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Explainable active learning 
in investigating structure–stability 
of  SmFe 12–α–βXα  Yβ structures 
X,  Y = {Mo, Zn, Co, Cu, Ti, Al, Ga}
                                            Duong-Nguyen     Nguyen,   *        Hiori     Kino   ,  Takashi     Miyake   ,   
and  Hieu-Chi     Dam   *   

 In this article, we propose a query-and-learn active learning approach combined 

with fi rst-principles calculations to rapidly search for potentially stable crystal 

structure via elemental substitution, to clarify their stabilization mechanism, and 

integrate this approach to SmFe  12   -based compounds with ThMn  12    structure, 

which exhibits prominent magnetic properties. The proposed method aims to 

(1) accurately estimate formation energies with limited fi rst-principles calculation 

data, (2) visually monitor the progress of the structure search process, (3) extract 

correlations between structures and formation energies, and (4) recommend the 

most benefi cial candidates of SmFe  12   -substituted structures for the subsequent 

fi rst-principles calculations. The structures of SmFe  12−α−βXαYβ    before optimization 

are prepared by substituting   X,Y    elements—Mo, Zn, Co, Cu, Ti, Al, Ga—in the 

region of   α + β < 4    into iron sites of the original SmFe  12    structures. Using the 

optimized structures and formation energies obtained from the fi rst-principles 

calculations after each active learning cycle, we construct an embedded two-

dimensional space to rationally visualize the set of all the calculated and not-

yet-calculated structures for monitoring the progress of the search. Our machine 

learning model with an embedding representation attained a prediction error for 

the formation energy of   1.25 × 10−2    (eV/atom) and required only one-sixth of the 

training data compared to other learning methods. Moreover, the time required 

to recall most potentially stable structures was nearly four times faster than the 

random search. The formation energy landscape visualized using the embedding 

representation revealed that the substitutions of Al and Ga have the highest 

potential to stabilize the SmFe  12    structure. In particular, SmFe  9   [Al/Ga]  2    Ti showed 

the highest stability among the investigated structures. Finally, by quantitatively 

measuring the change in the structures before and after optimization using OFM 

descriptors, the correlations between the coordination number of substitution 

sites and the resulting formation energy are revealed. The negative-formation-

energy-family SmFe  12−α−β   [Al/Ga]  αYβ    structures show a common trend of increasing 

coordination number at substituted sites, whereas structures with positive 

formation energy show a corresponding decreasing trend. 
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   Impact statement     
Seeking the next generation of high-performance 
magnets is a crucial demand for replacing the 
widely accepted Nd-Fe-B magnets developed in 
the middle 80s. The iron-rich compounds with the 
original tetragonal ThMn12 structure appear as 
the most potential candidates except for the hard 
synthesizing it in nature due to its high energy of 
formation. Stabilization for this material system is 
expected by substituting new elements, but the vast 
number of possible structures makes the exploration 
diffi cult even for theoretical calculations. This article 
proposes an integration of fi rst-principles calcula-
tions and explainable active learning to effi ciently 
explore the crystal structure space of this material 
system. In particular, the explored crystal structure 
space can be rationally visualized, on which the 
relationship between substitution elements, substi-
tution sites, and crystal structure stabilization can be 
intuitively interpreted.   
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         Introduction 
 Finding functional and useful crystals or molecular structures 
is highly challenging, and numerous methods have been pro-
posed.  1 – 6   Even when the crystal structures are limited to those 
for which prototypes are known, the enormous number of pos-
sible substitutions of elements leads to considerable diffi  culty 
in characterizing the function of physical properties associated 
with these structures. Within the vast pool of possible crystals 
or molecular structures, researchers frequently confi ned their 
explorations to a looping search set, formulating hypotheses 
about structures of interest and then verifying these hypoth-
eses by validating physical properties using experiments or 
theoretical calculations. Naively, this approach is closely asso-
ciated with the trial-and-error problem-solving method with 
solution-oriented and problem-specifi c features. 

 Solution-oriented approaches seeking to fi nd optimal solu-
tions invest relatively little eff ort to reveal why and how the 
solution is found (e.g., optimal structures in materials discov-
ery). Besides, problem-specifi c approaches make little eff ort to 
generalize the solution to diff erent problem scopes (e.g., extend-
ing the structure search space). Therefore, these approaches 
inevitably involve limitations when deployed in a screening 
space with wider bounds than the known material structures. 

 In this study, we propose a query-and-learn architecture 
based on active learning to assist researchers in actively moni-
toring the material structure discovery process. The query-and-
learn method aims to (1) accurately estimate physical proper-
ties from the most limited fi rst-principles data, (2) accelerate 
the search for outstanding structures, (3) interpret the structure 
search process, and (4) generalize fi ndings by extracting the 
structure–property correlations. The problem regarding the 
formation mechanism of SmFe  12   -based compounds with the 
ThMn  12    structure is used to demonstrate the eff ectiveness of 
the proposed method. 

 The original structure of iron-rich SmFe  12    compounds were 
fi rst discovered in the late 1980s.  9 – 11   It was expected that they 
would show high saturation magnetization, magnetocrystal-
line anisotropy, and Curie temperature.  12   However, SmFe  12    
and other families of RFe  12    with R denoting a rare earth ele-
ment have not been widely adopted to produce the excellent 
magnets that can be obtained owing to the practical diffi  culty 
of stabilizing the material. Numerous studies have substi-
tuted elements such as Co, Ti, V, Cr, Mo, W, or Ga to obtain 
a stable ThMn  12   -type phase.  13 – 19   Unrestricted from ternary 
compounds, recently researchers have emphasized searching 
for the most potentially stable SmFe  12   -based quaternary com-
pounds using the bi-element substitution method.  20 – 27   Because 
the stabilizing elements are assumed to be substituted at the 
Fe sites, a large supercell of SmFe  12    should be considered as 
a host structure to investigate substitution structures with the 
possibility of diverse elemental substitutions. Therefore, a 
more effi  cient methodology to investigate the structure space, 
where the number of candidates increases combinatorially, is 
urgently required. 

