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Functional properties of rough surfaces 
from an analytical theory of mechanical 
contact
B.N.J. Persson* 

The basic ideas behind a contact mechanics theory for randomly rough surfaces are 
presented. The theory is based on studying the interface at increasing magnification. At the 
lowest magnification, no surface roughness can be detected and the nature of the contact 
between two solids in this limit can be determined using standard numerical methods (e.g., 
FEM). The theory predicts how the surface roughness influences (or modifies) the contact 
stress distribution and the interfacial gap. The theory is flexible and can be applied to elastic, 
viscoelastic, and elastoplastic solids, as well as layered materials. Applications to leakage of 
seals, contact stiffness, the electric and thermal contact resistance, rubber friction, adhesion, 
and mixed lubrication are presented.

Introduction
In the design of engineering structures, surfaces of solids are 
usually assumed to be smooth. This assumption is a valid 
approximation (e.g., when choosing the dimension of steel 
beams for a bridge). However, many phenomena such as adhe-
sion, friction, and wear depend in a crucial way on surface 
roughness.1–4

Surface roughness usually extends over many decades in 
length scales. An asphalt road surface, for example, may be 
designed to be nominally flat, but is rough starting at length 
scales determined by the biggest stone particles in the asphalt 
and extending down to atomic distances (i.e., from ∼1 cm to 
∼ 1nm or 7 decades in length scale). Obtaining the micro-
scopic stress acting between a tire and a road surface may 
require solving a problem with 107 × 10

7 = 10
14 surface grid 

points, which is impossible to do directly, even on a super-
computer. For this reason, it is important to develop analyti-
cal methods to handle problems involving multiscale rough-
ness. In this article, we will describe one such method that 
has been applied to a large number of practical problems such 
as adhesion, rubber friction, and sealing. We will not present 
any derivations, but rather focus on the basic idea underlying 
this approach. 

Surface roughness
All surfaces of solids have surface roughness on many differ-
ent length scales. When a surface is observed with the naked 
eye, it may appear smooth, but when observed with an optical 
microscope, we detect surface roughness. A bump (asperity) on 
the surface, which appears smooth at a particular magnification 
ζ will exhibit roughness when studied at higher magnification 
(e.g., using an electron microscope [see Figure 1]). Because 
contact mechanics depends on the roughness on all length 
scales, we need some quantity that describes the roughness 
on all length scales. The most useful such quantity is the sur-
face roughness power spectrum C(q).5–8 For a randomly rough 
surface, all of the (ensemble-averaged) information about the 
surface roughness is contained in C(q) . The power spectrum 
is defined as the square of the surface roughness amplitude in 
wavevector space (see Figure 2). From C(q) standard quanti-
ties such as the root-mean-square (rms) roughness amplitude 
hrms or the rms slope ξ of the surface can be easily calculated.

Surface roughness can be studied over all relevant length 
scales by combining different experimental methods. Thus, 
using atomic force microscopy and engineering stylus meas-
urements, all length scales from nanometer to centimeter or 
more can be studied. Other methods that have been used 
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are optical and transmission electron microscopy. For sur-
faces with roughness with isotropic statistical properties, it 
is enough to measure the topography over a (long enough) 
line to get the one-dimensional (1D) height profile z = h(x) . 
For anisotropic roughness it is necessary to measure over an 
area to get the 2D height profile z = h(x, y) . For isotropic 
surface roughness C(q) is only a function of the wave num-
ber |q| = 2π/� , where � is the wavelength of a roughness 
component.

For the contact between two elastic solids 1 and 2 with 
uncorrelated roughness, the power spectrum of the combined 
roughness is just the sum of the individual power spectra: 
C(q) = C1(q)+ C2(q).

Contact between solids with random roughness
Any two solid objects, even if produced in the same way, 
will have different surface roughness h(x, y). Hence, the 
contact stress field σ(x, y) and the gap height (surface sepa-
ration) field u(x, y) will depend on microscopic details, 
which in general  are unknown, and which vary rapidly 
and irregularly on a huge number of length scales down to 
atomic distances. For this reason, only ensemble-averaged 
quantities are useful and well-defined quantities. In par-
ticular, we are interested in the probability distribution of 
contact stress and gap height.

