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Learning from nature by leveraging 
integrative biomateriomics modeling 
toward adaptive and functional 
materials
Sofia E. Arevalo and Markus J. Buehler* 

Biological systems generate a wealth of materials, and their design principles inspire and 
inform scientists from a broad range of fields. Nature often adapts hierarchical multilevel 
material architectures to achieve a set of properties for specific functions, providing templates 
for difficult tasks of understanding the intricate interplay between structure–property–function 
relationships. While these materials tend to be complex and feature intricate functional 
interactions across scales, molecular-based multiscale modeling, machine learning, and 
artificial intelligence combined with experimental approaches to synthesize and characterize 
materials have emerged as powerful tools for analysis, prediction, and design. This article 
examines materiomic graph-based modeling frameworks for assisting researchers to pursue 
materials-focused studies in a biological context, and provides an overview of methods that 
can be applied to bottom-up manufacturing, including a historical perspective of bioinspired 
materials research. Through the advent of novel modeling architectures and diverse systems 
from nature, there is potential to develop materials with improved properties.

Introduction
Materials science historically focuses on a wide array of 
materials, from solids to liquids, and in various contexts, 
from fundamental scientific aspects to practical solutions to 
advance civilization. While biomaterials have always been of 
keen interest, their complexity results in challenges that have 
largely precluded their rigorous analysis just decades ago. That 
has changed, and now we can analyze complex biomaterials 
and design new ones, create synergistic relationships between 
natural and synthetic materials, and even engineer de novo 
living materials from first  principles1–4 (Figure 1).

Humans have effectively utilized a variety of materials such 
as wood, clay, and later, human-created materials such as steel 
and ceramics, and highly integrated architectures such as com-
puter chips. However, nature continues to serve as a source of 
inspiration for material development, especially when it comes 
to understanding the synthesis of living materials and inte-
grated systems. This is because biological systems often have 
outstanding sets of qualities that exceed those of synthetic 
materials, which often include not only high-performance 
targets but notably, features such as tunability, changeability 

combined with favorable energy balances, and synthesis cost, 
to name a few examples. The properties of biological materi-
als are owed to the complex distinct hierarchical structures at 
the nano-, micro-, and mesolevel.1,6–10 As a result, biological 
materials inspire materials engineers to develop materials with 
optimized functions, properties, and structures for specific 
applications.11,12 Notable behaviors exhibited by biological 
materials and highly desirable for mimicking are their self-
organization, multifunctionality, and self-healing capabili-
ties,13,14 often derived from a set of relatively simple build-
ing blocks arranged in highly complex patterns. Developing 
bioinspired materials is motivated by optimizing the behavior 
and properties for a specified application, such as improved 
adhesion, optical properties, toughness, and strength.12,15–17 
Traditional approaches to tailoring synthetic materials prop-
erties and functions involve many design-test iterations until 
desired properties are achieved. This often results in a time-
consuming, labor-intensive, and expensive process to discover 
de novo materials with desired properties, and sometimes 
includes human bias toward existing engineering solutions. 
However, this process is not efficient at exploring the vast 
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search space as it involves trial and error and often lacks 
a directed approach without human biases. There is also a 
renewed interest in biomaterials because of their biocompat-
ibility and innate sustainability of their life cycle.4,18,19

A high-throughput approach to addressing these chal-
lenges would be advantageous to expedite the discovery of 
novel materials with targeted, optimal properties (Figure 1a).20 
Such approaches emerged in recent years, as highlighted in 
Figure 1b, enabling a feedback-based paradigm, and facili-
tating a more efficient process for discovering novel materi-
als.20,21 The feedback approach paradigm relies on the syn-
ergy between modeling and experiments to iteratively traverse 
through materials until the target materials are achieved.20 The 
approach relies on bioinformatics tools to accelerate searching 
and discovering new materials, and to offer a comprehensive, 
integrative, and systematic analysis paradigm to seek deep 
insights into hierarchical relationships in living materials 
and their translational potential to engineering (Figure 1c). 
And with the advent of machine learning (ML) and artificial 
intelligence (AI), navigation processes can become more effi-
cient. AI, a term coined in the 1950s, refers to the concept 
that machines have the ability to mimic human capabilities. 
ML is a subfield of AI that uses algorithms to learn from and 
recognize patterns from data. As such, ML/AI tools provide a 

complement to existing modeling and also hold the promise 
to integrate experimental and simulation/theory data to further 
the predictive power of models.

The types of models that may be employed with ML/AI are 
statistical experimental design, pattern recognition, operations 
research, reinforcement, and active learning.22–24 This feed-
back approach paradigm is implemented in the design of de 
novo protein sequences, the 3D structure of spider webs, learn-
ing of the classical mechanical materials design problems, and 
bridging the gap between the microstructure–design–physi-
cal performance of materials.22,25–27 Understanding the struc-
ture–property relationships of biological materials is essential 
for developing flexible armor inspired by pangolin dermal 
armor, conch shells, and fish scales, a few notable exam-
ples.28,29 Other studies focus on the hierarchical structure of 
abalone shells, lobster exoskeletons, antler bones, and silica 
sponges for understanding crack deflection mechanisms at 
interfaces,30 an essential behavior for mitigating catastrophic 
failures in engineering materials. Furthermore, performing 
mechanical analysis on plant stems, porcupine quills, toucan 
beaks, and feather rachis, may provide insightful knowledge 
on design principles and material composition found in bio-
logical structures that are resistant to torsion, bending, and 
buckling.30 Owed to the immensity of biological materials and 
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Figure 1.  Overview of multiscale structures, functions, and feedback-based analysis paradigms—(a) The potential global functions one might want 
to optimize in a design. These functions vary from mechanics, interfaces, dynamics, and shape morphing (the images are adapted from a review by 
Nepal et al.1). (b) The feedback approach paradigm for developing materials with desired properties. It is an extensive process to achieve desired 
properties based on feedback between experimental and modeling. (c) The hierarchical nature of biological materials; in this case, it is of collagen 
protein materials. ML, machine learning; AI, artificial intelligence. Adapted with permission from Reference 5. © 2011 American Chemical Society.
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their complex structure, mimicking nature to achieve desired 
properties or structure is an immense task that may require 
ML/AI to explore the vast material composition and design 
space. Additionally, ML/AI may extend to serve as a diag-
nostic tool to learn about failure modalities of complex archi-
tected materials such as bone,31 among many other example 
applications.

