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Thermophysical abuse couplings 
in batteries: From electrodes to cells
Daniel Steingart

Thermophysical couplings in batteries must be understood to ensure that batteries remain 
safe from potential immolation during operation. This article examines the ways in which 
thermophysical deformation of lithium-ion batteries can lead to explosions and other safety 
events and then provides a brief review of characterization methods to assess the behavior and 
results of such deformations. Finally, a recent example of an event “in the wild” is discussed 
and the mechanisms covered are applied to competing diagnoses of the failure.

Introduction
Between 2010 and 2020, secondary or rechargeable battery 
production increased by a factor of 50, and costs decreased by 
a factor of six, with average battery cell prices near $USD100/
kWh and battery pack prices below $USD140/kWh.1 A con-
tributing factor to the decreasing capital cost of batteries has 
been the increase in energy density of batteries,2 of which 
the usable capacity has increased by a factor of three in the 
same time period. This is due in large part to the safe imple-
mentation of anodes of graphite with increasing amounts of 
silicon compounds added (Gr-Si), and cathodes of layered 
lithium-metal oxides with increasing nickel and decreasing 
cobalt content with either manganese (NMC) or aluminum 
(NCA) stabilizing atoms, as well as cathodes of lithium-iron 
phosphate (LFP).

It may be surprising to the casual reader with a background 
in thermodynamics that lithium-ion batteries of increasing 
energy density have had relatively few publicly reported inci-
dents of explosions, and more importantly, fewer deaths still.3 
It may be more surprising to a lithium-ion expert that time 
travelled to the present from the year 2000 to see relatively 
low safety incidents.4–10

The US Occupational Safety and Health Administration 
(OSHA)11 indicates that a safe battery should be a battery with 
(1) deterministic behavior of a cell in (2) a well-defined envi-
ronment. If either of these two conditions are violated, then the 

battery is not safe and should not be used. Standards setting 
and certifying organizations such as Underwriters Laboratories 
(UL) act as a nexus for application safety requirements and 
device physics and build recommendations to satisfy both.12

In this article, the multimodal physical and thermal meas-
urement improvements of the last decade are explored, and 
discussed are how these methods enabled, ex situ, in situ, 
operando, and on-line, the improvement of nameplate energy 
density at decreasing costs without an increase in safety inci-
dents. To do so, we explore a few of the known and understood 
critical failure mechanisms of lithium-ion batteries, and the 
methods that have been developed to check and ensure that 
these conditions do not exist in a cell after manufacture and 
in use.

What can go wrong in a battery
This article will focus on thermal and mechanical  
inconsistencies that lead to damage, which can then lead to the 
autocatalytic thermal runaway of batteries. Because batteries 
are composed of mutually reducing and oxidizing components, 
there are considerably biotoxic, carcinogenic, and mutagenic 
components in both the manufacture of batteries and the final 
product.13–17 This article will not discuss the toxic aspects of 
batteries beyond this: you should not eat batteries, and a rup-
tured battery should be physically isolated and delivered to a 
proper disposal facility as soon as possible.
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Mechanical damage to a battery that does not cause direct 
rupture of the cell packaging nonetheless has safety conse-
quences. Per the OSHA definition of safety, this mechanical 
damage can alter the deterministic behavior of the battery and 
render it unsafe. Liu et al.18 provide a comprehensive review 
of mechanical damage loops in batteries; what follows is a 
brief overview to map cause–effect loops. It is by no means 
exhaustive, but intended to give the reader a framework to 
assess why mechanical and thermal damage are mutually rein-
forcing to batteries and can lead to thermal runaway events.

A closed-form electrochemical energy cell (“battery cell”) 
consists of a reducing agent (the “anode”), an oxidizing agent 
(the “cathode”), a medium to allow for the transport of ions to 
the surface while blocking electrons (the “electrolyte”), and 
a medium for transporting electrons to and from a surface, 
while keeping the mass constrained and contained within a 
cell (the “current collectors,” the “external wiring bus,” and 
the “load”). The ionic current is translated to the electric cur-
rent at the electrode interfaces via electrochemical reaction, 
and complimentary reduction and oxidation reactions are 
required at the anode and cathode to balance the mass and 
charge transfer within the system. The only regions where, 
by design, there are simultaneous ionic and electronic current 
are the porous electrodes, which have physically overlapping 
regions of reductant and electrolyte, and oxidant and electro-
lyte (Figure 1a). This pattern may be repeated in reversing 
sequences many times per Figure 1b.

If the battery geometry is deformed in such a way that 
any of the described operations are hindered and/or altered, 
the application of current to the battery (via charge or dis-
charge) can lead to an unexpected rate of heat generation in 
the cell which can then trigger thermal runaway. Next are a 
few examples of how deformations are instigated and trig-
gered during both standard operation of batteries and within 
“abusive” conditions.