We will discuss a theory that predicts accurately the con-
tact area, the contact stress distribution, and the distribution of 
interfacial separations.9–14 The theory is based on studying how 
contact stress probability distribution P(σ, ζ) changes with the 
magnification ζ (see Figure 3).

Consider squeezing together two elastic solids with nomi-
nally flat surfaces with a uniform applied stress σ0 . If we 
assume that there is no friction at the interface, then at the low-
est (say naked eye) magnification ζ = 1 we do not observe any 
roughness and it appears as if the stress at the interface equals 
the applied stress σ0 . In this case, the probability distribution of 
stresses at the interface will consist of a high and narrow peak 
with area 1 and centered at the applied stress σ0 . This func-
tion is denoted as the Dirac delta function P(σ, 1) = δ(σ− σ0) . 

Next, we increase the magnification and observe surface rough-
ness as indicated in Figure 3. In this case, the stress probability 
distribution P(σ, ζ) will broaden with tails extending to both 
larger and smaller stress than the applied stress σ0 . One can 
show that this broadening process is similar to a diffusion pro-
cess where time is replaced by magnification ζ and spatial coor-
dinate with the stress σ , and that P(σ, ζ) obey approximately 
the diffusion equation:9

The diffusivity D is determined by the elastic properties of the 
solids and by the surface roughness power spectrum:

where q = q0ζ , where q0 is the wave number of the longest 
wavelength roughness component (which is equal to π/L 
or larger, where L is the linear size of the system). Here, 
we have assumed an elastic solid with the effective modu-
lus E∗ = E/(1− ν2) (E is the Young’s modulus and ν the 
Poisson ratio) in contact with a rigid solid, but the theory 
is also valid for two elastic solids 1 and 2 in which case 
1/E∗ = (1− ν2

1
)/E1 + (1− ν2

2
)/E2.

Solving (1) requires boundary conditions and for elastic con-
tact without adhesion one can show that:

The first equation is related to the fact that without adhesion 
there can be no negative (tensile) stress at the interface and the 
second condition state that there can be no infinite high stress. 
The third condition is valid only if the applied stress results 
in a uniform nominal stress at the interface, and needs to be 
modified if the nominal stress is different (e.g., parabolic as in 
a Hertz contact). Solving these equations gives the interfacial 
stress distribution and the relative area of contact

1
∂P

∂ζ
= D(ζ)

∂2P

∂σ2
.

D(ζ) =
π

4

(

E

1− ν2

)

2

q0q
2

C(q),

P(0, ζ) = 0, P(∞, ζ) = 0, P(σ, 1) = δ(σ− σ0).

A

A0

= erf

(√
2σ0
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)

,

Figure 1.   A surface that appears smooth to the naked eye (e.g., a 
surface of a table) will exhibit roughness when observed at some 
magnification ζ . And an asperity that appears smooth at the mag-
nification ζ will exhibit surface roughness when observed at higher 
magnification.

Figure 2.   A general surface profile z = h(x) can be decomposed into a 
sum of cosines and sine waves of different wavelength � (or wave num-
ber q = 2π/� ) and different amplitudes hq . The surface roughness 
power spectrum ∼ |hq|2.
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where erf  is the error-function, and where ξ is the rms slope of 
the surface, which can be calculated from the power spectrum 
using

Note that the rms slope ξ depends on the magnification ζ ; when 
we increase the magnification, we observe more short wave-
length roughness, the rms slope increases, and the relative con-
tact area A/A0 decreases. Thus, the apparent contact observed 
with an optical microscope would in general be bigger than 
what is observed with an electron microscope with higher 
magnification. The true (or real) contact area is obtained by 
including all the roughness down to atomic distances (say a 
few Angstrom), corresponding to the highest magnification 
ζ1 = q1/q0.

Contact mechanics problems involving two or at most three 
decades in length scales can be solved numerically exactly, 
and have been used to test the theory previously presented.14 
As an example, in Figure 4, we show how the area of contact 
depends on the applied pressure p = σ0.

ξ2 = 2π

∫ ζq0

q0

dq q
3

C(q).