ML and AI research is a rapidly evolving field transcend-
ing many research areas from materials design to failure 
analysis.21,32–37 Current research shows the use of ML to 
answer pivotal research questions and in conjunction with 
other numerical or mathematical modeling can complement 
to uncover critical mechanistic relationships and insights.38,39 
Further, it may provide an approach for high-throughput 
materials discovery enabling inexpensive and efficient 
methods for designing novel materials, fueled by advances 
in large language models that incorporate attention mecha-
nisms. While nature often excels at adapting properties for a 
specific function (or sets of functions) over long time scales, 
we can investigate those nature-occurring mechanisms to 
design materials that are on par or even better than nature, 
and using synthetic raw materials and building blocks. Other 
motivations include finding ways to integrate design across 
evolutionary lineages, from deep time, into modern engineer-
ing and ways to combine disparate properties (e.g., enzymatic 
activity, strength, toughness, resilience, antimicrobial, etc.).

The aims of this article are to provide examples, rel-
evance, and properties of interest in biological materials, 
and to survey the state-of-the-art modeling techniques (e.g., 
molecular dynamics [MD], coarse-graining, ML/AI) for the 
design of novel materials. Additionally, we provide a gen-
eral landscape of the type of research that implements ML 
and multiscale modeling to assess and develop bioinspired 
materials while presenting a case study on metal-coordinated 
protein materials. Although ML/AI is an essential tool in 
materials research, there are various challenges for imple-
mentation in bioinspired materials design that will be dis-
cussed in more detail.

Surveying numerical and mathematical 
modeling in research
Modeling, experimentation, and theory development of 
biological materials pose a complex challenge owing to 
the biological materials’ intricate multiscale structure and 
associated multifunctionality. However, understanding the 
mechanisms found in biological materials through mod- 
eling and experimentation may offer insights into developing 
synthetic materials with desired properties and behavior.20 
As such, predictive multiscale modeling and simulation are 
employed to characterize existing biological materials and 
subsequently the development of novel systems. Selecting 
the appropriate multiscale model is dependent on the length 
and time scale of the specific research query and the goal 
of the investigation. Table I shows a set of mathematical 
modeling methods for the molecular, meso-, and macroscale 
along with the application for each method.

Insights gained at the molecular scale to advance 
bioinspired research
Mathematical and numerical modeling such as molecular 
dynamics can be used to investigate the behavior and proper-
ties at the molecular scale. As summarized in Table I:

• Steered molecular dynamics (SMD) is implemented 
for measuring mechanical properties, such as elasticity, 
strength, and unfolding pathways of systems.40

• Replica exchange molecular dynamics (REMD) can 
overcome high-energy barriers more easily and thus, 
sample the conformational space of proteins.41

• Umbrella sampling is implemented for assessing systems 
undergoing systematic change as it can sample states 
often not captured by normal molecular dynamics due 
to its intrinsic time-scale limits.42

• Well-tempered meta-dynamics uses Gaussian meta-
dynamics to explore the free-energy landscape of a  
system.43

Table I.  Summary of the types of chemistry/physics modeling from the molecular scale to the macroscale.

Scale Molecular Scale Mesoscale Macroscale

Methods  Molecular dynamics (MD):
  Energy minimization and 

equilibration
  Steered molecular dynamics 

(SMD)
  Replica exchange molecular 

dynamics (REMD)
  Umbrella sampling
  Well-tempered meta-dynamics
  Reactive force fields

 Quasi-continuum method:
  Kinetic Monte Carlo method
  Coarse-grained molecular 

dynamics
  Dissipative particle dynamics 

(DPD)

 Continuum methods:
  Solid and computational fluid dynamics (CFD) 
(finite-difference method, finite element 
method, finite volume method, boundary 
element method)

  Multi-body simulation (MBS)

Application Conformation
Chemical reactions mechanical 

properties

Size effects
Self-assembly
Radius of gyration
Hydrodynamic radius
Fracture properties

Nonlinear structure analysis
Global thermal and electrical analysis
Multibody problems



LEarNiNg frOM NatUrE by LEVEragiNg iNtEgratiVE biOMatEriOMics MOdELiNg tOward adaptiVE aNd fUNctiONaL MatEriaLs

MRS BULLETIN • VOLUME 48 • NOVEMbEr 2023 • mrs.org/bulletin              1143

• Reactive molecular dynamics allows the simulation of 
chemical reactions and reaction pathways.44

Molecular dynamics (MD) can serve as a powerful method 
to investigate conformation, chemical reactions, and 
mechanical property measurement at the molecular scale, 
especially to gain mechanistic insights.45 In MD simulations, 
the behavior of atoms is observed to understand the molec-
ular phenomena that govern macroscopic behavior using 
Newton’s equation. As a result, MD can calculate molecular 
structure, interactions at interfaces, mechanical properties, 
and thermodynamic properties over time.10,46 Through MD 
simulations, a molecular landscape can be obtained about 
the relationship between adhesive strength and adhesive 
density and investigates the bond formation and breaking 
of different atoms.45