  Figure   1  summarizes key components in the query-and-
learn active learning design in discovering formable SmFe  12
   -based compounds in the ThMn  12    structure. At the beginning 
of the query step, a pool of not-yet-calculated structures is 
created by applying substitution operators on the prototype 
of SmFe  12    . The system queries the most informative candi-
dates to estimate their properties before updating them to the 
training data of machine learning predictors. Canonically, 
the informativeness of queried structures is assumed to show 
the most signifi cant impact to improve the accuracy of the 
prediction model. However, the predictive ability term is 
usually challenging to clarify explicitly because predictive 
evaluations often lack information on the relative position 
among new queried-training–testing data. For example, 
authors in References  28  and  29  reported exploration strat-
egies by assuming out-of-distribution structures as superior 
structures. Therefore, querying then accurately predicting 
structures in the out-of-distribution region are on the top 
demand rather than the task of predicting properties for all 
not-yet-calculated structures in the pool. Furthermore, the 
methods by which the estimator inferred the predicted value 
and the learned function changed by adding queried data are 
often blind to researchers’ monitoring the discovery process. 
In the learn step of the query-and-learn design, we extend 
the prediction model’s interpretability by introducing metric 
learning in transforming the original structure representa-
tion vector into a low-dimensional space, which preserves 
the smoothness of the function of formation energy. Conse-
quently, information in the structure search progress  can be 
actively monitored including prediction accuracy; features 
of the learned model, regions of outstanding structures, or 
inter-correlations between query structures with training 
structures. Studies of active learning designs used in mate-
rials science are shown in References  28  and  30 – 32 , besides 
other machine learning-assisted material designs shown in 
References  33 – 35 .        

 The contributions of this work are summarized as 
follows:

    •  We investigate systematically the formation energy and 
magnetization of 3307 SmFe  12−α−βXαYβ    with   X,Y    as 
Mo, Zn, Co, Cu, Ti, Al, and Ga, limited by   α + β < 4    
using the VASP calculation procedure from OQMD.  36    

   •  We confi rm that SmFe  9   [Al/Ga]  2    Ti structures have the high-
est stability and SmFe  9   Co  3    structures have optimal mag-
netization value.  

   •  We confi rm that the SmFe  12−α−β   [Al/Ga]  αYβ    structures 
show on average negative formation energies and an 
increase in the coordination number at substituted sites 
(Al/Ga), whereas other families showed opposite trends.  

   •  We propose an active learning design with embedding rep-
resentation of orbital-fi eld matrix that achieves an opti-
mal prediction accuracy and recalls outstanding structures 
using limited training data.  
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   •  We extract a relationship of bi-elements substitution to the 
stability, that is, SmFe  12−α−β   [Al/Ga/Ti]  αYβ    is potentially sta-
ble, and SmFe  12−α−β   [Mo]  αYβ    is potentially unstable, which 
can be interpreted using the embedding representation.    

 In the following sections, we will explain the proposed 
approach in detail, and use it for fi nding potentially stable 
SmFe  12   -based compounds. The exploration space for discov-
ering potentially stable SmFe  12−α−βXαYβ    structures is set 
with   X    and   Y    as Mo, Zn, Co, Cu, Ti, Al, and Ga, limited by 
  α + β < 4    , where   α    and   β    are integers. We will demonstrate the 
effi  ciency of the proposed approach, and show how to extract 
information associated with structural stability. Details of the 
data preparation are shown in the “ First-principles calculation ” 
section. The “ Active learning design ” section presents the 
components of the active learning architecture in detail. Last, 
the “ Experiment and discussion ” section shows the perfor-
mance of active learning designs and the results of interpreting 
correlations extracted from the embedding space regarding the 
formation energy. 

   First-principles calculation 
Creation of SmFe 12-α-β  X  α  Y  β  structures   
 We focus on SmFe  12   -based crystalline magnetic materials 
under the formula SmFe  12−α−βXαYβ    with   X    and   Y    as the sub-
stituted elements from Mo, Zn, Co, Cu, Ti, Al, and Ga;   α    and 
  β    are integer numbers of   X    and   Y    compositions, respectively. A 
hypothetical-not-yet-calculated structure is created by substi-
tuting   α    iron sites with the element   X    and   β    iron sites with the 
element   Y    . There are numerous possible hypothetical struc-
tures; hence, we limit our investigation to   α + β < 4    . Owing to 
the symmetrical properties of the iron sites in the host SmFe  12    
structure, new substituted structures were compared with one 
another to remove duplications. We followed the comparison 
procedure proposed by qmpy, a Python application program-
ming interface of OQMD.  36   The internal coordinates of the 
structures were compared by examining all rotations allowed 
by each lattice and searching for rotations and translations to 
map the atoms of the same species into one another within a 
given level of tolerance. Here, any two structures with a per-
cent deviation in lattice parameters and angles smaller than 
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 Figure 1 .      Illustration of the proposed  query-and-learn  active learning design to discover new SmFe  12−α−βXαYβ    structures. Left: start with a 

pool of possible initial structures prepared by substituting different elements in different Fe sites and a small data set of calculated structures. 

The data set contains optimized structures, calculated formation energies, and structural deformations from the initial structures. Middle: from the 

data set of calculated structures, a two-dimensional embedding space is learned by applying metric learning for kernel regression on the orbital-

fi eld matrix  representation  7 ,  8   and the calculated formation energy   �E    of the optimized structures. A regression function estimating the formation 

energy   �E    from the coordinates of substituted structures in the embedding space is learned from the data set of calculated structures to estimate 

the   �E    for the not-yet-optimized structures. The expected formation energy prediction errors are also used to recommend candidates for the 

subsequent fi rst-principles calculation from among the structures that have not yet been calculated. The structure–stability relationship is mined 

as the correlation between local embedding representation and   �E    . Right: structures with high potential to improve the regression function are 

queried to fi rst-principles calculations to optimize the structure, estimate the formation energy   �E    , and evaluate the deformation after structure 

optimization. The calculated data are then updated to the data set of calculated structures.  
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0.1 were considered identical. Furthermore, we applied our 
designed orbital-fi eld matrix (OFM)  7 , 8   to eliminate duplica-
tion. Notably, two structures were considered the same when 
the   L2    norm of the OFM diff erence was less than   10−3   . 

