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The materials tetrahedron 
has a “digital twin”
Michael E. Deagen  *, L. Catherine Brinson, Richard A. Vaia, 
and Linda S. Schadler*

For over three decades, the materials tetrahedron has captured the essence of 
materials science and engineering with its interdependent elements of processing, 
structure, properties, and performance. As modern computational and statistical 
techniques usher in a new paradigm of data-intensive scientific research and 
discovery, the rate at which the field of materials science and engineering capitalizes 
on these advances hinges on collaboration between numerous stakeholders. Here, 
we provide a contemporary extension to the classic materials tetrahedron with 
a dual framework—adapted from the concept of a “digital twin”—which offers a 
nexus joining materials science and information science. We believe this high-
level framework, the materials–information twin tetrahedra (MITT), will provide 
stakeholders with a platform to contextualize, translate, and direct efforts in the 
pursuit of propelling materials science and technology forward.

Introduction and background
Human technological evolution and inno-
vations in materials share an interwoven 
history punctuated by advances in tools, 
instrumentation, and the exchange of 
knowledge. Today, as digitization and 
automation drive down the marginal cost 
of collecting, archiving, and sharing data, 
methods for extracting value from this 
abundance of digital information have 
proliferated. With a new paradigm of data-
intensive scientific research and discovery 
underway,1 the field of materials science 
and engineering aims to drastically reduce 
the overall time and cost to discover and 
develop new materials through efforts such 
as the Materials Genome Initiative.2 While 
an ecosystem of data repositories and e-col-
laboration platforms offers numerous tools 
and resources around materials data,3–7 
facilitating interoperability and integration 

into the typical materials research work-
flow remains an ongoing challenge. To 
broaden the cross-fertilization of solutions 
across materials sub-fields and information 
technologies, a shared conceptual frame-
work would enable experts in various sub-
disciplines to leverage, and contribute to, 
their combined abilities in order to solve 
challenges in an integrated, interoperable, 
open architecture. Fundamentally, we pos-
tulate that such a foundational framework 
lies within the complex interplay between 
materials and information science. We pro-
pose that an extension of the classic mate-
rials tetrahedron framework—inspired by 
the notion of a “digital twin”—provides 
such a scaffold as the materials–informa-
tion twin tetrahedra (MITT) (Figure 1). 
Here, we deliver a perspective on the con-
vergence of materials and information sci-
ence through the lens of this new MITT 
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Impact Article

Impact statement 
This article provides a contemporary reimagination 
of the classic materials tetrahedron by augmenting 
it with parallel notions from information science. 
Since the materials tetrahedron (processing, struc-
ture, properties, performance) made its first debut, 
advances in computational and informational tools 
have transformed the landscape and outlook of 
materials research and development. Drawing inspi-
ration from the notion of a digital twin, the materi-
als–information twin tetrahedra (MITT) framework 
captures a holistic perspective of materials science 
and engineering in the presence of modern digital 
tools and infrastructures. This high-level framework 
incorporates sustainability and FAIR data principles 
(Findable, Accessible, Interoperable, Reusable)—fac-
tors that recognize how systems impact and interact 
with other systems—in addition to the data and 
information flows that play a pivotal role in knowl-
edge generation. The goal of the MITT framework is 
to give stakeholders from academia, industry, and 
government a communication tool for focusing efforts 
around the design, development, and deployment of 
materials in the years ahead.
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framework, and in this perspective article we highlight 
select works and recent reviews as illustrative examples in 
this emerging and evolving space.