From the perspective of materials design, MD simula-
tions may provide crucial insight into the mechanisms and 
interactions of atoms and how they yield specific proper-
ties.45 In particular, MD modeling is applied to understand 
biological materials, such as crystalline composites com-
monly found in mollusks, which are interesting to scien-
tists because of their varying structures at different scales 
and hierarchic architecture.47 Further, implementing MD 
simulations allow for an understanding of the effect of 
misorientation in architecture that yields increased frac-
ture toughness and serve as a source of inspiration for the 
synthesis and design of bioinspired materials resistant to 
fracture.10,47

When larger atomistic molecular systems need modeling 
to capture the behavior of millions of atoms, modeling tech-
niques such as coarse-graining and particle simulations are 
used. Coarse-graining modeling minimizes the number of 
degrees of freedom over large length and time scales, for 
example, by grouping atoms into a single bead to capture 
the interactions of the macroscopic behavior. By reducing 
the number of degrees of freedom, sampling is improved 
and decreases computational time. As a result, researchers 
implemented coarse-grained molecular analysis to assess 
the mechanical properties of the proteins designed via end-
to-end deep learning methods,39 whereas other researchers 
used coarse-graining to predict the equilibrium properties 
of bioelastomers.48

As with much bioinspired research, there is a need to 
connect the microscopic to the macroscopic behavior of the 
material system. Researchers utilize molecular simulation to 
understand the protein–surface interactions and connect them 
to nanoparticle interactions.49 Further, they posit that under-
standing the relationship between proteins and nanoparticles 
in various conditions may provide opportunities to develop 
hierarchical materials inspired by nature.49 On a similar note, 
performing MD simulations provide an understanding of the 
hierarchical structure effects on the mechanical behavior of 
diatoms algae, essential knowledge that can be transferred to 

the design of materials.50 A key takeaway from studying dia-
toms at the molecular scale using MD is understanding that 
introducing hierarchical structures with inherently strong but 
brittle materials may result in a tough, strong, and ductile sys-
tem.50 Through years of evolution, nature is adept at refining 
the hierarchical structures of a system to obtain outstanding 
properties for its application. Employing MD simulations to 
study a system in nature allows for directed and well-informed 
mimicking of synthetic materials and structures. It can also be 
a powerful source for synthetic data sets that can be upscaled, 
and generalized, using ML.

Insights gained at the macroscale to advance 
bioinspired research
Simulating at the macroscale level involves using continuum 
models. For example, finite element modeling (FEM) provides 
a structural analysis by solving differential equations. Analysis 
at the macroscale provides an opportunity to optimize the mac-
roscale properties and tailor the design. An interesting applica-
tion of FEM is the possibility of complementing it with ML, 
by providing synthetic ground-truth data sets, to determine 
the properties of 2D composites and design new functional 
composites.22 Further, an ML model can be validated against 
MD, coarse-grained, or FEM descriptions to assess the accu-
racy of designing and optimizing the composites, utilizing 
what is referred to as synthetic data sets.22 Continuum models 
simulate larger systems with a substantial reduction in com-
putational cost, in comparison to smaller length-scale models. 
While researchers utilize FEM, others first use atomistic MD 
and those results are then input into continuum models to have 
an understanding of the macroscopic mechanical behavior of 
two-phase silk fibers.51 Combining simulation at two different 
length scales aids in providing a complete narrative of how the 
various features in the complex hierarchical structure affect the 
overall macroscopic behavior. This narrative provides essen-
tial information for future designs

Coupling physics‑based modeling with ML
Biological materials are multiscale in nature, whose com-
plex behavior spans across multiple spatiotemporal scales. 
It is a challenge to connect the interplay between the tem-
poral and spatial relationship of systems, and often ana-
lytical-style theories are not (yet) known, or difficult to 
elucidate (e.g., in protein folding, protein property predic-
tions, and other problems in biomaterials). Such relation-
ships may sometimes be more efficiently discovered and 
exploited by ML algorithms that thrive in finding patterns 
and relationships between disparate data sources. Thus, to 
move the field toward one that better mimics the nature of 
biological materials, there is a need to combine ML tools 
with current mathematical modeling and experiments to 
develop high-throughput approaches for future material 
 discovery52 (Figure 2).
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ML models to support bioinspired material analysis 
and design
There are several categories of ML that can be broadly clas-
sified into supervised learning, unsupervised learning, rein-
forcement learning, and semi-supervised learning, whereas 
their integration is emerging as powerful paradigms into mul-
timodal multiparadigm models as done in the development of 
multimodal language  models25,53–55 (Figure 2a–b). The type of 