 To initialize the active learning model data set, we sub-
stituted one atom from Mo, Zn, Co, Cu, Ti, Al, and Ga to 
one iron site of the SmFe  12    host structure. Consequently, 
there were 283 structures under the formula SmFe  12−αXα    with 
  α ∈ {1, 2, 3}    . By substituting two elements, we created 3024 
structures using the formula SmFe  12−α−βXαYβ    with   α + β < 4    . 
We used this data set as an initial of not-yet-calculated data set 
  D¬calculated
1

    ; a detailed description is provided in the “ Data set 
notation ” section. To rephrase, this data set is considered a 
screening space/exploration space for the exploration process; 
we retain all these unknown structures as distinct from the 
initial space. Subsequently, all structures were subjected to 
structural optimization through fi rst-principles calculations to 
obtain the optimal structures. 

   Assessment of formation energy of structures 
 The fi rst-principles calculations using density functional theory 
(DFT)  37 , 38   are among the most practical calculation methods 
used in materials science. DFT calculations precisely estimate 
the total energy of the materials, which can be used to determine 
the formation energy of the substituted structure. The formation 
energy of a given structure  s  is defi ned as follows:
     

where   �E[s]    ,  E [ s ], and   E[si]    are the formation energy, total 
energy of structure  s  per formula unit, and simple substance   si    
per atom, respectively. Finally,  N  is the total number of atoms 
in the formula unit of  s . The simple substances were chosen 
as (1)   Im-3m    with Fe and Mo, (2)   R-3m    with Sm and Al, (3) 
  Fm-3m    with Cu and Co, (4)  P 6/ mmm  with Ti, and (5)  P 63/ mmc  
with Zn. Details of the substances chosen are provided in the 
Supplementary Information. A structure whose formation 
energy lies below or lower than zero, that is,   �E ≤ 0    , is a 
potentially formable material in nature, whereas a structure 
associated with   �E > 0    could be considered unstable. For the 
competing phases, the stability of the structure should be dis-
cussed using the hull distance. In this study, we use the forma-
tion energy defi ned in Equation  1  as an index for simplicity. 
The relationship between the experimental material and the 
hull distance at   T = 0K    has been summarized in References 
 39  and  40 . The stability of the magnets at fi nite temperature 
can be found in Reference  41 . We discuss in detail the reli-
ability of this calculation in the Supplementary Information. 

 In this study, we follow the computational settings of 
 OQMD  36 , 42   to estimate the total energy of all structures. The 
calculations were performed using the Vienna  ab initio  simula-
tion package (VASP)  43 , 44   by utilizing the projector-augmented 
wave method  potentials  45 , 46   and the Perdew–Burke–Ernzer-
hof  47   exchange–correlation functional. Pseudopotentials used 

 1�E[s] =
1

N

(E[s] − �
N

i
E[si]),

in this work were collected from POTCAR library version 5.4 
of VASP.  45 , 48 – 51   With the 4f element of Sm, Sm  3+    potentials 
were applied where fi ve electrons in f shell were treated as 
core electrons. Details of potential for other elements is shown 
in the Supplemental Information, with notation as shown in 
Reference  49 . 

 All calculations were spin-polarized with the ferromagnetic 
alignment of the spins. For a given structure, we performed 
three optimization steps following the coarse relax, fi ne relax, 
and standard procedures provided by OQMD. The  k -points per 
reciprocal lattice for these calculation series were selected as 
4000, 6000, and 8000 for coarse relax, fi ne relax, and stand-
ard, respectively. Optimal lattice parameters from the last step 
were used as the initial setting for the next step. We set 520 
eV as the cutoff  energy in the standard calculation step. The 
total energies of the fi nal converged calculations were used to 
estimate the formation energy,   �E   . 

 In addition, the total magnetic moment of these materials 
  μ[s]    was recalculated because we used an open-core approxi-
mation to treat the 4f electrons of Sm, as follows:
     

where   m[si]    is the magnetic moment of atom  i ,   J4fgJ4f [sk ]    is 
the correction term with   gJ

4f
    as the Lande factor, and   J4f     is 

the angular momentum of lanthanide   sk    . Index  i  represents 
all atoms, and index  k  represents all lanthanide atoms in the 
structure. The contribution of the 4f electrons of Sm to the 
magnetization is   JgJ = 0.714    . In this paper, this value is fi nally 
converted to magnetization per formula unit,  M  (T/f.u.). 

    Active learning design 
 There are three essential components in the proposed active 
learning approach, including (1) a pool   D    of not-yet-calcu-
lated structures (non-optimized) and fi rst-principles calculated 
(optimized) structures, (2) an estimator   E    to predict the target 
formation energy, and (3) an acquisition function   α    to estimate 
the structures that should be queried in order of priority to 
enhance the prediction ability of   E   . 

  Data set notation 
 For a given query time  t , we denote   Dcalculated

[1:t]−1
    as the data set 

comprising all the structures queried and optimized by fi rst-
principle calculation at the start of the query time  t . We also 
denote   D¬calculated

t
    as the data set with the remainder of not-

yet-calculated structures at the start of the query time  t . From 
  D¬calculated
t

    , we evaluate data sets   Dbeneficial
t

    such that by add-
ing the calculated results of   Dbeneficial

t
    to   Dcalculated

[1:t]−1
    we can 

improve the prediction ability of the estimator   E    .   Dbeneficial
t

    is 
queried by the acquisition functions described in the “ Acquisi-
tion function ” section (   Dbeneficial

t
⊂ D¬calculated

t
    ). To evaluate 

the ability of the active learning system to search potentially 
stable structures, we also collect   Doutstanding

t
    from   D¬calculated

t
    

as a set of structures that are expected to be stable. Within the 
scope of fi nding the most potentially stable substituted SmFe  12    
families, if the calculated or predicted formation energy   �E    is 