Since its inception, the materials tetrahedron has remained 
an enduring visual icon that illustrates the interdependence of 
key concepts in materials science and engineering. Published in 
1989 by the National Research Council in its report on materi-
als science and engineering for the 1990s,8 the symbolic poly-
hedron depicts four foundational elements of materials science 
and engineering while emphasizing the edges that connect them. 
These four elements—processing, structure, properties, and 
performance—have also been arranged linearly as a three-link 
chain to highlight the forward “cause and effect” progression 

from processing to performance as well as its inverse “goal/
means” counterpart.9,10 In 2008, a depiction of the materials 
tetrahedron with characterization as an interstitial element 
at its center was added to the public domain by means of 
Wikipedia.11 In 2019, Donahue made the case for append-
ing the dimension of sustainability/criticality to the materi-
als tetrahedron for a holistic perspective on the roles that 
materials play in the anthroposphere.12 Donahue’s reim-
agination of the materials tetrahedron paradigm extends 
beyond individual use cases of materials by recognizing 
factors such as raw material supply risk, price volatility, and 
the environmental implications of materials in their full life 
cycle.┼ At its essence, sustainability/criticality addresses 
the extent to which our materials systems, throughout their 
life cycle, impact and interact with other systems.

Over the past two decades, a concept has emerged 
from the manufacturing community that elegantly bridges 
the gap between physical systems and our virtual repre-
sentations of them. Originally described by Grieves in the 
early 2000s as product life cycle management (PLM),13 the 
term “digital twin” was coined by Vickers et al. in 2010 in 
a NASA technology area roadmap for materials, structures, 

Materials – Information Twin Tetrahedra (MITT)
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Figure 1.   Materials–information twin tetrahedra (MITT) framework translates foundational concepts in materials science and engi-
neering (from the materials tetrahedron) to parallel notions in information science (the “information tetrahedron”), highlighting the 
data and information flows that form a closed-loop for knowledge creation around the discovery, design, development, and deploy-
ment of materials.
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Figure 2.   A digital twin comprises a virtual representation of a real 
system, linked by continual data and information flows throughout the 
system’s life cycle.

┼While Donahue replaces the materials tetrahedron with a square 
pyramid depiction, we have taken the artistic license to represent 
the aspect of Sustainability/Criticality as an encapsulating sphere 
to lend a “global” visual cue and preserve the recognizability of the 
classic materials tetrahedron.
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mechanical systems and manufacturing.14 The digital twin—
a virtual representation of a system that exists alongside 
its physical counterpart throughout its life cycle—includes 
(1) the sensor-equipped physical object or system itself; (2) 
a high-fidelity virtual representation, including historical 
data and predicted future performance; and (3) the data and 
information flows between the physical world and the digital 
twin, often through multi-modal sensing and probabilistic 
modeling at the instance and aggregate level (Figure 2).15,16 
The value proposition of a digital twin stems from its ability 
to manage and apply heterogeneous information, and the 
concept has gained significant traction in recent years as 
evidenced by citations in the literature.17,18 Manifestations 
of digital twins have appeared in manufacturing,19–21 aero-
space,15,22 healthcare,23–25 transportation,26–29 and the built 
environment including utilities and smart cities.30–35 The 
concept will continue to gain traction as stakeholders adopt 
common data standards and models, improve data shar-
ing practices, develop products and services around digital 
twins, and establish forums for experts in various disciplines 
(including materials science) to meet and collaborate.36

When we refer to a “digital twin” for the materials tet-
rahedron—a purely conceptual framework, as opposed to a 
physical system— we describe its interdependent counter-
part in information science, hereby referred to as the “infor-
mation tetrahedron.” Given the data and information flows 
that connect these conceptual frameworks and provide 
the basis for knowledge creation, the digital twin analogy 
remains apropos. For reference, the terms data, information, 
and knowledge represent levels in the data-information-
knowledge-wisdom (DIKW) hierarchy.37

In this perspective, we offer the MITT framework as a 
means to contextualize the interdisciplinary efforts across 
various stakeholders in furtherance of a robust infrastructure 
and workforce around materials data. In the following sec-
tions, we articulate the meta-framework underpinning MITT, 
describe the components of the information tetrahedron, and 
illustrate one possible application of the dual framework 
with existing and upcoming technologies. We believe that 
students, practitioners, educators, and policymakers armed 
with this framework can apply modern and future digital 
information capabilities to address grand materials chal-
lenges with the high-level perspective that has guided and 
benefited the field of materials science and engineering for 
more than three decades.