ML classification will depend on the type of data set and the 
research query. As in the case of supervised learning, knowl-
edge is known ahead of time about a set of data, referred to 
as a training data set, which is used to predict the character-
istics of another set of data. This entails that the success of 
the model is dependent on the selection of the training data 
set for the desired outcome prediction. Common approaches 
that are in the category of supervised learning include the 
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Figure 2.  Overview of modeling strategies that incorporate a mix of physics and data-driven approaches. Deep learning and generative artificial 
intelligence can be effective means to solve forward, inverse, and general biomaterials design problems, formulated within generalized, integrated, 
and multitasking models.70 (a) Shows how multitask forward and inverse generative pretrained transformer (GPT) models can be used to solve a 
variety of modeling challenges.70 (b) More detailed visualizations of the graph-forming capacities of such multiheaded attention models, where 
dynamic graphs are discovered, and then used, in the modeling process, uncovering the materiomic makeup of materials. These tools can be 
applied to describe biological materials, formalizing them as a source of inspiration for developing synthetic materials with improved and functional 
properties. (c) An Ashby plot, showing the strength of materials with respect to density for a range of natural materials from cellular to natural 
ceramics and composites. It provides a landscape with a wide range of properties that can be achieved by mimicking nature. (d) By observing 
biological materials such as mussels, nacre, seashells, and silk, we can learn to design synthetic materials with improved adhesive strength, smart 
structural materials, and materials with adaptable properties. (e) Connecting disparate fields is another area of interest as it widens the scope of 
possibilities for designing novel materials. As an example, protein sequence and the connection to music are studied as a fundamental first step 
for connecting principles between art and science, offering a gateway for connecting other disparate fields. The connector between the two areas 
is machine learning, as this example shows the use of deep learning methods using cycle-consistent transformer neural networks.80 SS, secondary 
structure.
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nearest-neighbor algorithm, decision trees and random for-
ests, logistics regression and linear discriminant analysis, 
support vector machines, and artificial neural networks. 
Neural networks have historically been effective in solving 
computer vision tasks, such as image or voxel data analysis. 
Long–short-term memory (LSTM) is a type of neural network 
that was originally developed to learn logical trajectories and 
relationships within data sets. In one example, researchers 
implemented a LSTM model with variational autoencoders 
to design optimal materials.56 Another wide form of a neu-
ral network is based on convolutional operators (e.g., con-
volutional neural networks [CNNs]), which are often used 
to classify and predict mechanical properties—by modeling 
a learned coarse-graining strategy—to yield information on 
tissue deformation and fracture, as an example.31 When for-
mulated as a U-net architecture (see inset in Figure 3), they 
can also be effectively used to transform high-dimensional 
data into other high-dimensional data via bottlenecks, such as 
applied in stress–strain field predictions.57 Such models can 
be further developed to incorporate neural operators, such as 
Fourier neural operators (FNOs), where these models belong 
to a class of methods that output functions by learning the 
mapping from any functional parametric dependence to the 
solution.58,59

Attention‑based language in materials design
Emerging tools in this domain further include the use of 
attention-based language models such as the transformer 
architecture that allows pretraining with unlabeled data or 
poorly structured data and then fine-tuning, which involves 
providing a small data set that is specific and of high qual-
ity relevant to solve a variety of specific  tasks60 (Figures 2a, 
3a). As a result, transformer models are generalizable and 
can be applied to a myriad of predictive tasks. Often, trans-
former models are compared to the way humans solve sci-
entific problems; this is done so by focusing attention on a 
specific aspect of information and observing how it relates to 
the output.60 The transformer architecture involves a neural 
olog description that describes emerging materiomic relation-
ships between building blocks.61 The structure of an olog, or 
ontology log, stems from a branch of mathematics known as 
category theory. Ologs are similar to database schemas and 
due to their effective graph representation often serve as data 
repositories, and have many advantages. For example, ologs 
of different materials or systems can be compared by using 
functors and can be extended with new information, and used 
in various materials tasks ranging from analysis to design (see 
Reference 62). Neural ologs aim to generate categories using 
graph-generating algorithms such as transformer models. As 
such, by using neural ologs, the model discovers the relation-
ships based on the data and uses them to make predictions or 
to develop analogies between dissimilar or seemingly unre-
lated representations. Embedding features provide information 
based on the organization of the building blocks that make up 
a material, including also a description of the processes used. 

Through the embeddings, important information is provided, 
this allows for the transformer model to learn high-dimension 
embeddings that are then used to solve tasks. In materials 
research, transformer models are used to predict materials 
properties. And implementing semi-supervised learning is use-
ful for developing new formulations with desired properties. 
As an example, using graph neural network (GNN) models, 
graph-structured data, in conjunction with transformer models 
can be applied for rapid mechanical property prediction of a 
material’s strength and toughness, and de novo design of 3D 
web structures.1,61,63,64 By the same token, using attention-
based transformer networks can be applied to solve problems 
in protein folding research,65,66 and molecular property and 
field predictions,67,68 and interaction with human language, 
logic, and mathematics.

The transformer model architecture is emerging as an 
important tool for materials research, and when combined 
with other architectures can aid to predict materials proper-
ties and the design of novel materials. Furthermore, because 
transformer models belong to natural language processing 
(NLP), it allows designers to obtain biological analogies 
and supports biomimetic design as multiple data modali-
ties can easily be mixed (numbers, instructions, processing 
steps, sequences, images, and so on). Specific to bioinspired 
materials research, NLP has the potential to bridge biologi-
cal information and biomimetic design, as the biological 
information can yield meaning to inform the design. Notable 
examples of NLP are various types of transformer models 
such as encoder-only approaches (e.g., BERT) and decoder-
only strategies (e.g., GPT-3/4, LLaMA, Falcon, etc.).60 
Researchers also discuss the opportunity to use natural lan-
guage models through attention neural networks to trans-
form information into features and into properties without 
requiring labeled data or large amounts of data, relying on 
a variety of pretraining strategies that endow these models 
with general knowledge about materials that can then be fine-
tuned to solve specific challenges.60

