to predictively describe complex systems 
have been postulated, the actual pathways to real materials 
from imperfect components that exhibit intended complex 
behavior and an intended set of properties have been much 
less explored. The success of these studies will hold the key 
to combining complexity of materials with simplicity of 
manufacturing. In this section, we review several models that 
connect these characteristics with COD complexity.

Chirality
As often is the case with such difficult problems, some les-
sons can be learned from examining complex materials in 
Nature. Most of them are nanostructured, self-assembled, and 
chiral. Chirality, or mirror asymmetry, arises from the spatial 
arrangement and chemical distinction of atoms, molecules, NP, 
supraparticles, etc. This geometric characteristic and associ-
ated parameters introduce a uniquely practical dimension to 
the topic of material complexity. In chemistry and biology, it 
is widely accepted that chiral components self-assemble into 
intricate and sophisticated structures, which often exhibit prop-
erties that are very distinct from their initial components. Chiral 
molecules and particles can also be synergistically combined 
with nonchiral counterparts. The arrangement of chiral entities, 
such as molecules or NPs, can lead to the emergence of materi-
als with complex helical or twisted structures.71

ea b c d

Figure 5.  Structural images (top) and graph theory representation (bottom) for various nanoassemblies. (a) Nacre-like composite represented 
stacks of graphite oxide nanoplatelets. Adapted from Reference 67. (b) Supraparticles from achiral Au–S nanosheets. (c) Kayak particle from 
achiral Au–S nanosheets. (d) Coccolith-like particles from chiral Au–S nanosheets. (e) Skeleton of the algae Syracosphaera Anthos containing 
chiral microsheets. Adapted with permission from Reference 51. Jiang et al., Science 2020.
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Understanding the relationship between the complexity of 
desirable materials and the chirality of their components provides 
a path to synthesize materials at large scale while carefully tun-
ing their mechanical, optical, electronic, and biological proper-
ties. Although publications of empirical observations of complex 
materials with chiral molecules and particles are copious, the phys-
icochemical mechanisms leading to their geometrical complexity 
are still puzzling. This is particularly true for nonuniformly sized 
nanoscale components that are essential for the scalability of cer-
tain processes. A direct inquiry into the dependence of chirality 
and complexity was made using a model system of supraparticles 
(SPs) from polydispersed gold thiolate NPs with the shape of nan-
oplatelets (K3). Because the surfaces of the NPs were coated with 
L- or D-cysteine (Cys) ligands, the flexible nanoplatelets twisted 
to become chiral. The resulting SPs then required K5 representa-
tion in the GT models.51 There was a clearly visible increase in 
the complexity of the self-assembled SPs as chirality increased 
as a result of changing the L/D-ratio from 1 to 10 (Figure 6). The 
calculation of CI values for SPs of different morphologies made at 
various temperatures and L/D-ratios demonstrated highly nonlin-
ear growth of complexity as the chirality of the system increases.

This dependence can be understood in the context of com-
petitive restrictions on the short- and long-range self-assem-
bly patterns that emerge for systems with different chirality. 
Electrostatic repulsion between the components engenders 
the nearly universal restrictions that impose limits on particle 
size, which is common for vesicles, micelles, inkjet droplets, 
exosomes, intracellular compartments, etc. In case of NP 
assemblies, electrostatic restriction vividly manifests both in 
nacre-like composites made from nanosheets by the layer-by-
layer  assembly72 and in SPs assembled from a wide range of 

NPs of different shapes.73 The complex nanoscale architec-
tures emerge when restrictions are multiple, anisotropic, and 
competitive. What is essential is that energy gains and penal-
ties associated with these restrictions on the self-assembly of 
building blocks must be comparable.

When none of the competing interactions and restrictions 
dominate, NP self-assembly acquires complex architectures to 
negotiate these conflicting requirements. For chiral NPs, the 
anisotropic restrictions associated with electrostatic repulsion 
are intertwined with those from hydrogen bonding, hydropho-
bic attraction, meta-ion coordination, and elastic deformation. 
The first order assessment of characteristic energies of these 
interactions when competitive restrictions result in complex 
architectures is 50–60 kJ/mol.51 Since the shape, charge, elas-
ticity, hydrogen bond density, and composition of NPs change 
with L/D ratio and temperature, the characteristic energies also 
change. Thus, chirality provides the essential structural element 
at angstrom and nanometer scales for multiple restrictions to 
become competitive. Also important, chirality is a scaleless geo-
metric property and, therefore, under favorable conditions it can 
be transferred from scale to scale and to higher scales, thereby 
ensuring competitive restrictions and complexity evolution as 
the size of the objects become larger.