 2μ[s] = �im[si] + �kJ4fgJ4f
[sk ],
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smaller than   −0.1    (eV/atom), the structure is considered poten-
tially stable. At the time  t  of querying process, a predetermined 
number of structures with the lowest   �Epred    predicted by   E    are 
then added to   Doutstanding

t
    for verifi cation using fi rst-principles 

calculations. First-principles calculations are then carried out 
for all the structures in   Dbeneficial

t
    , and the obtained optimized 

structures are added to   Dcalculated
[1:t]−1

    to get   Dcalculated
[1:t]

    . We then 
use   Dcalculated

[1:t]
    as the training data for learning the estimator 

  E    . All the optimized structures confi rmed using fi rst-principles 
calculation with a formation energy lower below the speci-
fi ed limit are considered as potentially stable structures, and 
they are added to data set   Doutstanding

confirmed     , which comprises all 
the potentially stable structures that are confi rmed up to this 
point. The set of all the structures estimated using the estima-
tor   E    as potentially stable structures is denoted by   Doutstanding

estimated     . 
The pseudo-code summarization of the entire query-and-learn 
process is shown in the Supplemental Information. 

 In   Dcalculated
[1:t]

    , we represent calculated structures accumu-
lating up to  t  with representation vectors as   x[1:t]    and formation 
energy as   y[1:t]    . The formation energy of SmFe  12−α−βXαYβ    
structures is described in the “ First-principles calculation ” 
section. For simplicity, we denote   x    as a representation vec-
tor of not-yet-calculated structures, normal subscript denotes 
data point index, bracket subscript   [1:t]    represent for collected 
data up to  t , and superscript represents the index of feature. In 
this study, we applied the  OFM  7 , 8   as a descriptor to represent 
all structures. In OFM representation, the most outer-shell 
electron confi guration is set as a representation of each com-
position site. Details of OFM atomic representation is used in 
Element.electronic_structure in  pymatgen  52   and the summary 
in Table I in the Supplemental Information. All elements in the 
OFM appear in the form of   (ui, uj)    , which counts the average 
coordination number of neighbors   uj    surrounding the center 
  ui    . By representing each atom using outer-shell electron con-
fi guration, each individual matrix element is associated with 
one specifi c coordination number of a pair of elements in a 
given structure. Practical interpretation samples are shown in 
References  53  and  54 . In this work, after removing features 
with zero in all structures, we fi nally required an 88-dimen-
sional orbital-fi eld vector to represent all SmFe  12−α−βXαYβ    
structures. 

   Gaussian process estimator 
 The Gaussian process estimator assumes that the joint distribu-
tion of the observed values   y[1:t]    and predicted values   ̂y    follow 
the Gaussian prior distribution, expressed as follows:
     

With these assumptions, the predicted values for the unknown 
state points follow the conditional distribution calculated by 
updating the prior probability distribution after observing the 
sampled state points. Thus,   ̂y ≈ N (μ(x),σ(x))    with mean   μ    
and variance   σ    are estimated as

 3
[
y[1:t]

ŷ

]
= N

(
0,

[
κ(x[1:t], x[1:t])κ(x[1:t], x)

κ(x, x[1:t])κ(x, x)

])
.

     

     

The mean   μ    and variance   σ    are the main components used to 
construct the acquisition functions, which are introduced in 
the “ Acquisition function ” section. The most conventional ker-
nel, known as the Gaussian kernel   κij    is defi ned as the kernel 
between   xi    and   xj    as follows:
     

where   ε    is a hyperparameter that is tunable to learn the best 
form of the kernel and  d  is conventionally defi ned as the 
Euclidean distance. 

   Metric learning 
 Human intuition regarding the Euclidean distance among 
data points from three-dimensional spaces often does not 
apply to higher-dimensional cases. In high-dimensional 
spaces (e.g., the 88-dimensional orbital-fi eld vector in this 
work), if an enormous number of examples are distributed 
uniformly in a high-dimensional hypercube, most examples 
are closer to the face of the hypercube than to their nearest 
neighbor. If we approximate a hypersphere by a hypercube, 
in high dimensions, almost all the volume of the hypercube is 
outside the hypersphere.  55   Moreover, with increasing dimen-
sionality, the distance to the nearest neighbor approaches 
the distance to the farthest neighbor,  56   which implies that 
the learned weight of the Gaussian process could be mean-
ingless in distinguishing between neighbors and distant data 
points. In the following, we observe that estimators working 
on high-dimensional spaces show more diffi  culty in converg-
ing to obtain suitable prediction accuracy; in other words, it 
is more diffi  cult to estimate both distant and neighbor data 
points. 

 To overcome the curse of high dimensionality as well as 
perform tracking to see how the learned function is created, we 
propose the use of a metric learning algorithm for kernel regres-
sion—MLKR,  57   which optimizes the smoothness of dependence 
between a representation vector and a target property. First, the 
Mahalanobis distance   d(xi, xj)    is defi ned as a linear transforma-
tion of conventional Euclidean distance as follows:
     

where   A    is a linear transformation matrix. The MLKR method 
attempts to optimize the loss function   L    defi ned by the train-
ing error as
     

With the defi ned kernel in Equation  6 , we can iteratively fi nd 
the optimal   A    by   �A    , defi ned as

 4μ(x) = κ(x, x[1:t])κ(x[1:t], x[1:t])
−1
y[1:t],

 5
σ(x) = κ(x[1:t], x)

− κ(x, x[1:t])κ(x[1:t], x[1:t])
−1κ(x[1:t], x).

 6κij := κ(xi, xj) =
1

ε
√
2π

e

−

[
d(x
i
,x
j
)

ε

]
2

,

 7d(xi, xj) = ||A(xi − xj)||
2
,

 8L = �i(yi − ŷi)
2
.
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with   xij := xi − xj    . The matrix   A    is gradually optimized to fi nd 
the best embedding space. Therefore, we obtain a new embed-
ding representation   u := Ax    by linear transformation of the 
original vector   x    . From the defi nition of   L    , the function of the 
target property learned on   u    is optimized to smoothly traverse 
through data points. Moreover,   u    with its low dimension, 2D 
in our setting, is expected to be of benefi t for both prediction 
estimators and human intuition regarding the Euclidean dis-
tance compared with the conventional   x    for 88 dimensions in 
the OFM representation. 