The average interfacial separation 
and the distribution of interfacial separation
In many applications, the (relative) area of real contact is very 
small and the surfaces are separated by an air or fluid film in 
most places. The gap field between two solids is important 
for fluid flow at the interface (e.g., for the leakage of seals). 
In some applications, the average gap height (average surface 
separation) is enough, but in most applications, the probability 
distribution of gap heights is needed. When the applied stress 
σ0 is such that the relative contact area is much less than 1 
(but not so small that finite-size effects become important), the 
average separation ū is related to the squeezing pressure σ0 as10

where u0 ≈ hrms and β both are determined by the surface 
roughness power spectrum C(q) . The theory also predicts the 
probability distribution of separations.12,13

Generalizations
A beautiful aspect of the contact mechanics approach previ-
ously presented is that the theory can easily be extended to 
more complex situations. Thus, both solids can have surface 
roughness and elasticity, and the theory can be applied to 
viscoelastic9 and elastoplastic9,17 solids, and to layered mate-
rials.18 In addition, it is possible to include adhesion.19,20

As an example, plasticity can be included in an approxi-
mate way by replacing the boundary condition P(∞, ζ) = 0 
with P(σP, ζ) = 0 , where σP is the penetration hardness 
obtained using, for example, a Vickers or Brinell hardness test.

When adhesion is important, negative (tensile) stresses will 
occur at the interface. In this case, the boundary condition 
P(0, ζ) = 0 is replaced by P(−σa(ζ), ζ) = 0 , where σa(ζ) is 
the highest tensile stress, which occurs at the interface when 
it is observed at the magnification ζ . This dependency on the 
tensile stress on the magnification is similar to the influence of 
surface roughness on the fluid contact angle on surfaces with 
roughness: the macroscopic contact angle, as observed by, for 
example, the naked eye, is in general different from the micro-
scopic contact angle, as would be observed on a perfectly flat 
surface of the same material.

Layering of the elastic properties can be included in the 
theory by replacing the effective elastic modulus E∗ with 
E
∗/S(q) , which in some applications is equivalent to replacing 

the surface roughness power spectrum C(q) with C(q)|S(q)|2 , 
where the wave number dependent factor S(q) can be calcu-
lated analytically.

The theory presented here has been compared against 
computationally intensive numerical models that compute the 
exact value for contact properties.15,16 Figure 4 shows that the 
(numerically exact) contact area as a function of the squeez-
ing pressure tends to be about ∼ 20% larger at small pressures 
(where A varies linearly with p) than predicted by the theory. 
When the squeezing pressure increases, the deviation becomes 
smaller and vanishes at complete contact. Similarly, analy-
sis of the (average) interfacial separation as a function of the 

2σ0 = βE∗
e
−ū/u0

,

ζ = 1 ζ = 10elastic rough

rigid smooth

σ0

Figure 3.   The contact between a rigid solid with a smooth surface 
and an elastic solid with a rough surface. At low magnification ζ = 1 , 
no roughness can be observed and it appears as if the contact is 
complete. At higher magnification roughness is observed and now it 
is observed that contact only occurs at high asperities.
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Figure 4.   The relative contact area A/A0 as a function of the applied 
pressure, p. The numerical exact result is from References 15, 16.
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applied pressure indicates that the elastic energy in the asperity 
contact regions may be slightly overestimated in the theory 
at low squeezing pressure, while the difference decreases at 
higher squeezing pressures and vanishes for complete contact. 
These two facts are related and can be corrected for, and result 
in a contact area and interfacial separation in close agreement 
with the numerically exact results.21,22

Applications
Leakage of seals
Consider first a seal where the nominal contact area is a 
square. The seal separates a high pressure fluid on one side 
from a low pressure fluid on the other side, with the pres-
sure drop �P . We consider the interface between the solids at 
increasing magnification ζ . At low magnification, we observe 
no surface roughness and it appears as if the contact is com-
plete. Therefore, studying the interface only at this magnifica-
tion, we would be tempted to conclude that the leak-rate van-
ish. However, as we increase the magnification ζ , we observe 
surface roughness and noncontact regions (see Figure 5), so 
that the contact area A(ζ) is smaller than the nominal contact 
area A0 = A(1) . As we increase the magnification further, we 
observe shorter wavelength roughness, and A(ζ) decreases fur-
ther. For randomly rough surfaces, as a function of increasing 