The practicality of the chirality pathway to complexity can 
be highlighted by the fact that the polydispersity of NPs does 
not impede the formation of complex architectures. For Au-
Cys NPs with extremely high polydispersity, the complexity 
of the resulting SPs is considerably higher than those formed 
from other NPs. Polydispersity may actually increase the com-
plexity of the supraparticles, because the presence of smaller 
and larger NPs with stronger and weaker twists enables the 

a b

Figure 6.  (a) Product diagram observed for complex particles from chiral Au–S nanoplatelets. The blue and red phases on the top and bottom 
correspond to coccolith-like particles (aka chiral hedgehogs) with high complexity in Figure 5d. (b) Mapping of complexity index (CI) values on 
product diagram in (a). The highest (CI) values are observed for the part of the phase diagram where a triple point specific to critical states is 
observed. χ is the enantiomeric excess of chiral amino acids coating the Au–S platelets; tn is the temperature of the reaction. All images are 
adapted with permission from Reference 51 Jiang et al., Science 2020.
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growing assembly to select site-suitable NPs from the mix-
ture.74 The uniqueness and tunability of the optical, chemi-
cal, colloidal, and potentially biological properties of these 
complex SPs suggest their broad application in asymmetric 
catalysis and polarization-based optoelectronics. The strong 
effect of chirality enables the scalable preparation and control-
lable preparation of complex particles in a sustainable manner 
and helps us to understand the origin of the astounding diver-
sity and sophistication of biological nanocomposites (Fig-
ures 1 and 2). Further directions in this area may also include 
evaluation of the relations between COD complexity and 
chirality measures, exemplified by Hausdorff distance, Osi-
pov–Pickup–Dunmur index, continuous chirality measure, and 
helicity measure. Also note that Harris, Kamien, and Lubensky 
showed that, instead of a simple “handedness” parameter, an 
infinite hierarchy of chiral moments can be utilized as chirality 
measures, which will need to be considered establishing these 
relationships by defining a specific path system reconfigura-
tion taking place in concrete chemical systems.75

Spatiotemporal chaos
The term chaos refers to persistent random behavior result-
ing from deterministic equations with initial conditions. The 
logistic map is perhaps the simplest example of chaos where 
complexity emerges from one simple iterative mapping of 
x
n+1

= rx
n
(1− x

n
) for r > r

c
≈ 3.57 through the onset of 

chaos, where orbits become irregular and small variations 
in the initial conditions change drastically over time (Fig-
ure 7a).76 In this case, AIC complexity is small because the 
pattern is generated from a simple equation. COD complexity 
is, nevertheless, high with cascading time scales, where tem-
poral correlation function vanishes at long times, indicating 
that the information of the initial conditions is “forgotten.”

The more generalized concept, spatiotemporal chaos, 
describes extended systems involving many interacting 
degrees of freedom, and finite correlation in both time and 
space controlled by the time elapsed from the onset of chaos. 
Having “finite correlation in both time and space” is common 

in systems with stochasticity, such as statistical mechanics, but 
spatiotemporal chaos refers to how this phenomenon comes 
from nonlinearity, even when the system is fully determinis-
tic. This concept is directly relevant for physical, chemical, 
and biological systems where complex spatial patterns arise 
from simple nonlinear dynamics rules.77 Other well-known 
examples include  turbulence78 and spatial temporal phases in 
chemical pattern formation  systems79 (Figure 7b–c).

The connections between spatiotemporal chaos and complex 
biosystems in Nature have been extensively discussed in prior 
studies. There is a high degree of certainty that spatiotemporal 
chaos can be a realistic pathway to complex materials. Similar to 
many cases of complex materials, this research direction remains 
largely unexplored for nanostructures and other materials.