   Embedding function interpretation 
 Maximizing the prediction ability of the machine learning esti-
mator using the most limited training data is the fi rst priority 
of the active learning method. The process of querying new 
labeled data are equivalent with correcting the form of learned 
function with respect to target property. For example, in binary 
classifi cation, asserting data points with maximal variance of 
predicted class labels is equivalent to locating the boundary 
that separates two observed classes. Therefore, as an alterna-
tive advantage, following the correction process leads to bet-
ter insight regarding the phenomena of interest. In this work, 
we introduce a method to localize information on the learned 
function, monitoring its change to improve the querying data 
process in interpreting the phenomena of interest. 

 With the target property as a continuous variable, we con-
sider the learned formation energy function   y = f (u)    , which is 
called interpretable if it is possible to allocate on the represen-
tation space   u    , where the function meets a predefi ned condi-
tion  g . In detail, given a condition  g , the probability distribu-
tion spanning on the embedding space   u    is defi ned as follows:
     

with   p(u|g)    as the probability density at   u    under  g ,   ui    as the 
location of an observed data point  i  (i.e.,   ui = Axi    );  h  as a tun-
ing kernel width. The indicator   �[·]    returns 1 if the condition 
  [·]    is true, and 0 otherwise. In the present work, we consider 
two forms of relevant conditions.
      

      

where   gy(ui)    and   g
x
j (ui)    intuitively represent a region of inter-

est with potentially stable materials and regions spanned by 
structures incorporating the nonzero OFM element   xj    . Then, 
we measure the Bhattacharyya  coeffi  cient  58   between a pair of 
  (gy, gxj )    as
     

 9�A = �
∂L

∂A
= 4�A�i(yi − ŷi)�j(yj − ŷj)κijxijx

�

ij
,

 10p(u|g) =
1

nh

�
n

i=1
�[g(ui)]e

−
|u
i
−u|

h ,

gy(ui)
def= ŷ(ui) < 0,  11

gxj (ui)
def=xj

i > 0,  12

 13BC(gy, gxj
) =

∫ √
p(u|gy)p(u|gxj ) du,

with the integral taken over the space spanned by   u    . The Bhat-
tacharyya coeffi  cient   BC(gy, gxj

)    measures the probability of 
joint occurrence between two conditions   gy    and   g

x
j    . Higher 

BC values indicate a higher possibility to obtain correlation 
between conditions   gy    and   g

x
j    and vice versa; this makes it 

easier to understand the meaning of the BC coeffi  cient in 
identifying overlapping distributions. In the discussion of the 
results provided in the “ Results and discussion ” section, we 
characterize any distribution   p(u|g)    using a single-level con-
tour representation. 

   Acquisition function 
 The acquisition function   �(x)    quantifi es the reward of struc-
tures in each   D¬calculated

t
    that contributes to the prediction 

accuracy of the estimation models, as well as the exploration 
process. Structures   x∗    are queried to   Dbeneficial

t
    to calculate 

their formation energy if their acquisition function values 
reach an optimal value.
     

The majority form of   �    is designed to determine the optimum 
of a fi xed expensive-to-compute function. In this work, we 
examine the two most canonical functions as follows:
     

     

where   μ(x)    and   σ(x)    are the mean and variance of estimated 
values of not-yet-calculated structure   x    , respectively. In rep-
resentation space upon which the estimator is located,   x    is 
either an OFM vector or embedding vector   u = Ax    learned 
by the metric learning method. The fi rst acquisition func-
tion,   �exr    , based on the exploration strategy, assumes not-
yet-calculated structures with higher variance to enhance the 
prediction ability of the estimator (i.e., are benefi cial to the 
machine learning model). This acquisition function does not 
support directly fi nding superior structures because the infor-
mation of the absolute value of the target property has not 
been included. The second acquisition function,   �exp    , based on 
the exploitation strategy, selects not-yet-calculated structures 
with the lowest predicted target values as potential candidates 
to enhance the prediction ability of the estimator. Numerous 
acquisition  functions  31 , 59 – 61   have been introduced to balance 
the exploration and exploitation assumptions. Finally, we also 
examine an acquisition strategy   �uni    that randomly selects 
from the pool of not-yet-calculated structures. 

    Experiment and discussion 
  Experimental setup 
 We designed an experiment to simulate the process of explor-
ing SmFe  12−α−βXαYβ    structures with   X,Y    as Mo, Zn, Co, Cu, 
Ti, Al, and Ga using the proposed query-and-learn method. 
We collected ternary compounds—SmFe  12−αXα    structures 
(   α < 4    ) to use as the initial training data and quaternary com-
pounds SmFe  12−α−βXαYβ    and   α + β < 4    as the initial pool of 

 14x
∗

= argmax�(x).

 15�exr(x) = σ(x),

 16�exp(x) = − μ(x),
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not-yet-calculated data. Consequently, at the initial time of the 
exploration process, all not-yet-calculated structures were cre-
ated using the bi-element substitution method rather than the 
single element substitution method as training structures. We 
summarize the initial training structures in  Figure   2 , which 
shows the primary state of the training data   Dcalculated    with 
SmFe  12−αXα    structures (   α < 4    ). In this fi gure, the structures 
are all referenced to SmFe  12    values of formation energy (0.07 
eV/atom) and magnetization (2.011 T/f.u.). Substituting Ti, 
Al, Co, and Ga regularly creates substituted structures with 
formation energies lower than the reference value of SmFe  12    . 
Among them, Ti and Al show a higher rate in creating nega-
tive formation energy structures than others. With Mo, Zn, 
and Cu, several substituted structures are more stable than the 
host SmFe  12    , whereas the others are not. A part of our calcu-
lations were found to be consistent with other fi rst-principles 
calculation methods such as the Quantum MAterials Simula-
tor (QMAS),  62 – 64   OpenMX,  20   or experimental results.  13 , 65 , 66   
Details of comparisons are shown in the Supplementary 
Information section. Figure 2 in the Supplemental Informa-
tion shows summarization of all SmFe  12−α−βXαYβ    structures 
in the region of   α + β < 4    . All structures were described using 
88-dimensional OFM vectors after eliminating duplicated 
columns.        