magnification, when A(ζ)/A0 ≈ 0.42 the noncontact area per-
colates,24 and the first open channel is observed, which allows 
fluid to flow from the high pressure side to the low pressure 
side. The percolating channel has a most narrow constriction 
over which most of the pressure drop �P occurs. In the sim-
plest picture, one assumes that the whole pressure drop �P 
occurs over this critical constriction, and if it is approximated 
by a rectangular pore of height uc , much smaller than its width 
(as predicted by contact mechanics theory), the leak-rate can 
be approximated by:23

where η is the fluid viscosity. The height uc of the critical con-
striction can be obtained using the contact mechanics theory 
previously described. The result (3) is for a seal with a square 
nominal contact area. For a rectangular contact area with the 
length Lx in the fluid flow direction and Ly in the orthogonal 
direction, there will be an additional factor of Ly/Lx in (3). 

The critical junction theory has been tested experimentally 
for several different systems.23,25–28 The square symbols in 
Figure 6 show the measured water leak-rate, as a function 
of the (squeezing) pressures, for a rubber square-ring seal 
squeezed against sandpaper and two sandblasted plexiglass 
(PMMA) substrates. The red solid lines show the calculated 
leak-rates using the critical junction theory. The green solid 
lines are the calculated leak-rates using the Bruggeman 
effective medium theory, where all of the flow channels are 
included in an approximate way.25–28 

Contact stiffness
Scattering of elastic waves from interfaces between solids 
is one of the most important nondestructive ways to study 
buried interfaces (e.g., to detect flaws or crack-like defects). 

3Q̇ =
u
3

c

12η
�P,

 ζ = 3, A/A0 = 0.778 ζ = 9, A/A0 = 0.434

ζ = 12, A/A0 = 0.405 ζ = 648, A/A0 = 0.323

critical constriction

a b

c d

Figure 5.   The contact region (black) at different magnifications ζ = 3 , 
9, 12, and 648, is shown in (a–d)y, respectively. When the magnifica-
tion increases from 9 to 12, the noncontact region (white area) perco-
lates (i.e., an open [noncontact] channel extending from one side to 
the opposite side appears for the first time). The figure is the result of 
molecular dynamics simulations of the contact between elastic solids 
with randomly rough surfaces. Adapted from Reference 23.
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Figure 6.   Square symbols: the measured leak-rate for different rub-
ber–counter surface (squeezing) pressures. The red and green solid 
lines are the calculated leak-rates using the critical junction theory 
and the Bruggeman effective medium theory, respectively. Results are 
shown for sandpaper and sandblasted PMMA surfaces.
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Because of surface roughness, an interface of solid contact 
is usually less stiff than the bulk material, and is often repre-
sented as a layer of elastic springs (see Figure 7). If two solids 
with a nominal flat interface are squeezed together with the 
nominal pressure, p, the normal contact stiffness is defined as 
K = −dp/dū . If the pressure is not too high (as to approach 
complete contact) or too low (where finite-size effects become 
important) then for elastic contact (2) holds and

In Figure 8, we show the contact stiffness over a wide pressure 
range where both finite-size effects and approach of complete 
contact occur.7,29

The contact stiffness theory has been tested experimentally 
for both elastically soft materials such as rubber,30,32 and for 
elastically stiff materials.33 In both cases, a linear depend-
ency of the stiffness on the squeezing pressure was found with 
K ≈ p/u0 with u0 ≈ hrms . For metals, plastic flow is expected 
at the asperity level, which will effectively increase the stiffness.

Note that hrms and hence the contact stiffness are deter-
mined mainly by the longest wavelength roughness, and in 
most cases it is not necessary to study the surface topography 
h(x, y) at high magnification in order to obtain the contact 
stiffness.

Heat and electric contact resistance
If an electric potential is applied between two metallic solids 
in contact, an electric current will flow from one solid to the 
other via the asperity contact regions (see Figure 9). The inter-
facial resistance to the current flow is denoted as the electric 
contact resistance. The electric contact conductance per unit 
area α

el
 is defined by

where Jz is the electric current and φ1 and φ2 are the electric 
potential in the two solids close to the interface, at such dis-
tance from the interface that the electric potential is nearly 
uniform in the plane parallel to the interface. In a similar way, 
one can define a thermal contact conductance per unit area by 

K =
1

u0

βE∗
e
−ū/u0 =

p

u0

.

