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Roles and opportunities for machine 
learning in organic molecular crystal 
structure prediction and its applications
Rebecca J. Clements┼, Joshua Dickman┼, Jay Johal┼, Jennie Martin┼, 
Joseph Glover, and Graeme M. Day* 

The field of crystal structure prediction (CSP) has changed dramatically over the past decade 
and methods now exist that will strongly influence the way that new materials are discovered, 
in areas such as pharmaceutical materials and the discovery of new, functional molecular 
materials with targeted properties. Machine learning (ML) methods, which are being applied in 
many areas of chemistry, are starting to be explored for CSP. This article discusses the areas 
where ML is expected to have the greatest impact on CSP and its applications: improving 
the evaluation of energies; analyzing the landscapes of predicted structures and for the 
identification of promising molecules for a target property.

Introduction
The principal goal of crystal structure prediction (CSP) is to cal-
culate the potential crystal structures of any given material from 
its chemical composition. Most CSP methods involve a search for 
local minima on the energy surface defined by the structural varia-
bles describing a crystal structure (unit cell dimensions, molecular 
positions, and orientations), and ranking of these minima by their 
calculated energies.1 The difficulty of CSP is highlighted by the 
occurrence of polymorphism, where a molecule can exist in one 
of several crystalline phases that may possess different physical 
and chemical properties. It has been shown that most polymorphs 
of organic molecules are separated by less than 2 kJ/mol in lattice 
energy,2 thus highlighting the need for accurate computational 
methods to correctly predict the energy ranking of structures. The 
large number of possible structures involved in CSP for a given 
molecule means that accurate energies must be achieved at as 
low a computational cost as possible. Despite these challenges, 
considerable progress has been achieved in the past few decades 
and it is now possible to predict the crystal structure landscape of 
even quite complex systems, including multicomponent crystals 

(salts, co-crystals, and solvates),3,4 and pharmaceuticals that 
can adopt many molecular conformations.5–7 Therefore, CSP is 
becoming more widely used, for example, in the pharmaceuti-
cal industry to complement experimental polymorph screening,8 
and to prioritize candidates for synthesis for functional materials 
discovery.9 Predicting the likely crystal structures of a molecule is 
crucial for predicting many properties that depend on the relative 
arrangement of molecules in a crystal: a few examples include 
mechanical properties, porosity, the kinetics of dissolution and 
electron and hole mobilities in organic semiconductors.

The results of CSP can provide crucial information for 
experimental design. For example, predictions were able to 
show that the formation of caffeine-benzoic acid co-crystals 
is thermodynamically favorable, leading to the design of a 
seeding experiment that ultimately enabled the synthesis of 
the elusive crystal structure.10 More recently, new polymorphs 
of  iproniazid11 and  dalcetrapib12 have been discovered from 
crystallizations under pressure, which were guided from the 
results of CSP that discovered thermodynamically stable struc-
tures with high densities. CSP has also been applied in the 
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area of porous molecular materials, helping to understand and 
modify the crystalline properties of porous organic  cages13,14 
and guiding the discovery of extrinsically porous molecular 
crystals for gas storage and molecular separations.9

In recent years, machine learning (ML) methods have been 
employed across many areas of chemistry and are starting to 
be explored for CSP.15–17 This includes their use for making 
highly accurate predictions of the relative energies of crystals, 
and in the analysis of CSP landscapes where the high dimen-
sionality of the structural space can be simplified using ML 
algorithms.

This article highlights the areas where ML methods are 
expected to have greatest impact on CSP methods and their 
applications. Although many of the same challenges exist for 
other types of crystalline materials, we focus our discussion on 
organic molecular CSP.

ML of the relative stabilities of putative 
structures
A requirement of CSP is the evaluation of accurate energies 
for large numbers of computer-generated crystal structures. A 
large-scale computational study has shown that free-energy dif-
ferences are <2 kJ/mol in over half of observed polymorphs for 
small organic molecules, exceeding 6.4 kJ/mol in only 5% of 
cases.2 These differences are usually dominated by the lattice 
energy—the energy of the static arrangement of molecules in 
a crystal—with differences in entropy due to lattice vibrations 
usually being smaller than lattice energy differences.2 Thus, 
temperature effects, including thermal expansion, are usually 
treated as a minor energetic contribution; it has been estimated 
that about one in five polymorph pairs swap their order of stabil-
ity between 0 K and their melting point.18 Therefore, the focus 
of CSP has largely been on obtaining accurate lattice energies.