 For a time query  t , two batches of structures were selected, 
denoted by   Dbeneficial

t
    and   Doutstanding

t
    . A detailed descrip-

tion of all batches is provided in the “ Data set notation ” sec-
tion. We set 40 as the number of selected structures for each 
  Dbeneficial
t

    and   Doutstanding
t

    . Besides this, to evaluate perfor-
mance of each strategy, we added 20 random structures to 
  Dbeneficial
t

    . Finally, there were 30 query times to collect all 
structures in the screening space. 

    Results and discussion 
  Query-and-learn in monitoring the  SmFe 12-α-β  X  α  Y  β  
structures discovery process 
 We now present the proposed query-and-learn method 
designed to monitor the materials discovery process. The 
relative positions of not-yet-calculated, calculated and que-
ried structures, the form of the formation energy function, and 
generalizing knowledge of the structure–stability mechanism 
of SmFe  12    family are discussed. 

  Figure   3  shows the learned embedding function regarding 
the formation energy of SmFe  12    structures. In this fi gure, we 
show the results of a random querying strategy with the initial 
query   t = 1    on the upper panel and the last query   t = 30    on the 
lower panel. We demonstrate the results of diff erent strategies 
in querying structures in the Supplemental Information. The 
calculated structures are denoted using face and edge color, 
which indicate the portion of each substituted element. For each 
query time  t , non-calculated structures are shown as gray dots. 
White rhombus markers indicate structures that were queried 
at  t  in   Dbeneficial

t
    and white triangle markers indicate estimation 

regarding the most potentially stable structures in   Doutstanding
t

    . 

For each query time, we show in the left and middle column 
of Figure  3  the predicted formation energy   ̂y    and the estimated 
variance   σ(ŷ)    deriving from  f , respectively. Moreover, we show 
in the right of Figure  3  the absolute error   |y − ŷ|    in prediction 
between the ground truth fi rst-principles method   y    and the cal-
culated formation energy Gaussian process regression   ̂y    . In 
each  t , we evaluated the error in predicting formation energy 
for all not-yet-calculated structures in   D¬calculated

t
   .        

 Values of all these attributes   ̂y, σ(ŷ)    and   |y − ŷ|    shown in 
background color with nearest-neighbor interpolation in the 
embedding space. From this fi gure, the learned function of   ̂y    
appears as a smooth function traversing throughout all struc-
tures between negative to positive formation energy regions. 
Although queried structures were randomized well and distrib-
uted throughout the entire structure space using   �uni    , our pre-
dicted potentially stable structures (white triangles) were also 
accurately allocated in the most negative formation energy 
region. Moreover, in   t = 1    , not-yet-calculated structures using 
the bi-element substituted method are uniformly dispersed 
throughout calculated structures with the single substituted 
element method. 

 Next, we investigated the learned formation energy func-
tion on embedding space via extremum interpretation.  Figure  
 4  shows the formation energy landscape generated by embed-
ding representation in the fi rst and the last query time. Aiming 
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to stabilize the SmFe  12    structure, the local minima of the for-
mation energy function is defi ned as our region of interest, 
which contains the most negative formation energy structures 
in   Doutstanding

estimated     . This region is defi ned as the distribution spanned 
by   p(u|gy)    in the “ Embedding function interpretation ” section. 
In Figure  4 ,   p(u|gy)    distributions are shown in red contours. In 
the following discussion, we refer to these distributions as the 
target contours for simplicity. By contrast, distributions of struc-
tures with nonzero OFM features defi ned as   p(u|g

x
j )    are shown 

in the embedding space via other contour lines. Intuitively, 
higher overlapping contours show a higher correlation between 
these properties. In the middle and the right of Figure  4 , we show 
the projected OFM features   p(u|g

(p
1
,M )

)    and   p(u|g
(d
5
,M )

)    , 
with  M  as   s1, s2, p1, d2, d5, d6    and   d7    , respectively. OFM fea-
tures   (d5,M )    show the average coordination number of sites 
owning  M  atomic representation surrounding Mo. Similarly, 

  (p1,M )    shows the average coordination number of atoms with 
 M  representation surrounding Al or Ga because these two ele-
ments share   p1    in their most outer-shell electron confi guration. 
In the last query time,   t = 30    or equivalently after collecting 
all calculated structures, one might recognize that the region 
of negative formation energy mostly overlaps with all   (p1,M )    
contours—regions spanning Al- and Ga-substituted structures. 
Among them, the   (p1, d2)    contour shows the distribution of 
SmFe  12−α−β   [Al/Ga]  α   Ti  β    structures within the most negative 
formation energy region. In the end of labeling all structures, 
Figure 2 in the Supplemental Information shows SmFe  9   [Al/
Ga]  2    Ti structures as the most negative formation energy. By 
contrast, structures with Mo-substituted elements show distanc-
ing from the potentially stable regions. Notably, these correla-
tions between the substituted element and corresponding stabil-
ity could be found at the beginning of the querying process.        
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  Figure   5  shows the dependence of normalized   BC(gy, gxj
)    

on query time  t  in the active learning process for all OFM 
features. OFM features show a matrix with blocks of similar 
center atom representation; each block is presented keeping a 
similar order of neighbor representation. From Figure  5 , struc-
tures with   (s1,M)    and   (d5,M)    features (i.e., Cu- and Mo-substi-
tuted structures) showed the lowest BC scores for all  t . In other 
words, these structures were not located within the region of 
negative formation energy. By contrast,   BC(gy, g(p1,M)

)    always 
remained at the highest score, or as we showed previously 
in the learned embedding space, these SmFe  12−α−β   [Al/Ga]  α
   B  β    structures were mostly associated with negative forma-
tion energy. We show another example in interpreting the 
substituted eff ect using   BC(gy, g

(d
2
,M)

)    or Ti-substituted struc-
tures. Structures excluding   (d2, s1)    and   (d2, d5)    , that is, except 
SmFe  12−α−β   [Mo/Cu]  α   Ti  β    , showed high possibility of negative 
formation energy. All these correlations were established by 
analyzing all queried data shown in the Supplementary infor-
mation. Interestingly, these correlations could be performed 
very early, even at the beginning of the exploration process. 
In summary, the BC score on a learned embedding space is 
potentially useful in understanding the form of the formation 

energy function and determining where interesting information 
is located without labeling all data.        