Geometric frustration
In complement to electrostatic restrictions on assemblies of 
molecules and particles as can be observed in 2D assemblies of 
 platelets37 and 3D assemblies of NPs,73 geometric frustration 
between unfitting geometric shapes can take the form of effec-
tive attraction and repulsion restricting the assembly patterns 
and, thus resulting in the increased complexity. Inability of the 
geometrical shapes to perfectly tile surfaces and fill 3D volumes 
without gaps or overlaps defines the commonly accepted under-
standing of geometric frustration, and leads to complex assem-
blies (Figure 8). For example, nontiling polygons assemble to 
trees, fibers, and bulk phases under different levels of surface 
tension.78 Geometric frustration has far-reaching influences in 
statistical mechanics and condensed-matter physics in many 
contexts from glass transitions, spin glasses, ergodicity break-
ing, frustrated magnetism, and quantum spin liquid states, giv-
ing rise to an abundance of complex phenomena. The geometric 
frustration in physical systems with criticality has also been 
considered as a plausible component of biological complex-
ity,15 leading to both compartmentalization and rugged fitness 
landscapes with nonergodic evolution.

Geometric frustration may cause and be caused by chiral-
ity (Figure 8a). A good example is the assembly of twisted 

a
b c d

Figure 7.  (a) Deterministic chaos from the logistic map. (b) Coexistence of spiral pattern and spatiotemporal chaos in a Belousov–Zhabotinsky 
reaction. Adapted with permission from Reference 79. (c) Cascading scales in turbulence. Adapted with permission from Reference 78. (d) Self-
organized criticality nanoassembly of neuromorphic elements. Adapted with permission from Reference 102.
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bundles described by Grason and Bruinsma in 2007 (Fig-
ure 8b), where the relative twist between neighboring fibers in 
a bundle assembly leads to the overall helicity.80 The authors 
showed that accumulation of stress and self-limited growth 
are key outcomes of geometric frustration in self-assembly. 
More generally, geometric frustration can be viewed in a broad 
class of “shape incompatibility” problems, which show up in 
many different forms, from ill-fitting polygons (Figure 8c–d)81 
to twisting  cubes82 and frustrated tubes.83 Among these chal-
lenges, a new route to mathematically formulate and solve 
the problem was to find the non-Euclidean space where the 
shapes perfectly tessellate. This theory has been applied to 
tetrahedra, for which the ideal tessellation is the 600-cell char-
acterized by positively curved 3D space (the 3-sphere, or S-3), 
which converges to assembled helicoids, in agreement with 
experiments (Figure 8d).84 The generality of the theory was 
illustrated by its application to icosahedra, which tessellates 
negatively curved space (the hyperbolic 3-space, or H-3), as 
well as rationalizing Euclidean space self-assembly.85

Far‑from‑equilibrium assembly
Kinetic processes far from equilibrium (FFE) generate particle-
based structures combining order and disorder as exemplified by 
snowflakes and fractal nanoassemblies.86 These are distinct from 
aggregates formed during spatiotemporal chaos where nonlinear 

interactions lead to complexity. Fast 
growth and self-regulation via feedback, 
demonstrated by exhaustion of the par-
ticle supplies, are the main mechanisms 
for complex assembly in FFE processes. 
A variety of experimental systems of 
this sort have been explored, although 
a unified theoretical framework is still 
lacking, due to the challenging nature 
of nonequilibrium statistical mechanics.

A well-known case of FFE assembly 
is the dendritic growth of crystals (Fig-
ure 9a), originating from branching insta-
bilities at growth interfaces, with snow-
flakes being the common example. The 
more disordered version of such branch-
ing assembly, diffusion-limited aggrega-
tion (DLA, Figure 9b), has been observed 
in a wide range of systems across ionic, 
atomic, polymeric, nanoparticle, and col-
loidal particle scales.87,88 An important 
case of DLA is the chemical conversion 
of ions into dendrites,87–89 which repre-
sents a safety problem in batteries and 
other energy-storage devices.90 Branch-
ing under FFE conditions also leads to 
multifractals. In addition, supramolecu-
lar polymerization in FFE conditions 
has also recently been shown to generate 
complex assemblies with rich behaviors, 

due to kinetic pathway dependence of the assembly.91,92

More recently, influenced by the blossoming field of active 
matter,93,94 using active driving at the particle level to control 
self-assembly has become a fruitful new research direction 
and led to the formation of interesting complex structures. 
Directional motion and rotation of the self-assembly building 
blocks have led to the discovery of a variety of active assem-
blies.95 Among their unique properties motility-induced phase 
separation was observed (Figure 9c).96