Translating the materials tetrahedron 
to information science
In a prototypical implementation of the MITT framework, 
materials systems provide data to information systems, which 
in turn generate information that guide the further improve-
ment of these materials systems. Iteratively, this cycle aims for 
knowledge creation around discovery, design, development, 
and deployment of materials systems. Humans necessarily 
remain in the loop in terms of strategic guidance and imple-
mentation of this process, but the reciprocal exchange of data 
and information should take advantage of available automated 
workflows.

To define the information tetrahedron, we identified six 
dimensions underpinning the materials tetrahedron and trans-
lated these dimensions to notions from information science 
(Figure 3). These dimensions—activities, arrangement, 

Materials Science
1) Processing

Procedures for synthesizing, forming, or
assembling materials.

Chemical make-up, short- and long-range
order, microstructures, defects, etc.

Observable/measurable characteristics
used to describe a material.

Capability of a materials system to meet
a given set of application requirements.

Standard methodologies for describing
and quantifying materials behavior.

Holistic view of role and life cycle of
materials within the anthroposphere.

2) Structure/composition

3) Properties

4) Performance (Application)

5) Characterization (Standards)

6) Sustainability/criticality

1) Methods/workflows
Procedures for acquiring, integrating, or
analyzing digitized information.

Data structures, ontologies, spatiotemporal
depictions, models, data visualizations, etc.

Throughput, accuracy, uncertainty, complexity,
bias, software and hardware requirements, etc.

Capability of a chosen stack of digital tools to
meet a set of requirements for deployment.

Standard methodologies for comparing different
systems across community-driven benchmarks.

Set of guiding principles for data management
(Findable, Accessible, Interoperable, Reusable).

2) Representations

3) Attributes

4) Efficacy (Deployment)

5) Evaluation (Benchmarks)

6) FAIR data principles

Information Science

4) Applicability

5) Validation

2) Arrangement

6) Viability
Meta-Framework

Activities
1) Qualities

3)

Figure 3.   An underlying meta-framework captures the elements of the (extended) materials tetrahedron and relates these elements to 
counterparts in information science.
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qualities, applicability, validation, and viability—form a gen-
eralizable meta-framework at the heart of the proposed MITT 
framework.

The meta-framework classifies the various aspects of these 
frameworks broadly, such that the specification and imple-
mentation of instantiations of this meta-framework may fol-
low the best practices of their respective fields. Thus, the 
meta-framework enables both the materials tetrahedron and 
information tetrahedron to describe individual aspects of each 
domain without relying on one-to-one mappings. For example, 
the dimension “Arrangement” refers to materials structure and 
composition in the materials domain and to digital representa-
tions including data and metadata structures in the informa-
tion domain. The generalizability of this meta-framework may 
enable the tetrahedron concept to percolate into other domains, 
providing a useful organizational and translational tool. In the 
following section, we expound further on the components of 
the information tetrahedron of the MITT framework, focusing 
on recent progress in materials data and informatics.

Components of the information tetrahedron
Strictly speaking, a digital twin represents a virtual instantia-
tion of a physical system. To translate the essence of a “digi-
tal twin” to the materials tetrahedron—a purely conceptual 
framework to begin with—we describe the MITT framework 
as a paradigm that considers both materials science and infor-
mation science side-by-side, connected by data and informa-
tion flows. Development of materials data and informatics 
systems involves many complex tradeoffs and nuances that 
accompany the various strategic and design decisions made 
by software architects and engineers.38 Striving for a general-
purpose digital information system while managing scope 
to stay within development constraints mirrors many of the 
challenges faced by materials engineers in designing or opti-
mizing materials systems. Table I summarizes the following 
paragraphs, which relate the information science components 

of the MITT paradigm to recent progress in materials data 
and informatics.