Traditionally, the choice has been between force fields, 
which describe the interactions between atoms using physi-
cally motivated functional forms, and more expensive quantum 
mechanical electronic structure methods (typically, solid-state 
density functional theory, DFT). Many of the available meth-
ods have been benchmarked using the measured sublimation 
enthalpies of the X23 benchmark set of molecular organic crys-
tals,19–21 showing that the best force fields have mean absolute 
errors of 9 kJ/mol, whereas errors in the best DFT methods 
are about half this magnitude. Therefore, the fact that CSP is 
ever successful, given the small energy separations between 
polymorphs and predicted crystal structures, relies on cancella-
tion of errors. For force fields, in particular, much of the errors 
are systematic, so do not affect the energetic ranking of pre-
dicted structures. Nevertheless, the increased accuracy of DFT 
methods is often necessary, particularly where polarization or 
charge-transfer interactions make important contributions to 
intermolecular interactions, or where changes in molecular 
geometry are significant. However, DFT energy calculations 
can be  103–105 times more computationally expensive than 
force fields,17 even for small molecules. Thus, ML has been 

investigated as a means to achieve DFT-quality energies in CSP 
studies at more affordable computational costs.

The main requirement of an ML model is the ability to 
model the nonlinear relationship between energy and geo-
metric descriptors of the crystal structure, which are usually 
represented by their local atomic environments, such as in 
the smooth overlap of atomic positions (SOAP)22 and atom-
centered symmetry function (ACSF)23 approaches. The use of 
a kernel, or covariance, matrix describing similarity between 
atomic configurations in Gaussian process regression (GPR) 
models is popular in chemical applications of ML, as are 
neural networks. Although ML models have been thoroughly 
tested for accurately predicting the energies and properties of 
inorganic crystal structures,24 and small organic molecules,25 
applications to organic molecular crystal structures are more 
challenging, in part due to the number of atoms involved.26

In the field of inorganic structure prediction, Tong et al.27 
demonstrated that a GPR model could be trained to high-level 
DFT calculations on-the-fly during a structure search for pre-
dicting boron clusters, saving an estimated 1–2 orders of mag-
nitude in computational cost compared to full DFT calcula-
tions, and suggested that their work could apply to periodic 
systems. Deringer et al.28 used GPR to train a potential for 
CSP of elemental phosphorus, initially training on DFT cal-
culated energies of randomly generated structures, and refin-
ing the potential during the structure search, so that it could 
eventually identify complex structures whose size puts them 
out-of-reach of DFT calculations.

In the area of organic molecular CSP, several approaches 
have shown how applying ML allows for the use of quan-
tum mechanics methods, more affordably than running such 
high-level calculations on all predicted crystal structures of a 
molecule. As a first demonstration in this area, Musil et al.15 
showed that GPR using the SOAP description of structural 
similarity could predict DFT lattice energies of pentacene CSP 
structures with less than 1 kJ/mol error, although the errors 
are higher for chemically more complex molecules. A Δ-ML 
approach, which learns the difference in energy between lower 
(force field) and higher (DFT) levels of theory led to lower 
errors and more uniform performance for different molecules. 
The approach has been extended by Egorova et al., who devel-
oped a multilevel ML approach to correct the relative stabili-
ties of predicted structures,17 further reducing the required 
amount of the most computationally expensive, high-level 
energy calculations.

Other work includes training on a finite molecular cluster 
from the crystal structure at the target level using the many-
body expansion of the lattice energy, instead of using peri-
odic calculations. McDonagh et al. explored ML models for 
learning individual two-body (i.e., dimer) corrections to force-
field-calculated energies while keeping the long-range interac-
tions at low level to reduce the cost.29 This approach allows 
more accurate quantum chemistry models, such as correlated 
wave-function methods, which are currently unaffordable for 
calculations on periodic structures. A similar approach was 
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described by Wengert et al.30 who included larger molecular 
clusters and reported that the use of ML reduces the comput-
ing time taken for 10,000 crystal structures of a small organic 
molecule from 30 million CPU h to 80,000 CPU h.