   Prediction ability of active learning designs 
 We examine the prediction accuracies of different active 
learning designs. For any query time  t , we measured the mean 
absolute error (MAE) between the predicted and observed 
formation energies of structures in   D¬calculated

t
    . Because dif-

ferent structure querying strategies update their training data 
diff erently, not-yet-calculated structures in   D¬calculated

t
    also 

diff ered among experiments. Therefore, MAE measured on 
  D¬calculated
t

    can be approximated as the natural prediction loss 
of our designed system.  Figure   6 a shows the MAE results 
of active learning designs drawn from possible combinations 
of representation methods, estimators, and querying strate-
gies. In this fi gure, with three acquisition functions, including 
uniform, exploration, and exploitation functions, experiments 
using the OFM representation are denoted in cyan, green, and 
blue, respectively. By contrast, active learning designs based 
on embedding representations are shown in yellow, orange, 
and red, respectively, with these three acquisition functions. 
Finally, we independently evaluate each of the six active 
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learning designs ten times with diff erent initial random struc-
tures in order to evaluate the prediction accuracies.        

 The diff erence between active learning designs primarily 
depended on the nature of the representation method. At   t = 1    , 
all active learning systems obtained MAE at   2.5× 10

−2    (eV/
atom). Overall, MAEs gradually decreased with increasing 
 t  for all the active learning systems. However, the perfor-
mance of designs with high-dimensional OFM representation 
showed gradual linear improvement by adding new queried 
structures. This could be explained as new queried data points 
that are added using this strategy help the estimator forecast 
their neighbor only, rather than correcting the estimator learn-
ing on the entire dataspace. The MAE curve with the highest 
fl uctuation belonged to a system using exploitation querying 
strategies. In other words, adding excessively biased data (e.g., 
low energy structures), as in the exploitation strategy, into the 
prediction model misguided the model to estimate other struc-
tures and directly reduced its prediction ability. By contrast, 
the lowest-bounded MAE curve always belonged to a design 
that utilized a uniform sampling strategy operating on the 
embedding representation. By querying up to   t = 5    , one-sixth 
of all not-yet-calculated structures, the design using the uni-
form querying strategy on embedding space quickly reached 
the optimal MAE at   1.25× 10

−2    (eV/atom) and then remained 
at this performance level for the remainder of the experiment. 
The model outperforms others because the Mahalanobis metric 

learned using MLKR preserving both Euclidean distance and 
following the direction of the target  function  57   helps to correct 
the form of the estimator locally and globally. Thus, given sev-
eral queried data points uniformly sampling on the embedding 
space, we could improve these two aspects simultaneously. 

 Next, we evaluated active learning designs in recalling the 
most potentially stable structures. We heuristically defi ned 
  −0.1    (eV/atom) as the upper-limit formation energy for the 
set of most potentially stable structures. Consequently, the 
ground truth of the   Doutstanding

confirmed     set contained 74 structures 
incorporated with formation energy lower than   −0.1    (eV/atom) 
or equivalent with 2.2% total not-yet-calculated candidates. 
Figure  6 b shows the recall rate results for all active learning 
designs. The colors and patterns denoted for diff erent active 
learning designs are synchronized with the MAE results, as 
shown in Figure  6 a. This fi gure shows that all active learning 
designs recalled all   Doutstanding

confirmed     structures without querying 
all unlabeled structures. The worst recall performance of the 
active learning design by an exploration querying strategy 
and OFM representation required 14/30 query steps to recall 
all these potentially stable structures. By contrast, methods 
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  BC(gy ,gxj )    between the distribution of expected outstanding 

structures   p(u|gy)    and distribution of structures owing nonzero 

  xj    OFM element,   p(u|gxj )    . The lowest   BC(gy ,g
(s1,M)

)    values 

indicate SmFe  12−α−β   [Mo/Cu]  αYβ    structures higher distanc-

ing on negative formation energy region. In contrast, high 

  BC(gy ,g
(p1,M)

)    values indicate SmFe  12−α−β   [Al/Ga]  αYβ    struc-

tures high possibility to form in nature. This information is found 

from the beginning of the structure query process.  
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representation space (cyan, green, and blue) and embedded met-

ric learning space (yellow, orange, and red) with different acquisi-

tion functions   α    . Exploration, exploitation, and uniform acquisition 

strategies are denoted by   �exr,�exp   , and   �uni    , respectively. (a) 

Dependence of the mean absolute error in predicting structures 

in   D¬calculated
t     on querying time  t . (b) Recall rate in querying 

the most potentially stable structure   D
outstanding
t     depending on 

querying time  t .  
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with the best recall performance required 8/30 query steps. In 
the naivest case, when we randomly selected a structure from 
an unlabeled structure data set and avoided using any struc-
tures to update all active learning components, we needed to 
query all not-yet-calculated structures to recall all   Doutstanding

confirmed     
structures. Equivalently, the rate of recall of the top 2.2% of 
structures with the lowest formation energy was enhanced 
between 2.1 and 3.7 times compared with the basic random 
selection method. We also report the results of using active 
learning with diff erent initialization training data in Supple-
mental Information Materials. 