Methods/workflows
Acceleration of materials discovery and development presup-
poses the accompanying digital methods and workflows for 
collecting, curating, integrating, and analyzing data. Methods 
and workflows may include algorithms for achieving “inverse 
design” of processing parameters given a set of performance 
goals,40 multiphysics simulations,41 high-throughput meth-
ods that automate or semi-automate experimentation and data 
collection,42–44 interpretable machine learning methods,45,46 
retrieval and management of large data sets facilitated by 
open-source toolkits,47–49 methods for bridging length scales 
and imaging modalities via correlative characterization,50 or 
mixed-initiative user interfaces that leverage automation to 
support better decision-making through human–computer 
interaction.51 When applying the MITT paradigm to a materi-
als data and informatics, one should consider how these meth-
ods and workflows combine to transform fragmented data into 
actionable information.

Representations
As symbolic representations of information, data derive 
their utility only when placed within broader models or 
contexts that impart meaning. In the absence of a preexist-
ing model of the world, machines do not have the innate 
capacity to interpret data without some form of metadata 
(“data describing the data”), necessitating efforts from 
the community to develop and adopt common standards 
around digital representations for materials data and meta-
data. These representations may include: data structures 
for atomic or molecular arrangements;52,53 pixelated, vox-
elated, or graph-based spatiotemporal depictions at vari-
ous hierarchical scales; quantitative physical descriptors;54 
schemas, taxonomies, and controlled vocabularies;55,56 or 

Table I.   Contextualized examples, including recent progress in materials data and informatics, related to each element of the information 
tetrahedron of the MITT framework.

Activities Arrangement Qualities Applicability Validation Viability

Methods/ Workflows Representations Attributes Efficacy Evaluation FAIR Data Principles39

Inverse design40

Multiphysics 
simulations41

Autonomous 
experiments42–44

Interpretable ML 
methods45,46

Open-source toolkits47–49

Correlative 
characterization50

Mixed-initiative user 
interaction51

Atomic or molecular data 
structures52,53

Spatiotemporal depic-
tions (pixelated, vox-
elated, graph-based)

Physical descriptors54

Schemas, tax-
onomies, controlled 
vocabularies55,56

Workflow 
representations57

Ontologies58

Low-dimensional  
embeddings

Data visualizations

Complexity
Throughput
Accuracy
Bias
Uncertainty
Usability
Software dependencies
Hardware requirements
Cost

Clearly defined scope and 
requirements

Extent to which system 
meets requirements

Suitability of system for 
the task at hand

Time and cost savings 
over alternatives

Benchmark data sets and 
tasks59,60

Objective tests and 
measures for com-
parison

Metrics for data “FAIR-
ness”

UI/UX assessment
Validation of predictions

Findable
Accessible
Interoperable
Reusable
AI-ready61

Sustained life cycle 
efficacy



The materials tetrahedron has a “digital twin”

MRS BULLETIN  •  VOLUME 47  •  APRIL 2022  •  mrs.org/bulletin               383

standardized representations of materials processing or com-
putational workflows.57 Metadata structures include ontolo-
gies,58 which comprise machine-interpretable networks of 
linked concepts, as well as structured representations of data 
provenance. Data that are inherently uninterpretable (e.g., a 
trained neural network model) may have metadata describ-
ing their inputs and outputs or low-dimensional embeddings 
serving as representations. To display collected or analyzed 
data, advances in interactive data visualization can provide 
an interface between these systems and human decision-
makers. When applying the MITT framework, one should 
carefully consider (meta)data representations as they relate 
to deployment requirements, with a preference for repre-
sentations aligned with the FAIR data principles (findable, 
accessible, interoperable, reusable).39

Attributes
The attributes of a digital information system should provide 
an objective view of the system and its standing among com-
parable systems. These attributes include technical specifica-
tions of the software and hardware, as well as software librar-
ies or data corpora that these systems rely on. Complexity, 
throughput, accuracy, bias, uncertainty, usability, and other 
relevant system attributes should be accompanied by com-
munity-driven benchmarks that enable researchers to objec-
tively measure them so that system architects and end users 
can select the best stack of digital tools given their budget and 
scope. In the context of MITT, attributes reflect the various 
tradeoffs of particular methods, workflows, and representa-
tions at the individual and systems level.