This dramatic reduction in cost means that ML models 
can be used to assess more computationally demanding free-
energy differences of crystal structures and include contribu-
tions from lattice vibrations, which are known to be important 
for polymorph relative stabilities,2,18 and nuclear quantum 
effects. Kapil and  Engel31 demonstrated such an approach, 
training a neural network model that was used for calculating 
free-energy differences between crystal structures of benzene, 
glycine, and succinic acid.

ML‑enabled analysis of structural landscapes
An aim of CSP is to produce a set of all energetically feasible 
crystal packings of the studied system. These structure sets 
are rich with information on structure–function relationships, 
and are analyzed to identify which structures are most likely 
to be experimentally realized. Key barriers in such analysis 
include uncertainty in the predictions themselves and the high 
dimensionality of CSP landscapes, which creates a challenge 
for visualizing the distribution of predicted structures. The 
dimensionality of the energy surface depends on the symmetry 
and number of molecules in the crystallographic unit cell. As 
an illustrative example, a structure with four rigid molecules 
in the unit cell is defined by up to 30 degrees of freedom: the 
unit cell dimensions, along with the orientations and positions 
of each molecule within the unit cell.

Reducing this dimensionality can help identify struc-
ture–function relationships. A common solution is to visual-
ize the structures in only a few dimensions; for example, CSP 
results are often presented as a plot of relative energies against 
densities of the predicted structures. Chemical intuition can 
also be applied to classify structures by the presence of certain 
interactions (e.g., hydrogen bonds)32 or packing features.33 
The information loss and bias in analyzing sets of predicted 
structures may be minimized by applying dimensionality 
reduction methods to identify features that capture the great-
est structural variation across the set of structures, and to form 
a lower dimensional representation in which similarity and 
dissimilarity of structures is preserved. As with ML for ener-
gies of crystal structures, dimensionality reduction relies on 
descriptors of each structure; again, such descriptors usually 
describe the local environment of atoms, such as ACSFs and 
SOAP. As a part of their work on learning energies, Egorova 
et al.17 performed principal component analysis (PCA) of the 
sets of predicted crystal structures of a series of small mol-
ecules, each described using ACSFs. This work found that a 
small number of principal components (linear combinations 
of ACSFs) capture most of the variability across predicted 
structures, demonstrating that stable crystal structures tend to 
be found in a lower-dimensional manifold of the full dimen-
sionality of the energy surface.

A related approach, useful for classification of structures, 
is clustering—an unsupervised ML method that optimizes the 
separation of data points into clusters of similar points and 
defines each point by just one descriptor—its cluster index. 
As an example, Musil et al.15 combined the nonlinear dimen-
sionality reduction technique, sketch-map,34 with cluster-
ing methods to produce two-dimensional (2D) mappings of 
crystal structure landscapes of pentacene (Figure 1a) and two  
azapentacenes proposed as promising organic semiconductors. 
The reduced mapping for pentacene showed clear groupings of 
structures, which, when classified using hierarchical density-
based clustering,35 reproduced results from heuristic classi-
fication of the structures, according to the known structural 
classes of the crystal structures of polyaromatic hydrocarbons 
(sheet-like, herringbone, etc.). This demonstration that known 
structural classes can be identified algorithmically supports 
the application of these methods for analysis of CSP results. 
The approach was applied to analyze the combined set of 
predicted crystal structures of 28 molecules in a single clus-
tered mapping36 (Figure 1b), which revealed relationships 
between molecular structure, preferred crystal packing, and 
electron mobility. These findings demonstrate potential for 
ML to accelerate structure classification and navigation of 
the combined space of molecular structures, crystal structure, 
and materials properties. Thus, similar approaches have been 
applied in exploration for porous molecular crystals.37,38

These studies also highlighted several challenges. For 
instance, not all structure sets can be effectively clustered, 
as was found for a second azapentacene in Reference 15, and 
the mappings can be sensitive to choices in the representation; 
for example, the cutoff distance around each atom in SOAP 
influences the relative importance of inter- and intramolecu-
lar similarity when comparing crystal structures of different 
molecules.36 Crystal structure representations can sometimes 
be constructed with a particular application in mind: for exam-
ple, Moosavi et al.38 showed that representations capturing the 
topological features of pores within predicted crystal struc-
tures lead to mappings that group structures with similar cal-
culated methane deliverable capacities.