For instance, flexible language models have recently been 
proposed to solve various both forward and inverse problems 
for modeling proteins.69 The model is based on attention neu-
ral networks that integrate transformer and graph convolu-
tional architectures to take advantage of the graph-forming 
capacity of attention models. This results in a generative pre-
trained model, often abbreviated as “GPT” and also found 
as the basis for ChatGPT, for instance, but it is scientifically 
formulated and can be a powerful platform to solve multi-
modal tasks. The goal of the model reported in Reference 69 
is to predict secondary structure content, protein solubility, and 
sequencing tasks, and the same model can be used to design 
proteins with desired properties as well.70 Because this model 
is prompt-based, it is able to process, discover, and synergize 
within diverse information from sequence data to numbers.69 
With the use of interpretable methods, we can mine attention 
maps and glean insights into the unitary mechanics of how 
predictions are derived (Figure 2a–b).
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Other applications of deep learning models are used to 
predict mechanical properties and properties of deep eutectic 
solvents,64 in which the objective was to predict the sequence 
structure of proteins given desired properties, referred to as the 

inverse model, and the forward model, for which the proper-
ties are predicted based on a sequence structure. A diffusion 
model and autoregressive transformer were implemented and 
observed the model’s ability to yield accurate predictions 
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Figure 3.  Multiparadigm framework for implementing machine learning/artificial intelligence (ML/AI) to help answer research objectives in the 
bioinspired research field, and to inform new designs. (a) The framework recommends research questions, often found in bioinspired materials 
research, for ML/AI use and provides methods for data collection, pretraining and fine-tuning, data set creation, formatting, and restructuring, 
followed by model selection based on the identified parameter. (b) We show a framework as implemented to design de novo proteins for struc-
tural content to target a specific set of mechanical properties of proteins (e.g., beta-sheets, alpha-helices, etc.), utilizing attention-based diffusion 
models.24 Diffusion models are a powerful class of neural network architectures that generate forward and inverse solutions via an iterative denois-
ing process (c) (see Reference 63), and are widely applicable not only to design problems as shown in (b) but also to model dynamical materials 
phenomena, such as dynamic fracture [right visual (c)]. NLP, natural language processing; MD, molecular dynamics; DFT, density functional theory.
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when the model was trained on disparate data.64 This result 
is promising for the future of modeling, especially when an 
application domain or field contains relatively small data sets.

Unsupervised learning in materials design
In unsupervised learning, there is often no labeled “ground 
truth,” but rather the goal is to extract and summarize the con-
tent of the data to capture internal relationships and organi-
zation; for instance, to discover innate physical relationships 
in a reduced-dimensional space. Within unsupervised learn-
ing, there is cluster analysis and dimensionality reduction. 
In cluster analysis, the data are placed into groups based on 
similarity, resulting in each object being assigned to a bin. The 
number of bins is unknown and the objects are high-dimen-
sional vectors. The goal is to minimize the Euclidean distance 
of each object to the centroid of its assigned cluster. As for 
dimensionality reduction, the objective is to find a simplified 
representation of the complex multidimensional data objects 
in a lower-dimensional space.

Examples of unsupervised methods include k-means clus-
tering, autoencoders, diffusion models, and generative adver-
sarial networks. Generative adversarial networks are a type of 
deep neural network that uses data statistics of the training set 
to generate new data. In the generative adversarial network, 
there is a generator and a discriminator that is trained against 
each other using game theory. The generator is tasked with 
producing candidates, whereas the discriminator evaluates the 
candidates. Generative models are used in materials research 
to generate collagen sequences with specific properties such 
as melting  temperatures23 and to model and synthesize arti-
ficial and bioinspired 3D web structures.71 These methods 
are instrumental to developing novel structures, materials for 
manufacturing, and biomedical applications and may serve as 
an approach to the materials by design paradigm.

Although generative adversarial networks are initially 
unsupervised learning, labels can be added as constraints, 
which leads to conditional generative adversarial networks 
(cGANs). To contextualize this method, a U-net serves as 
a generator that translates high-dimensional microstructure 
input data into high-dimensional output field data, via the 
use of a series of convolutional operators that effectively act 
as coarse-graining mechanisms. The generative model uses 
paired images as the constraint. The field images produced 
by the generator have random noise, and the discriminator 
evaluates the field images by comparing them with real field 
images. In the field of materials research, cGAN is imple-
mented to predict physical fields directly from a material’s 
microstructure and predicts field data and materials proper-
ties.57 The implementation of cGAN aids to bridge the gap 
between the microstructure–design–physical performance of 
a material. Further, it is a powerful technique to improve the 
efficiency and evaluation of physical properties for materi-
als with hierarchical structures. A widely used example of 
unsupervised learning is the set of autoencoders, which is a 
three-building-block neural network primarily used to extract 

features from an input, for example, extracting features from 
an image. The three building blocks are (1) the input layer, (2) 
the hidden layer and bottleneck, and (3) the output layer. The 
network thereby implements encoder and decoder functionali-
ties. The encoder function maps the given input to a hidden, 
latent, and typically lower-dimensional representation and the 
decoder function maps the latent representation to the out-
put. The decoder is then tasked with reconstructing the input 
representation. In applications of such a model, autoencoders 
may be used to explore the discovery of a coarse-grained rep-
resentation of phenomena in latent design space, which can 
be used to better understand key physical mechanisms, and 
also used for optimizing a material.56 Autoencoders can be 
useful for design and discovery as they can learn the problem 
of a material and can be used to reconstruct complex data 
from the low-dimensional encoding of only a few variables. 
These models can be combined with language models, for 
instance via the use of discrete autoencoder methods (e.g., 
vector-quantized autoencoders) that express latent space rep-
resentations as a set of symbols that can be understood as an 
abstract presentation.69,72

Reinforcement learning in materials design
Reinforcement learning involves an intelligent agent inter-
acting with the environment to learn and decide the sub-
sequent actions to maximize the cumulative reward. For 
example, researchers Yu et al. proposed a new method that 
uses reinforcement learning to design bioinspired composite 
materials.73 A breakthrough of their research is the ability to 
achieve high-resolution designs in their composite, reducing 
stress concentrations at the crack tips, and thereby enhancing 
mechanical behavior.73 The motivation to design materials 
using fewer computational resources with desired properties 
that mimic biological materials has led to an influx of novel 
machine learning methods. Most notably, reinforcement learn-
ing is often implemented as a way to optimize properties or 
synthetic reaction routes for multistep reactions, as an exam-
ple in the semiconductor nanoparticles.74–76 The incentive for 
implementing reinforcement learning is to continue accelerat-
ing the materials discovery process with minimal intervention. 
This can also be combined with autonomous laboratories to 
establish self-driving experimentation setups that have the 
potential to significantly accelerate research and discovery.