Efficacy
The efficacy of an information system rests on its architecture, 
integration, and environment in the context of a given deploy-
ment setting. In addition to the system’s internal ability to 
process and analyze data, efficacy dictates how well the system 
can interface with the real world by incorporating new data 
from external signals and presenting actionable information to 
decision-makers. Tradeoffs between system components must 
be considered when optimizing system efficacy.

Evaluation
Community-driven standards and procedures for objective 
validation of digital information systems lie at the heart of 
the information tetrahedron. Benchmark data sets and tasks 
facilitate consistent and systematic evaluation of the myriad 
digital information methods and systems that will emerge in 
the coming years.59,60 Evaluation protocols and benchmarks 
for FAIR data management as well as human usability should 
be considered among these assessments.

FAIR data principles
Conversations around the life cycle and impact of data and 
information remain pivotal in order to ensure continual growth 

and reuse of information resources. The four guiding prin-
ciples for data management and stewardship that comprise 
FAIR (findable, accessible, interoperable, reusable) recognize 
the need among stakeholders in academia, industry, funding 
agencies, and publishers for an infrastructure that maintains 
the value of data beyond initial publication.39 Ongoing, 
community-wide commitments to FAIR data and metadata 
standards aim to reduce the labor-intensive data pre-process-
ing and cleaning steps that historically kick off data science 
projects, making data “AI-ready.”61 Some data may remain 
proprietary or confidential, but any data advertised as “open” 
should contain adequate metadata. In addition to mandates or 
incentive structures,62 the prevalence of FAIR data depends 
on automated methods and workflows that enable researchers 
to seamlessly manage and share their data. As a supplement 
to the FAIR principles for data, materials data and informat-
ics platforms should incorporate configuration management 
activities to maintain continued efficacy and integrity through-
out the projected life cycle of the platform. When consider-
ing an information system’s viability, one must also take into 
account internal factors such as reliance on specific software 
and hardware infrastructures in addition to external factors 
such as funding agency mandates and new expectations driven 
by transformations in data culture.

Highlighting recent progress and reviews
The topics of informatics, data science, and machine learn-
ing have appeared with increasing prevalence in materials-
related works in the academic literature—most notably in 
the past decade—as reflected in the quantity of publications 
and citations (Figure 4). This exponential growth persists 
even when normalized by the steady annual growth of all 
materials-related publications. The progression shows the 
extent to which the field of materials science has evolved in 
the three decades since the initial conception of the materi-
als tetrahedron in 1989 and the impact of integration and 
digitization on the landscape of materials research and 
development. For example, the availability and capability 
of computational tools initiated the discipline of integrated 
computational materials engineering (ICME),63 combinato-
rial materials synthesis and rapid characterization techniques 
led to high-throughput experimental (HTE) methodolo-
gies,64 and model-based concurrent design, development, 
and deployment for materials and systems form the basis of 
NASA’s recent “Vision 2040” roadmap.65

Systems for autonomous experimentation (AE) exemplify 
the closed-loop coupling of materials science and informa-
tion science as laid out in a recent community perspective 
article by Stach et al.66 Owing to advances in mechanical 
automation and robotics, rote tasks that often consume 
researcher time and effort can be delegated to machines that 
prepare, characterize, and test samples. Aided by machine 
learning, collected data inform future hypothesis testing for 
efficient navigation of complex, high-dimensional design 
spaces. Researchers may instead focus on higher-level 



The materials tetrahedron has a “digital twin”