Jz = α
el
(φ1 − φ2),

Jz = α
th
(T1 − T2) , where Jz is the thermal current, and T1 − T2 

the temperature change over the interface.
It has been shown by Barber34 (see also References 29, 35) 

that the heat and electric contact resistance are closely related to 
the mechanical contact stiffness K. The fundamental reason for 
this is the similarities between the equations determining elastic 
deformations and the temperature in thermal contact, and the 
electric potential in electric contacts. For the latter two phenom-
ena conservation of heat and of electric charge gives ∇ · J = 0 
where J = −κ

th
∇T  for the heat current and J = −κ

el
∇φ for 

the electric current. This gives ∇2
T = 0 and ∇2φ = 0 , respec-

tively. These equations are similar to the continuum mechanics 
equation determining elastic deformations in the static limit. In 
particular, Boussinesq has shown that if an elastic halfspace is 

reflected
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c

Figure 7.   (a) Scattering of elastic waves from a buried interface.  
(b) The average surface separation ū depends on the applied pres-
sure, p. (c) Effective spring model with the spring stiffness depending 
on the applied pressure, p.
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loaded by a normal stress, the solution involves a function ψ , 
which satisfies ∇2ψ = 0 . Using this one can show that34

where 1/κ∗
el
= 1/κ

(0)
el

+ 1/κ
(1)
el

 , and where κ(0)
el

 and κ(1)
el

 are the 
electric conductivity of solid 1 and 2, respectively. The effec-
tive thermal conductivity κ∗

th
 is defined in a similar way.

Because the mechanical contact resistance is mainly deter-
mined by the long wavelength roughness, it follows that the 
same is true for the electric and the thermal contact resistance. 
Information about the short wavelength roughness is in most 
cases not needed when determining the electrical and thermal 
contact resistance.

The results previously presented assume that the contact 
resistance is entirely due to the current constrictions involving 
homogeneous materials and no contamination or oxide films. 
Thin oxide and contamination films may have a negligible 
influence on the thermal contact resistance, but could affect 
the electric contact resistance hugely, unless the local contact 
pressure is big enough to break up these films.36 In addition, 
the noncontact area could be very important for heat transfer 
via heat diffusion in the surrounding gas, or via blackbody 
heat radiation, which can be strongly enhanced at short surface 
separation because of the near field (evanescent) part of the 
electromagnetic field.35,38,39

Rubber friction
There are several different contributions to rubber friction, the 
relative importance of which depends on the rubber compound 
and countersurface properties. For hard substrates, such as 
road surfaces, a contribution to rubber friction arises from the 
time-dependent viscoelastic deformations of the rubber by the 
substrate asperities. That is, during sliding, an asperity contact 
region with linear size d will deform the rubber at a character-
istic frequency ω ≈ v/d  , where v is the sliding speed. Because 
real surfaces have roughness over many decades in length 
scales, there will be a wide band of perturbing frequencies, all 
of which contribute to the viscoelastic part µ

visc
 of the rubber 

friction coefficient. In addition, there will be a contribution µcon 
to the friction from shearing the area of real contact.

The viscoelastic contribution, and the rubber–road area of 
real contact, can be calculated using the contact mechanics 
theory previously described and depend on the surface rough-
ness power spectrum C(q) and on the rubber viscoelastic 
modulus E(ω) (a complex quantity with the imaginary part 
related to energy dissipation). Neglecting frictional heating, 
the friction coefficient for a rubber block squeezed against a 
randomly rough and rigid substrate with the pressure p0 and 
sliding at the speed v, is given by9,40

α
el
= 2κ∗

el

K

E
∗ , α

th
= 2κ∗

th

K

E
∗ ,

µ
visc

≈
1

2

∫

q1

q0

dq q
3

C(q)P(q)

×
∫

2π

0

dφ cos φ Im

E(qv cos φ)

(1− ν2)p0
,

where

where

Here, q0 and q1 are the wave numbers of the longest and short-
est wavelength roughness components included in the calcula-
tion. The relative area of rubber–substrate contact is given by 
A/A0 = P(q1).