The same need to choose “the right tool for the job” applies 
to dimensionality reduction algorithms. Direct comparison 
of algorithms for dimensionality reduction has been under-
explored in the context of analyzing crystal structure land-
scapes. In their CSP study of pyrrole azaphenacenes, Yang 
et al. observed important differences in the distribution of 
points in the mappings produced using four different dimen-
sionality reduction algorithms,39 demonstrating that researcher 
expertise is still required in algorithm selection.

Although the examples discussed so far have focused on 
using unsupervised ML for visualization and the identification 
of structure–function relationships, a related method called 
the generalized convex hull (GCH)40 attempts to identify 
which predicted crystal structures should be synthesizable. 
A conventional convex hull (CH) examines the energy of 
a material with respect to stoichiometry or some structural 
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variable, such as molar volume. Only structures on the CH 
are considered thermodynamically stable. This analysis, how-
ever, relies on intuitively chosen features. The GCH algorithm 
uses dimensionality reduction, via kernel PCA,41 to select 
data-driven coordinates for CH construction. In this way, the 
GCH identifies structures that are low in energy or extremal 
in geometry in some respect and could, therefore, be stabi-
lizable. Uncertainty in the structural features and energies 
is also addressed. The GCH samples the hull points proba-
bilistically across many iterations in which the data points 
are randomized within boundaries determined by a machine-
learned estimation of their uncertainties. The approach was 
demonstrated for the identification of crystalline phases of 
hydrogen from CSP at high pressure and identified magneti-
cally stabilizable phases of oxygen. From the perspective of 
applying CSP for the discovery of functional molecular mate-
rials, the GCH was demonstrated to identify predicted crystal 
structures of pentacene that could be stabilized by chemical 
modification.40

Chemical space exploration
To be used as an effective method for discovering materi-
als with targeted properties, CSP must be combined with 
methods for proposing promising molecules. Exhaustive 
searches of possible candidates are prohibitively expensive; 
as an example, for small drug-like molecules a calculated 
search space of up to  1060 possible molecules is estimated 

to exist.42,43 In contrast, the largest CSP studies to date have 
assessed groups of 10–30 molecules to identify the candi-
dates with the best predicted properties.9,36,44 Due to the gulf 
between the scale of CSP that is currently affordable and 
the size of chemical space, more targeted methods, such as 
data-driven techniques, are required to focus effort on the 
best candidate molecules.45 Data-driven methods to generate 
molecules, which have mainly been applied in the area of 
drug discovery, have also been demonstrated for functional 
materials discovery.

Molecular representations
Data-driven chemical space exploration requires molecules 
to be represented in a computer readable manner.22 Ideal 
representations are invertible, mapping only to specific 
molecular structures, and invariant to symmetry operations.

Molecular graphs are a common method of represent-
ing structures as bonds and atoms within a molecule can 
be represented as the edges and vertices of a graph. A pop-
ular method converts a 2D molecular graph into a string 
of ascii characters called simplified molecular-input line-
entry system (SMILES) strings. These are invertible, but 
not unique—one molecular structure can map to multiple 
SMILES strings.46 Suggested improvements, all canonical, 
include the unique, non-standardized canonical SMILES,47 
InChi—a standardized string  identifier48—and SELFIES, 
which always represent valid molecules.49

Figure 1.  (a) Reduced mapping of the crystal structure prediction (CSP) structures of pentacene, colored by cluster (inset structures show 
the crystal packing in representative structures from each cluster). Reproduced from Reference 15 with permission from the Royal Society of 
Chemistry. (b) CSP structures of 28 pyrrole azaphenacenes combined on one map. The inset image in (b) shows the same mapping colored by 
the molecule in the structure—indicating the ability of multiple similar molecules to adopt each packing type. Adapted with permission from Ref-
erence 36. © 2018 American Chemical Society.
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High‑throughput virtual screening
The conceptually simplest approach for finding high-performing 
molecules is high-throughput virtual screening (HTVS), where 
molecular data sets are tested for a targeted property via compu-
tational predictions. HTVS is often performed using a funneling 
method (Figure 2a), to reduce cost while allowing properties 
to be determined more accurately for the later candidate pools. 
Quantitative structure–property relationship and ML models 

for property prediction have been applied as steps in the fun-
neling strategy.45,50 HTVS can use generative models or existing 
chemical databases, such as ZINC,51 the Cambridge Structural 
Database,52,53 and the Harvard Clean Energy Project,54 to build 
the initial populations of compounds to screen. Although CSP 
has not been applied in truly high-throughput studies, improve-
ments in efficiency of the methods have made it possible to 
perform CSP, followed by property prediction for the sets of 