384         MRS BULLETIN  •  VOLUME 47  •  APRIL 2022  •  mrs.org/bulletin

guidance such as providing insights, context, and objec-
tives to the AE campaign. Stach et al. describe the benefits 
of AE in terms of multiplying the productivity of individual 
researchers in addition to network effects when these dis-
tributed systems share learned insights. Importantly, they 
present areas for investment in hardware, software, data 
management, and workforce education in the coming years 
to realize the potential of AE systems for materials research 
and development. Similar opportunities and challenges for 
closed-loop automation exist outside the field of materials 
science as well, such as drug discovery,67 healthcare,68 sup-
ply chain management,69 architecture,70 and chemistry.71,72

Although an exhaustive review falls outside the scope 
of this perspective, we urge the interested reader to con-
sult recent review articles and perspectives that explore the 
intersection of materials science with one or more of the 
topics in information science outlined in this perspective. 
These resources include discussions of data ecosystems and 
infrastructures for metadata management;73–75 high-through-
put library generation and characterization;76,77 successes 
and challenges of Materials Genome Initiative research, 
machine learning methods, and computational materials 
databases;78–80 methods for linking materials characteriza-
tion and computation across length scales;81,82 methods, 

representations, and applications in the field of polymer 
informatics;83 materials discovery for energy applications;84 
and integrated systems for next-generation microscopy.85

Demonstrating the value of materials data 
and informatics
Just as the classic materials tetrahedron does not fully cap-
ture, for example, the subtleties of precipitation hardening 
of aluminum alloys, the MITT framework does not claim to 
solve the challenges ahead in creating a robust infrastructure 
around materials data and informatics. Instead, the framework 
presents a holistic view of certain high-level, interdependent 
elements such that experts across disciplines can make this 
infrastructure a reality. The broader materials community will 
accept and adopt materials data and informatics resources as 
these resources demonstrate more efficient digital representa-
tions and methods, offer robust cyber-physical infrastructures 
that establish trust, and provide training of the workforce in 
the utilization of these tools.86 Making these systems and tools 
relevant to the broader materials community will require clear 
articulation of the value proposition of these resources, contin-
ued investment in the areas laid out in the MITT framework, 
and the refinement of shared visions for the future of materials 
research and development.
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Mapping the Digital Transformation in
Materials Science & Engineering
The exponential proliferation of publications and citations with the
topic of “materials” alongside information science-related topics
(informatics, data science, or machine learning) reflects the evolution
of the field of materials science and engineering in the three decades
since the publication of the materials tetrahedron.

Bibliometrics: Web of Science, retrieved Sept. 2021

The Materials–Information Twin Tetrahedra (MITT) framework
establishes a digital counterpart of the classic materials tetrahedron,
offering context for these new considerations.

An overlaid timeline of select events from this time period highlights
the progression toward increasingly integrated and digitized
paradigms for materials research and development.

Figure 4.   Bibliometric data from Web of Science show the count of publications (blue bars) and citations (red line) at the intersec-
tion of the topic of “materials” with any of the topics of “informatics,” “data science,” or “machine learning” in the years 1990–2020. 
The timeline highlights select examples from this progression toward increased integration and digitization in materials research and 
development.
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Data and informatics have the potential to transform the 
conventional landscape of materials research and develop-
ment. By extrapolating from existing technologies, one can 
speculate on manifestations of the materials research land-
scape in the near future:

…A researcher monitors the incoming data on her tab-
let. In the background, an autonomous research sys-
tem chirps and hums as it passes cassettes of samples 
between preparation stages for characterization. She, 
along with a geographically distributed network of col-
leagues, designs and develops materials systems for 
electrically insulating coatings—her materials system 
of choice features functional molecules tethered to nano-
scopic ceramic particles and dispersed in self-healing 
polymers. The boundless configurations of possible 
materials components make exploration of the design 
space both invigorating and daunting. To manage the 
complex design tradeoffs, she and her team develop 
methods that consolidate computational and experi-
mental research—augmented with troves of data from 
several online data repositories through APIs—to pre-
dict the electrical, mechanical, thermal, and degrada-
tion behavior of these materials systems. To validate and 
improve model predictions along the Pareto frontier, she 
runs combinatorial experiments with gradient libraries 
that vary mix ratios and process parameters to reveal 
and quantify the effects on nanoparticle dispersion in 
these composite systems. On some days, carrying out 
an experiment involves a few simple gestures on her 
tablet—unified data formats enable the autonomous 
research system to interoperate with the workflow plan-
ning system, lab inventory, characterization and image 
analysis tools, and her team’s Bayesian models—and 
each material sample receives a globally unique identi-
fier with semantic links to its detailed processing his-
tory and characterization results. As the data populate 
her customized dashboard of interactive charts in real-
time, she recalls stories of data antiquity—misplaced 
USB drives, critical experimental parameters scrawled 
in the margins of laboratory notebooks, and hours spent 
manually aggregating data from PDF files into spread-
sheets. When she considers how she cites and publishes 
work today, everything just feels a lot more—what’s the 
right word? Natural, she mutters to herself. With a few 
touches on her tablet, she pushes the newly acquired 
data to her team’s shared knowledge base and alerts 
the subscribers to her data streams who may review 
and independently verify the results. If this particular 
materials system shows promise as a viable electrical 
insulator—and even if it does not—the data collected 
today will contribute to the growing online research 
data repositories from which her team developed their 
first model, a small act of solidarity in the modern sci-
entific endeavor…

Table II elaborates upon this hypothetical scenario in 
the context of the MITT framework. Achieving such visions 
will require persistent, well-coordinated efforts among a 
variety of stakeholders including materials researchers, 
software developers, original equipment manufacturers, and 
funding agencies. As a prerequisite, connecting systems-
level expertise across disciplines requires shared language 
and communication tools. Domain-specific terminology 
and jargon tend to form lexical barriers that hinder cross-
disciplinary collaboration and may obscure higher-level 
interdisciplinary commonalities. The classic materials tet-
rahedron paradigm presents a cogent visual depiction of 
the field of materials science, and revealing the underlying 
meta-framework enables the translation of this paradigm to 
information science.

As a general approach, the meta-framework could apply to 
other systems-focused disciplines that couple with materials 
science to form closed feedback loops. For example, one can 
consider the coupling of materials science and bioengineering 
that occurs in bio-integrated materials.87 At a high-level, the 
systems-level meta-framework would apply to biomaterials 
engineering through consideration of activities (e.g., path-
ways), arrangement (e.g., geometry, organization), qualities 
(e.g., characteristics, traits), applicability (e.g., goodness of 
fit), validation (e.g., bioanalysis), and viability (e.g., longev-
ity, compatibility) in terms of the biological system of interest. 
Instead of digital data and information flows, these interfaces 
might be mediated by sensing and modulation via biophysical 
or biochemical signals and actuation. However, we concen-
trate here on the convergence of materials and information 
science, leaving other combinatorial examples of joint frame-
works open to future discussions.

With its high-level vantage point on materials and infor-
mation science, the MITT framework provides a pedagogical 
launchpad and a groundwork for cross-disciplinary communi-
cation pertaining to infrastructure built around materials data. 
Faced with troves of data to potentially analyze, the challenge 
becomes how to organize researcher attention and computa-
tional resources around extraction of high-value information 
and the ultimate translation of this information into lasting 
solutions. The MITT framework extends the systems-oriented 
paradigm of the classic materials tetrahedron to encourage 
proficiency in tools that augment and accelerate materials dis-
covery, design, development, and deployment through data 
science and informatics. By applying this framework to con-
textualize, translate, and direct various efforts in materials data 
and informatics, present and future generations of materials 
scientists and engineers will find themselves well-equipped 
to tackle the multifold challenges that arise in an increasingly 
complex, data-driven world.
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