The contribution µcon to the friction from the area of con-
tact is usually written as µcon = τ(v)A(v)/(p0A0) , where τ(v) 
is the frictional shear stress acting in the area of real con-
tact, which may be due to polymer segments (or patches of 
rubber) at the rubber–road interface performing cyclic bind-
ing–stretching–breaking interactions.41 However, rubber wear, 
and the adhesion enhancements of the area of real contact,42 
may also be involved and there is at present no generally 
established consensus on the origin of µcon , and also on how 
to choose the cutoff wave number, q1 . Nevertheless, in most 
cases, µ(v) depends on the sliding speed as shown in Fig-
ure 10, with a low velocity peak usually around ∼1 cm/s , 
attributed to the contribution from the area of contact, and the 
high velocity peak around 1 m/s or more, due to the viscoe-
lastic contribution. The theory previously presented predicts 
that rubber friction is strongly temperature dependent, which 
is the reason why in F1-racing the tires are heated up before 
the start of a race.

P(q) = erf

(

1

2

√
G

)

,
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Figure 10.   The measured and calculated friction coefficient as a 
function of the logarithm of the sliding speed. Measurements were 
performed on dry contact (red filled squares), in water (stars) and in 
water + soap (blue open squares). The blue line is the total calcu-
lated rubber friction coefficient and the green line the viscoelastic 
contribution. For rubber block sliding on an asphalt substrate at the 
temperature T = 15◦C . For higher temperatures the µ(v) curve shift 
to higher sliding speeds. Adapted from Reference 37.
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Adhesion
Even the weakest force field of interest in adhesion, namely 
the (always acting) van der Waals interaction, which is due to 
quantum (and thermal) fluctuations in the charge distribution 
in solids, is strong on a macroscopic scale. Because of this, it 
is possible to keep the weight of a car suspended in a ∼1 cm

2 
contact area, assuming all the adhesive bonds break simultane-
ously.5 The fact that this is never observed is (mainly) due to 
surface roughness, and stress concentration at defect regions 
in the nominal contact region.

The influence of surface roughness on adhesion can 
be  studied using the contact mechanics theory previ-
ously  described by replacing the boundary condition 
P(0, ζ) = 0 with the boundary condition P(−σa, ζ) = 0 , 
where σa(ζ) is the highest tensile stress at the interface when 
the contact is studied at the magnification ζ . Using the theory 
of cracks one can show that

where γ
eff
(ζ) is the effective interfacial energy (per unit surface 

area) in the (apparent) contact area observed at the magnifica-
tion ζ . For an elastic solid with a rough surface in contact with 
a rigid solid with a flat smooth surface 2, γ

eff
(ζ) is determined 

by19,43,44

where �γ = γ1 + γ2 − γ12 is the change in the surface energy 
(per unit surface area) as two flat and smooth surfaces of the 
two materials are separated. U

el
(ζ) is the elastic energy stored 

at the interface when the roughness with wave number larger 
than ζq0 is included. One can write

The adhesion theory predicts that if the elastic modulus E∗ 
is large enough, or the surface roughness amplitude is large 
enough, then γ

eff
(1) = 0 , which implies the pull-off force 

will vanish (i.e., there is no macroscopic adhesion). To illus-
trate this effect, in Figure 11, we show the measured work of 
adhesion w (which is proportional to the pull-off force) as a 
function of the number of contacts between a glass ball and a 
silicone rubber flat surface.45 Note that in the adiabatic limit 
w = γ

eff
(1) . Results are shown for smooth and rough (sand-

blasted) glass balls in contact with smooth surfaces of stiff and 
soft silicone rubber. For the soft compound ( E = 0.019 MPa ), 
the pull-off force increases by a factor of 2 when going from 
the smooth glass ball to the rough glass ball. This may be 
partly due to nonadiabatic effects (elastic instabilities at the 
asperity level), and partly to the increase in the area of real 
contact because of the surface roughness (the sandblasted ball 
has roughly double surface area as the not sandblasted ball). 
For the stiff rubber compound ( E = 2.3 MPa ), we instead 
observe a reduction in the adhesion with a factor of ∼10