Figure 2.  Schematic representations of three approaches for exploring chemical space for new molecules with targeted properties: (a) high-
throughput virtual screening, (b) generative neural network models, (c) evolutionary algorithms, and (d) the inclusion of synthetic accessibility in 
chemical space exploration workflow. Part (d) adapted with permission from Reference 67. © 2020 American Chemical Society.
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low-energy predicted crystal structures, for up to about 30 small 
molecules.36 The properties of molecular materials often depend 
on intrinsic molecular properties, as well as properties that 
emerge due to the way that molecules are arranged in the solid. 
HTVS can take advantage of this: applying initial filtering based 
on calculated properties of isolated molecules and predicting 
crystal structures of only the molecules with the most promis-
ing properties. With further improvements in methods, coupled 
with increasingly available high-performance computing, CSP 
and property predictions should soon be possible on hundreds 
of candidate molecules on sufficiently short time scales to be 
useful in guiding experiments.

Generative modeling
Generative neural network models (GNNs)
An advantage of sequence-based descriptors, such as SMILES, 
is that recurrent NNs can be trained to generate new descriptor 
sequences corresponding to new molecules. This approach has 
been demonstrated for molecular discovery of drug-like and 
other small organic molecules.55,56

Other NN approaches involve training a generator to sam-
ple latent space for candidate molecules (Figure 2b). Two 
main methods for this are generative adversarial networks 
(GANs)57 and variational autoencoders (VAEs).58 VAEs were 
demonstrated for molecular design by Gómez-Bombarelli 
et al.59 training the model on molecules from the ZINC and 
QM9 data sets. They demonstrated that the autoencoder can be 
jointly trained to predict molecules, along with their properties 
(such as drug-likeness and synthetic accessibility). Similarly, 
GANs have been demonstrated for the discovery of drug-like 
molecules and organic photovoltaic molecules.60,61 A work-
flow can be envisioned of performing CSP on the optimized 
generated molecules to predict their materials properties.

As VAEs and GANs typically work on single molecules, 
CSP could have a similar role here as in HTVS: molecules are 
generated with optimized properties, followed by prediction of 
crystal structures and the resulting properties of the materials. 
Their direct application to the generation of crystal structures 
has been demonstrated for simple inorganic crystals,62,63 but 
is hindered by the challenge of representing three-dimensional 
crystal structures in a continuous latent space. We envisage 
further challenges for organic molecular crystals: because of 
the small energy differences between alternative crystal pack-
ings, minor changes in molecular structure can often lead to 
energy re-rankings of proposed crystal packings and, there-
fore, the experimental observation of completely different 
crystal structures, introducing discontinuities in the relation-
ship between molecule and solid-state properties.

Evolutionary algorithms
Issues with previously discussed methods include the com-
putational cost of training the generator and the large amount 
of training data required to learn from. Evolutionary algo-
rithms (EAs) are one alternative for generating new promising 

molecules (Figure 2c). EAs are an optimization method 
inspired by evolution where members of an initial population 
undergo genetic operations and fitness evaluations to create 
successive generations, with the fitter candidates more likely 
to contribute to the next generation. In the area of molecular 
materials discovery, EAs have been applied to discovery of 
organic semiconductors,44 and porous organic cages,64 where 
the properties to be optimized were charge-carrier mobilities 
and persistent porosity, respectively. EAs can be efficient for 
exploration, requiring calculations on a small fraction of pos-
sible molecules during optimization to the best molecules. 
This opens the possibility for CSP within the fitness evalua-
tion itself, if these methods can be made sufficiently fast for 
application to hundreds of molecules.