   Structure–stability relationship 
 In this section, we discuss the structure–stability relationship 
of this SmFe  12    family in detail. We investigate how diff erent 
substituted elements distorted the host structure by measur-
ing displacement of the OFM elements before and after per-
forming a structure optimization step based on calculation 
from fi rst-principles. The displacement   �(·)    was measured as 
  �x = xopt − xorg    with   xopt    ;   xorg    shows the value of an OFM 
element of calculated and initial structure, respectively. In 
 Figure   7 , we show correlations between formation energy 
and displacement OFM elements   (d6,M )    in the upper panel 
and   (p1,M )    in the lower panel, where  M  refers to   s2, s1, . . .    
Because   d6    represents the Fe element and   p1    represents the Al/
Ga elements in the OFM, we focused on analyzing the change 
in the coordination number of Fe site and Al/Ga sites, respec-
tively. Correlations between formation energy and other OFM 
elements are shown in the Supplementary Information. Here, 
a violin plot with blue (yellow) show the displacements of 
OFM elements with the mean negative (positive) of the full 
displacement, respectively. By contrast, the formation energy 
of the corresponding structures is shown in red (green) for the 
negative (positive) mean of the formation energy.        

 In the upper panel with   (d6,M )    , structures owning   (d6, p1)    
and   (d6, d2)    , that is, Al/Ga and Ti-substituted structures, 
respectively, show on average negative formation energies, 
indicating a trend of potentially stable structures. Further, 
the distribution of structures owning   (d6, d2)    show on aver-
age a reduction in coordination number,   (d6, p1)    structures 
appear with a distribution of a positive mean value. As an 
interpretation, in SmFe  12−α−βXαYβ   -substituted structures, 
only Al/Ga-substituted sites come close to Fe sites on aver-
age (i.e., increasing coordination number). In the lower panel 
with   (p1,M)    , we confi rmed again that in all Al/Ga-substituted 
families, there is a tendency of increasing coordination number 
of neighbors surrounding all   p1   -like OFM element (yellow vio-
lin distribution). Moreover, almost all structures with   (p1,M )    
exhibited a mean negative formation energy. By contrast, as 
shown in the Supplementary information section, structures 
with other OFM elements all showed decreasing trends of 
the average coordination number and mean positive forma-
tion energy except   (d2,M )   -Ti element. The lowest mean value 
of formation energy belonged to   (p1, d2)    structures (i.e., the 
SmFe  12−α−β   [Al/Ga]  α   Ti  β    family group). 

 Ideal structures in the SmFe  12    family should meet one more 
qualifi cation about maximizing the magnetization of the sub-
stituted one. In the Supplemental Information, the most poten-
tial structures are mixed between Al, Co, and Cu-substituted 
structures that show optimal stability and magnetization. 
In  Figure   8 , we show the non-optimized original structure 
SmFe  12    compared to other Al, Co, and Cu-substituted struc-
tures after the optimization process. Three structures, SmFe  10
   Al  2    , SmFe  10   CoAl, and SmFe  10   CuCo are shown with formation 
energy lower than SmFe  12    and sorted in increasing value of 
formation energy, respectively. Overall, these structures are 
shown with smaller sizes than the original structure SmFe  12    
and the decreasing distance at the Fe-8f site to neighbors 
refl ects an increasing coordination number at this Fe site. In 
detail, structures with two Al-substituted elements, SmFe  10   Al  2    
structure show the highest shrinkage level to the lattice param-
eter on the  x-  and  y -axis while slightly expanding the lattice 
parameter on the  z -axis. Substituting one Al and one Co site, 
SmFe  10   CoAl structure obtains a smaller volume compared to 
the original but slightly larger than SmFe  10   Al  2    . The largest 
volume among these three substituted structures belongs to 
SmFe  10   CuCo. In other words, Cu- and Co-substituted sites 
cannot distort other Fe and Sm sites. This evidence highlights 
the diff erence between the increased coordination number of 
Al-substituted structures and others.        
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 Figure 7 .      Structure deformation–formation energy relationship of 

SmFe  12−α−βXαYβ    structures. Displacement of orbital-fi eld matrix 

element   x    of SmFe  12−α−βXαYβ    structures after geometrical relax-

ation (i.e.,   �x = xopt − xorg    ) represents the change of coordina-

tion number. For structures with a given   x    , the distribution of   �x    

with negative (positive) mean values are shown in blue (yellow), 

respectively, whereas distribution of formation energies are in red 

(green) color with respect to mean negative (positive) energy.  
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    Conclusion 
 In this study, we have introduced a query-and-learn active 
learning approach in exploring SmFe  12−α−βXαYβ    structures 
with   X,Y    as Mo, Zn, Co, Cu, Ti, Al, Ga, and   α + β < 4    . 
Our proposed method was developed to accelerate the rate 
of discovery of potentially stable structures and generalize 
our understanding of the stability mechanism of this fam-
ily. 3307 SmFe  12−α−βXαYβ    structures with formation energy 
and magnetism calculated using fi rst-principles calculations 
were used to form the exploration space. MAE of active 
learning designs showed the lowest values at   1.25× 10

−2    
(eV/atom)—3.7  %    of the range calculated from fi rst-princi-
ples by utilizing the embedded descriptor originating from 
the OFM. Moreover, the design reached this irreducible 
error approximately six times faster than the alternatives 

compared. In the experiment aiming to fi nd the most poten-
tially stable structures, all active learning designs presented 
a successful recall rate 2.1–3.7 times faster than the random 
search strategy. Finally, we interpreted the formation energy 
landscape learned by embedding representation via smooth 
correlations between distributions of the local extreme and 
diff erent coordination number information. We discovered 
that structures with substitution of non-transition-metal ele-
ments of like Al and Ga, associated with Ti, in particular 
SmFe  9   [Al/Ga]  2   Ti, had the highest possibility of stabilizing 
the SmFe  12    structure. Moreover, the mean negative forma-
tion energy SmFe  12−α−β   [Al/Ga]  αYβ    structures exhibited 
an increasing trend of neighbor atoms surrounding Al/Ga-
substituted sites on average, whereas other families showed 
opposite trends.      
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