−3 
when going from the smooth ball to the sandblasted ball. This 

σa ≈
[

γ
eff
(ζ)E∗

q0ζ/2
]

1/2
,

γ
eff
(ζ)A(ζ) = �γA(ζ1)− U

el
(ζ),

U
el
(ζ) = E

∗π

2

∫

q1

q0ζ

dq q
2

A(q)C(q).

is due to the elastic energy stored at the interface during con-
tact formation [the rubber surface must deform (bend) elasti-
cally to make contact with the glass surface], which is given 
back during pull-off and helps to break the interfacial bonds 
between the rubber and the glass ball. This same effect is the 
reason one cannot detect a pull-off force when removing a tire 
from a road surface. For very soft rubber compounds, as used 
in adhesive tapes, the stored elastic energy is so small that 
strong adhesion occurs even to very rough surfaces. It is pos-
sible to produce sticky materials from elastically stiff materials 
using hierarchical porous or fiber–plate constructions, which 
reduces the effective elastic modulus on all relevant length 
scales.46,47 This is utilized in the adhesive pads of many insects 
and some lizards, which can adhere to very rough surfaces 
(e.g., stone walls).

Mixed lubrication
As a final application, we consider the sliding of an elastic cyl-
inder (with radius R and length L ≫ R ) in a fluid on a rigid, ran-
domly rough substrate occupying the xy-plane. This problem has 
important applications (e.g., for dynamical seals). We consider 
the simplest case of a Newtonian fluid with a constant viscosity 
η , and neglect fluid flow and friction factors.48,49 In this case, 
in a mean-field type of treatment, we write the pressure acting 
on the cylinder as the sum of the fluid and the asperity contact 
pressure p0(x) = p

fluid
(x)+ pcont(x) . The contact pressure is 

related to the average surface separation ū(x) using the contact 
mechanics theory for dry surfaces so that, if the pressure is not 
too high or too low,

The fluid flow obey the Reynolds thin-film equation
pcont = βE∗

e
−ū/u0

.

dp
fluid

dx

= 6ηv0

(

1

ū
2(x)

−
u
∗

ū
3(x)

)

,
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Figure 11.   The work of adhesion (proportional to the pull-off force) 
as a function of the number of contacts between smooth and rough 
(sandblasted) glass balls and soft and stiff silicone rubber with flat 
surfaces. The pull-off velocity v ≈ 1µm/s.
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where u∗ is determined so that the fluid pressure and the con-
tact pressure give a normal force equal in magnitude to the 
external load acting on the cylinder:

The elastic deformation field is determined by the equations 
of elasticity:

 
As an example, in Figure 12, we show the fluid pres-

sure, the contact pressure, and the interfacial separation for 
a sliding speed in the mixed lubrication velocity region. 
Note that the surface separation is smallest on the exit side 
of the sliding contact as is typical for elastohydrodynamics 
applications.

Summary and conclusion
We have described the basic idea behind a multiscale contact 
mechanics theory for rough surfaces and presented several 
applications. The theory is accurate and very flexible and has 
been easily applied to many practical problems. In contrast 
to the classical Greenwood–Williamson contact mechanics 
theory,50 which approximates all asperities by spherical bumps 
of equal radius and neglects the elastic coupling between the 
asperity contact regions, the present theory can be applied to 
systems with roughness extending over an arbitrary number 
of decades in length scales and includes the long-range elas-
tic coupling between the different contact regions. Note that 
neglecting the elastic coupling result is a qualitatively wrong 
contact morphology12 and huge error in most physical quanti-
ties, such as the leakage rate of seals, which depends on open 
flow channels at the contacting interface.24

∫ ∞

−∞
dx p0(x) =

FN

L

.

ū(x) = u0 +
x
2

2R

−
2

πE∗

∫ ∞

−∞
dx

′
p0(x

′)ln

∣

∣

∣

∣

x − x
′

x
′

∣

∣

∣

∣
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Figure 12.   The contact and fluid pressure distribution and the interfacial 
separation between an elastic cylinder sliding in the negative x-direction 
on a nominal flat substrate. The substrate has a self-affine fractal surface 
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