Chemical space networks (CSNs) can be used to moni-
tor the progress of chemical space exploration campaigns,65 
where edges of a graph denote “morphing relationships” used 
to generate one molecule from another. One can trace a path 
from each generated molecule back to the initial species, 
where edges contain information on the operations used. CSNs 
are powerful tools for the visualization of molecular sets that 
can reveal potential design rules, as shown by Kunkel et al.66

Regardless of the approach used to generate molecules 
for assessment using CSP, the outcome is a set of molecules, 
each of which has an associated ensemble of predicted crys-
tal structures. Thus, prioritization of molecules must consider 
the relevant properties (e.g., charge-carrier mobility or poros-
ity) of multiple crystal structures for each molecule. Some 
methods have been proposed, considering weighted averaged 
properties over low-energy crystal structures to assess the like-
lihood that a molecule will lead to a crystal structure with the 
desired properties,33,36 along with measures of property varia-
tion among low-energy crystal structures to assess uncertainty 
and risk.44

Synthetic accessibility
The emerging methods for computational exploration of 
chemical space are exciting steps on the path to materials dis-
covery, but experimental realization is vital; this requires fea-
sible synthetic pathways to candidate species. When synthetic 
accessibility (SA) is not considered by a molecular generative 
model, candidates may be too challenging to synthesize in the 
laboratory. Approaches to biasing the generation of molecules 
toward synthetically accessible species have been discussed in 
detail by Gao and Coley.67

Evaluation of SA with a post hoc filter (Figure 2d[i]) is 
the simplest approach: molecular generation is not biased and 
filtering is applied to the generated species after exploration is 
complete. Alternatively, heuristic biases can be used to guide 
molecular generation as part of the optimization function (Fig-
ure 2d[ii]). However, typical rapid scoring functions for SA 
(e.g., Ertl SAScore,68  SYBA69) focus on molecular complex-
ity; structurally complex candidates are not always syntheti-
cally complex, given a reasonable set of starting materials and 
reactions. Instead, computer-aided synthesis planning (CASP) 
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tools such as AiZynthFinder,70 involve prediction of full ret-
rosynthetic pathways to a given molecule. Although the pro-
cess can be computationally expensive, it effectively mimics 
the process that chemists undertake. Information such as the 
number of synthetic steps or the availability and cost of pre-
cursors can be included in the fitness evaluation of candidates.

A third possibility is to directly influence the generation 
of molecules (Figure 2d[iii]). Imposing explicit constraints 
on the building blocks and molecular transformations of a 
chemical space exploration campaign limits the proportion 
of the space that can be assessed, but should produce more 
synthetically accessible candidates. The Synthetically Acces-
sible Virtual Inventory (SAVI)71 works in this style, where 
53 known single-step, two-reactant reactions were applied to 
150,000 readily available precursors, generating a 1.75 billion 
data set of which 1.09 billion compounds scored highly for 
synthetic accessibility.

As with the field of computer generation of molecules as a 
whole, synthetic accessibility prediction methods have focused 
on drug-like targets. These methods might need significant 
modification to account for the different types of molecular 
targets and the scale of synthesis required in materials discov-
ery. Bennett et. al.72 developed a binary classification model 
for the synthetic difficulty of porous organic cage precursors, 
learning the responses from experienced synthetic chemists 
to the question, “Can you make 1 g of the compound in under 
five steps?” Limiting the number of reaction steps works to 
reduce the overall yield loss during synthesis. While this limits 
access to species up to five synthetic steps away from available 
starting materials, their model was able to find precursors for 
promising porous materials with easier synthetic requirements.

Outlook
CSP methods can guide and accelerate materials discovery 
as research in this area shifts from an interesting academic 
challenge to applied studies.8 Although much prior progress 
has built on developments of traditional simulation methods—
algorithms for exploring multidimensional energy landscapes, 
and models for calculating accurate lattice energies—data-
driven, ML methods could lead to further exciting advances. 
These include acceleration of CSP through ML of accurate 
energies, methods for visualizing and interpreting the out-
comes of large CSP data sets, and approaches to chemical 
space exploration to identify the best molecules to explore 
using CSP. Thus, the area will continue to benefit from close 
collaborations across chemistry, mathematics, and computing 
science.
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