Survey of bioinspired materials research: 
Computational multiscale modeling toward ML/AI
While conventional computational models focus on utilizing 
multiscale modeling techniques (e.g., MD, quasi-continuum 
methods, and continuum methods), newer research often 
focuses on complementing the modeling with ML/AI to design 
and analyze hierarchical composites and architected materials. 
Many computational models are computationally expensive. 
Thus, there is a need to find alternative ways, such as ML/AI, 
to understand, predict, and control the properties of materials, 
as a complement to conventional methods.
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The use of molecular modeling in conjunction with 
machine learning has been widely employed in non-bioin-
spired materials. For example, deep learning has been 
applied to predict fracture patterns in crystalline solids,77 
and fracture mechanisms in  graphene34 and polycrystalline 
2D materials.78 Although deep learning is used to predict 
fracture in nonbiological materials, the concepts and algo-
rithms developed may be applied to predict fracture behavior 
in biological composites and the design of high-performance 
materials.77

An interesting field of using machine learning is finding 
patterns and finding relationships across disparate knowl-
edge domains. For example, an unsupervised deep learning 
method has been proposed that can relate design strategies 
across disparate modalities, such as seen in art and science, in 
particular, they are connecting musical data to develop novel 
protein sequences.79,80 In doing so, it provides an avenue for 
connecting contrasting fields to develop novel materials, for 
example, finding utility in other engineering domains, evolu-
tionary patterns, or other types of sequences and proteins.80

It is common for researchers to utilize simulated data to 
feed into an ML algorithm. Specifically, in earlier work, we 
used a deep neural network architecture that uses data from 
coarse-grained simulations as a training data set of hierarchical 
microstructures.72 This allows for the analysis and design of 
multiscale architected materials and the ability to solve both 
forward and inverse research problems.72 Similarly, ML was 
used as an alternative to coarse-graining (mathematical mod-
eling) to design hierarchical materials with superior toughness 
and strength.81 Researchers have also shown that while MD 
simulation may take a significant amount of time to complete, 
ML offers an alternative solution to answering research ques-
tions of fracture mechanics much faster.61

Based on prior research, ML is used to solve important 
research questions. For example, Maurizi and colleagues use 
the inverse-design approach to find an optimal design for the 
bucking resistance of lattice structures. The inverse-design 
approach involves finding optimal combinations of proper-
ties by manipulating the architecture of materials. The design 
space for finding those optimal properties is a large design 
landscape, thus, remaining a complex challenge for designers. 
Researchers used deep neural networks and genetic algorithms 
to efficiently and effectively find the optimal properties.81–83 
While some researchers aim to use ML tools to optimize struc-
tures, others use ML to observe nature’s patterns (e.g., spider 
webs, protein patterns) to develop bioinspired designs.84 Simi-
larly, in other work inspiration from nature was used—here, 
specifically leaf microstructures, and employed via power-
ful generative adversarial network models to develop novel 
2D and 3D architected materials.85 They then optimized the 
properties of the generated architected materials using genetic 
algorithms.85 Creating composites with tunable materials to 
achieve superior mechanical properties is a grand challenge 
when using a trial-and-error approach. However, ML tech-
niques have paved the way for exploring the large design space 

and accelerating the development of functional and tailorable 
materials.22

Bioinspiration, synthesis, and experimental validation
Engineers draw inspiration from biological materials to 
create superior designs for materials. Examples of inter-
esting biological behavior and materials worth imitating 
are biocoatings, biominerals, and biopolymers. After thou-
sands of years of evolution, nature has developed biological 
materials that offer exciting opportunities in engineering. 
As illustrated in Figure 2, there is a wide span of materi-
als properties existing in nature (Figure 2c) and biological 
materials that exhibit desirable properties (Figure 2d) with 
potential applications as bioadhesives, nanocomposites, and 
in “smart” structural materials, to name a few. Further, with 
the continual emergence of powerful ML architectures, con-
necting disparate fields, such as art and science, to develop 
novel materials is now possible, as shown in Figure 2e.