Supramolecular systems represent a wealth of complex 
structures.97 Organic monomers interconnected with multiple 
weak bonds are capable of assembly and polymerization can 
produce FFE states from a large variety of molecules.91,92 
The dynamic nature of these assemblies with organizational 
patterns from angstroms to microns can provide them with 
a fast response to different environmental conditions and a 
variety of unique mechanical 97,98 and optical properties.99,100

Self‑organized criticality
An interesting and potential general pathway to complex sys-
tems based on molecules and NPs is self-organized criticality 
(SOC). This phenomenon links nonlinearity with critical scal-
ing, fractality, and robust complex behaviors, where nonlinear 
dissipative systems spontaneous evolve to criticality, showing 
long-ranged spatiotemporal correlations without fine-tuning. 

a b

c d

Figure 8.  (a) Packing of two right-handed chiral molecules by fitting their “grooves.” Short- 
and long-pitched molecules led to opposite handedness at the next level.75 (b) Elastic 
strain of fiber bending builds up as twisted bundles grow.80 (c, d) Non-Euclidean crystals 
of geometrically frustrated tetrahedra particles and associated assemblies in Euclidean 
 space84 in different projections.
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Frustrated assemblies, for instance, SPs, can be treated as 
quasi-equilibrium states,6 which enables the use of extensive 
statistical thermodynamics to select conditions for their forma-
tion. A strong indication that the SOC pathway to complexity 
is practical are the recent data on spontaneous formation of 
complex  memristic101 and  neuromorphic102 responses in NP 
and nanowire assemblies (Figure 7d).

To summarize, the study of pathways to complexity in the con-
text of nanomaterials is still at its infancy. Predictions of complex-
ity theories outline an exciting future where complex structures 
lead to functionality and adaptability. Tools to synthesize such 
systems, fundamentally understand their formation mechanisms, 
and predict their functionalities will be of great value.

Conclusions
The notion of “complexity” represents the intersection of 
the philosophical methodologies of deduction and induction. 
Deduction has prevailed in the methodology of physics research 
since the 19th century, where deterministic laws govern a wide 
variety of phenomena in nature. In contrast, induction is domi-
nant for studies of “emergence” that has gained popularity since 
the second half of the 20th century, with discoveries of critical 
phenomena and nonlinear dynamics. Emergence of complex-
ity in self-assembled systems encompasses stochastic behav-
iors governed by internal conflict between different comparable 
restrictions onto degrees of freedom for the system.51 While in 
some cases complexity can be predictably engineered and grad-
ually built,37 we also need to be open to the possibility that in 
many cases the outcome interactions can be difficult to deduce 
because they are less deterministic, and the complex system 
above the atomic scale are inherently nonergodic.38

The concept of structural complexity is at the center of 
emergence, where a realm of fascinating phenomena arises 
even when the system components obey simple rules. Self-
assembling NPs represent the missing link in emergence of 
complexity because they are at the intersection of scales when 
the chemical systems become strongly  nonadditive105 and the 
collective, not pairwise, interactions drive the formation of 
structurally sophisticated assemblies. Translating this point 
to materials design, the interactions between the materials 
components do not need to be excessively complicated and 
contain multiple parameters to make complex materials. These 
interactions do need to be, however, comparable in energy and 
experimentally deducible.

Scientists now have the capabilities for fundamental 
and practical studies of complex materials, especially for 
nanoscale components, that satisfy many requirements and 
are experimentally convenient. Guided by GT and other parts 
of discrete mathematics, enabling quantification of complex-
ity, one can aim at better understanding of control and utiliza-
tion of order, disorder, and hierarchy for specific property sets 
establishing the links between complexity and functionality. 
Integration of GT and network science with physics-based 
property  descriptions106 will lead to unified methodologies for 
establishing specific graph-property relations for mechanical, 
thermal, electric, optical, chemical, and biological properties 
taking advantage of stress, heat, charge, and mass transfer 
through the nanoscale networks. We expect that dynamic 
systems based on polydispersed NPs will be created dem-
onstrating gradual emergence of the hierarchical 3D patterns 
spanning multiple scales with direct utility in energy tech-
nologies, optoelectronics, membrane science, and biomedical 
applications.

a b c

Figure 9.  (a) Dendritic growth of succinonitrile crystals.77 (b) Diffusion-limited aggregation.87 (c) Compartmentalized assemblies of active rotor 
particles.104
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