Notably, the mussel’s adhesive ability and its coatings 
that provide extensibility, particularly in an underwater 
environment and exposed to constant perturbation of waves, 
are of great interest to scientists. Researchers have inves-
tigated in great depth the mechanisms and architecture of 
mussels’ byssus. Mussels use the byssus thread as a teth-
ering device that withstands high strains from waves. The 
byssus thread is stiff while being able to experience high 
extensibility, a difficult combination of properties to imitate 
in synthetic materials. Typical mussels have about 50–100 
threads that are attached near the foot base, allowing them 
to attach to nearby foreign objects and extend in multiple 
directions.86 Although only a small handful of biological 
lessons translate to technological breakthroughs, mussels 
have provided insight into designing synthetic polymers 
displaying high stiffness, high hardness, high extensibility, 
and self-healing properties.87 A key finding demonstrated 
the presence of metals in the mussel’s cuticle, a coating of 
the byssus thread, results in increased hardness.88 As with 
organisms that utilize metal complexation with dopa, they 
serve as noncovalent cross-linking agents.88 From nature, 
polymer networks containing metal in addition to the com-
plex structures allow for mimicking biological behaviors 
in synthetic materials.87,89,90 The mechanical properties 
of advanced structural materials can be engineered using 
supramolecular cross-linking, a wide-ranging class that 
includes coordination with transition metals. By utilizing 
metal coordination bonding with transition metals, scien-
tists are developing polymeric hydrogels that are capable 
of self-healing as their bonds can reform even after rup-
ture.87,89,90 In metal coordination, the metal ions coordinate 
with ligands to bond by donating two electrons from the 
ligand to the metal ion.91 Compared to other bonding types, 
tuning properties is relatively easier with metal coordination 
bonding. It is possible to adjust these properties by alter-
ing the chemistry, and pH, and exchanging the metal ions. 
By adjusting the properties, metal coordination bonding 
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may span across a range of strengths and time scales.91 In 
addition to controlling the dynamic mechanical properties, 
chelators can be used to “switch off” the coordination com-
plex. Broomell and colleagues showed that chelating Zn 
from Nereis’s jaws results in a 65% decrease in modulus 
and hardness.92 By understanding the role of transition met-
als as a hardening strategy in nature, synthetic materials can 
be engineered to improve stiffness, wear resistance, hard-
ness, and toughness.92 Although Zn was provided in this 
review, other transition metals such as copper, manganese, 
and cadmium can also contribute to the hardening of jaws in 
biological organisms.92 Besides studying marine organisms 
and their interactions with metal ions, it is worth finding 
other biological organisms to engineer materials.

A concerted effort is to construct multiscale design princi-
ples to connect chemical dynamics to material mechanics via 
experimentation and computation. Predicting the mechanical 
properties of metal coordination bonding, a common design 
motif seen in nature, remains a challenge in the field. How-
ever, recent efforts show the use of meta-dynamics and mac-
roscopic relaxation time for a metal-coordinated hydrogel.93 
Their findings show a quantitative empirical relationship 
between bond energy landscape and bulk network relaxation 
time.93 This research is fundamental to the understanding of 
the microscopic origin of the macroscopic behavior that would 
enable improved load-bearing design materials composed of 
metal coordination in the future.93 Although molecular mod-
eling offers an opportunity to investigate the microscopic ori-
gin of the behavior of metal coordination, exploring the bond 
dynamics remains challenging because of the limitations of 
the metal ion force fields and long sampling methods to obtain 
relevant time scales. As engineers implement metal coordina-
tion to develop self-healing, it is imperative to develop struc-
ture–property relationships. Understanding the structure-prop-
erty relationships for these materials are important as there are 
various parameters such as bond energy, bond dynamics, and 
coordination number that may influence the mechanical and 
self-healing properties.89 Further, the authors argue that there 
is a need to characterize the exact contributions of geomet-
ric arrangements of metal coordination bonds on mechanical 
behavior.94 As such, they explored the rupture force of histi-
dine and nickel(II) and found that the bonds rupture in groups 
of two or three bonds.94 Applications of polymeric-containing-
coordination complex are for building deformable composites 
for use in crash protection and armored clothing.95 Similarly, 
Li et al. used a 2,6 pyridinedicarboxamide ligand coordinated 
with Fe(III) to develop highly stretchable and autonomous 
self-healing materials.90 Another fascinating biological mate-
rial highly explored is collagen because of its contribution 
to the mechanical properties of various biomaterials (tendon, 
bone, skin, blood vessels, and many others), owing to its cru-
cial structural proteins and hierarchical organization. To fore-
cast the thermal stability of collagen, researchers employed 
transformer models.96 They identified which model is most 
effective at predicting specific biophysical properties with a 

limited training data set.96 The inverse of the problem, identi-
fying collagen sequences with specific thermal temperatures, 
can be achieved using genetic algorithms and experimental 
validation, providing de novo design strategies for the dis-
covery of specific proteins to meet target properties.23 To pre-
dict the thermal stability of collagen, researchers utilize ML, 
namely, two distinct types of transformer models. The goal is 
to identify which model is best to predict specific biophysical 
properties with a limited training data set. This research was 
the first to use transformer models for small data sets to predict 
specific biophysical properties.23

Silk is another alluring biological material as it exhib-
its superior mechanical properties and biocompatibility.97 
Researchers have implemented artificial intelligence to predict 
mechanical behavior based on the amino acid sequence, with 
the goal of optimizing its mechanical properties for desired 
applications.38 However, the challenge to duplicate silk into 
synthetic materials remains. Spider silks can have a variety of 
mechanical properties as they are tailored for specific needs. 
Some forms of silk may exhibit properties in the range of high-
tech materials, up to 1.7 GPa in strength. Another example is 
the dragline silks, which are lightweight and when hydrated 
undergo super-contraction.98 When the toughness is compared 
to steel and Kevlar by weight, dragline silks outperform.97

Framework: Implementation of ML to bioinspired 
materials research
ML models are particularly of interest to implement in mate-
rials science as a tool to predict and optimize properties. 
Researchers in materials science, particularly those focusing 
on bioinspired design, implement ML to predict and optimize 
properties based on both experimental and simulation data. 
Mechanical properties such as strength, toughness, failure 
mode, yield stress, and strain are often optimized using con-
volutional neural networks, recurrent neural networks, genetic 
algorithms, and Gaussian processes.60,78,99 Reinforcement 
learning may also be used to automate the design of digital 
composites and the discovery of composite structures. Modern 
language models include recurrent neural networks, LSTM, 
attention-based transformer networks for protein folding, and 
molecular property prediction.

The general framework for implementing ML methods 
is by identifying the research question. As illustrated in Fig-
ure 3a, researchers in bioinspired design and biomaterials have 
used these methods to obtain structure–property relationships, 
and as a way to design novel materials, to name a few. How-
ever, an essential parameter to then consider is the type of 
data and how to amass and organize the data to train models. 
The model selection, whether it is supervised, unsupervised, 
reinforcement, or semi-supervised will depend on the research 
question. One approach is to apply the data set to existing ML 
algorithms such as diffusion models, generative models, etc. 
However, these models are not a one-size fit and may require 
a combination of existing programming languages, libraries, 
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and tools. These tools provide prebuilt functions and modules 
that help build, train, and implement ML models. These open-
source libraries may aid in tasks such as simplifying the pro-
cess of building and training the models and may be applied to 
analyze, model, cluster, and develop dimensionality reduction 
algorithms that may be used in computer vision, and natural 
language processing. By following a typical framework for 
implementing ML/AI, it can be applied to develop de novo 
sequences as shown in Figure 3b. A more in-depth step-by-
step guideline for the implementation of ML in materials 
science is provided by Wang et al.100 Although Wang et al. 
provide fundamental guidelines for best practices, the reader 
is encouraged to understand the more modern architectures, as 
ML is a fast-moving field that brings important methodologi-
cal advances. As such, an instrumental and deeper dive into 
the theory behind AI with a specific emphasis on quantum, 
atomistic, and continuum systems for biological systems is 
provided by Zhang et al.101

The challenges with implementing machine learning are the 
collection of data using high-throughput methods, validation 
using multiscale models or experiments, and further research 
on the generalization potentials of such models. An area of 
intense interest is mining deep models for insights gained, 
which is especially interesting for transformer architectures 
where attention maps can yield important graph-based insights 
into structure–function relationships. Further, a prevalent chal-
lenge with bioinspired design is the translation of knowledge 
from the biological material to developing an engineering 
solution, owing to limitations in the manufacturing and large-
scale implementation of these complex materials. Bioinspired 
design is a fascinating field with vast opportunities for mim-
icking structures and applying them to a wide array of engi-
neering designs.14 Although a significant number of reviews 
survey hierarchical structures of biological materials, there is 
much more to discover and learn from biological materials to 
apply to bioinspired design.102–105 As a result, techniques such 
as ML/AI that enable the identification of structural patterns 
across an immense array of existing biological organisms, and 
the study of the fundamental mechanisms across multiscale are 
imperative for expeditious surveying and implementation of 
bioinspired design (Figure 3c).

Conclusion and future perspectives
Multiscale modeling, complemented, supported, or enhanced 
by ML/AI methods, has been instrumental in advancing sci-
entific knowledge in a variety of biomaterials fields ranging 
from tissue engineering to de novo materials design, as an 
avenue to design biomimetic constructs and other innova-
tions in materials design, inspired by nature such as marine 
worms, silks, and biominerals. ML is often implemented 
in materials science to identify suitable material candidates 
for a desired application, gain insights into mechanisms in 
biological or bioinspired materials, and develop novel mod-
eling techniques to address materials science questions. A 
particularly powerful combination is to use data-driven with 

physics-based modeling and supported by experimental syn-
thesis or data collection as it allows us to deal with the high 
degree of complexities.

Implementing ML remains a challenge because such 
frameworks often rely on large amounts of data for training 
to increase accuracy. Although limited data continue to be a 
challenge for the implementation of ML in many fields, the 
advent of novel architecture, such as the transformer archi-
tecture allows for using these models with limited, or distinct 
types of data. Transformer modeling architecture allows for 
the use of pretraining on a subset of low-quality data but is 
then followed by a smaller subset of high-quality data, in a 
process referred to as fine-tuning,63 providing an effective way 
to build materiomic graph-based material models (e.g., Fig-
ure 2a–b). This further allows for solving multiple tasks such 
as the inverse and forward problem, within one model, and 
even capturing multiple modalities such as text, images, and 
numbers.69 Most importantly, in terms of materials design, 
transformer models are adept at solving mechanics problems 
because of their flexible framework to capture complex rela-
tionships. They do so by using a language approach, which 
breaks down mechanics into elementary building blocks (Fig-
ure 2) and can be further augmented by physics-inspired dif-
fusion modeling approaches (Figure 3). Transformer models 
are interesting because of their generalizability and ability 
to be applicable to other problems, besides those they have 
been trained for, including straightforward unsupervised pre-
training and intrinsic multimodality (from text to images to 
symbolism, including math). The push for mining data auton-
omously and using machine learning to draw relationships 
between data for biological materials is because biological 
designs do not follow known mathematical laws.

Developing an automated method to obtain large amounts 
of data is especially important when publicly available data 
from databases are scarce. Thus, to mitigate the scarcity of 
data sets for training an ML algorithm, laboratories are pro-
posing developing high-throughput methods to generate large 
volumes of data from experiments.52,57,105 A proposed proto-
col is summarized in Figure 4. In this method, the user identi-
fies the objective and the digital system selects the appropriate 
experimental parameters, and the physical system fabricates 
and tests the samples.52 Alternatively, mathematical simula-
tions at the desired length scale can supplement and produce 
large amounts of data for training. Aside from accessibil-
ity to data sets, methods to address and clean up noisy data 
sets, standardization, data sharing, and interpreting new ML 
models also play an integral role in slowing down innova-
tion progress. Nevertheless, major advancements have been 
made in developing novel ML models that overcome small-
data set issues. In sum, ML/AI have enabled the development 
of novel materials and answer key questions spanning from 
proteins to developing novel composites.84 Further, deploying 
these novel computational frameworks to develop materials 
inspired by nature can lead to breakthroughs in various indus-
tries and contribute to a more sustainable future.
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