An external short circuit (ESC) drives the potential dif-
ference of the current collectors to near zero. Most lithium-
ion batteries operate between 2.7 and 4.2 V, and as a result, 
at any state of charge, the cell feels a driving force to try to 
further equilibrate such that the reductant and the oxidant 
reach the same chemical potential. The consequences of this 

are instant heat generation within the cell, and given enough 
time (enough being seconds to minutes), gas generation can 
occur as a result of both heating of the liquid electrolyte 
as well as electrochemical oxidation and reduction of the 
electrolyte.19,20 Additionally, since the positive electrode is 
asking for current from a negative electrode that is depleted 
or near depleted of lithium, depending on the electrode/cur-
rent collector design, copper can electro-dissolve to copper 
ion from the negative current collector.21 Under significant 
enough ESC, the external heat generated can push the bat-
tery into an oxidant-driven thermal runaway (i.e., thermal 
decomposition of the metal oxide positive electrode) if the 
heat generated raises the temperature sufficiently before 
enough lithium ion has returned to the positive electrode 
upon discharge. A lithiated (i.e., discharged) metal-oxide 
cathode is far less prone to thermal runaway, as the lithiated 
metal oxide has a thermal reduction temperature  > 600°C.22

It is critical to note that heat is also generated in the con-
ductor external to the cell creating the ESC. Regardless of 
the volatility and stability of the cell components, if the ESC 
is physically allowed to continue, heat is generated as:

If that heat cannot be sufficiently dissipated, the external 
cell temperature will rise according to the sensible and latent 
heats of the environment. Many, if not most, battery fires are 
triggered by a failure to manage this heat generation.

If the cell survives the ESC, and the ESC was not 
detected nor heeded, once the battery goes into charge mode, 
copper will likely deposit on the negative electrode as a 
mossy or dendritic film instead of redepositing uniformly 
on the negative current collector. Given the approximately 
15 µm separating the negative and the positive electrode, 
this copper metal filament can create a non-penetrating inter-
nal short circuit (NPISC) (often referred to as an internal 
short circuit or ISC, the difference in this article will be 
elaborated shortly).23–26 Unlike an ESC, a NPISC cannot be 
(readily) eliminated by removing the short. Also unlike an 
ESC, which is assumed to have almost zero resistance, the 
non-penetrating internal short circuit can have significant 
resistance (e.g., it will not always drive the cell potential 

to zero).
Depending on the nature of the 

short, if the impeding metal is thin 
enough and/or of a small enough 
cross section when touching both 
electrodes, it may disconnect itself 
through chemical oxidation or 
mechanical shifts. These events 
are referred to as “soft shorts” and 
may appear in a voltage signal as 
momentary dips or noise.27,28 If the 
short-circuit metal is sufficiently 
large and chemically robust, it will 
permanently bridge the positive and 
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Figure 1.  (a) Electrochemical cell structure. (b) Repeating sequences.
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negative electrode and will continually discharge the battery 
internally.  The combination of volatile organic electrolytes, 
thermally unstable metal oxides, and sub-20-µm separator dif-
ferences exacerbate potential safety triggers.

The chemical nature of the metal filament in a NPISC has 
a significant impact on the potential danger it creates. Beyond 
the copper case previously discussed, a well-monitored trigger 
is iron filament from manufacturing, as well as ferric or fer-
rous ions left unwashed on cathodes before initial charge.23,29 
Ions of copper and iron will be drawn to the negative electrode 
upon charge, but once plated, they are galvanically protected 
by the active lithium ion in the system until a zero volt event, 
which is to be avoided for reasons detailed above.

Given the small separator gap, a simple “pinch short” can 
be the NPISC. Pinch shorts can be the result of poor cell 
manufacturing processes, damage during cell to battery pack-
ing, or unexpected impact (e.g., car crash, dropping a cell 
phone).25,30

Finally, a penetrating internal short circuit (PISC) repre-
sents a foreign body creating an electrical short circuit within 
a cell. The canonical example of this is the nail penetration 
test, in which a nail is driven through a battery to emulate its 
behavior during an NPISC. While the nail penetration test is a 
facile way to test cell response, it is sufficiently different from 
NPISCs such that it should not be used as a sole estimate of a 
cell’s NPISC response.25,27,31 For example, the cross section 
of a nail is far larger than that of an internal filament. While 
the electrical conductivity of this nail is high, the thermal 
conductivity is high as well, and the nail is connected to the 
outside world.

Charging is also a heat-generating event, and the localized 
heat of a poorly monitored or designed charging system can 
lead to overheating at the positive electrode during charge. 
Since the positive electrode is lithium-depleted during charge, 
it undergoes thermal reduction at a lower temperature. Thus, 
the coupling between heat generation during charge and ther-
mal runaway is positive, since the lithium is leaving rather 
than entering the electrode. Upon overcharge, electrolyte 
gassing due to electrochemically driven  redox19,32,33 must be 
considered as well. Fast charge of batteries has been shown 
to deposit lithium metal upon the graphite electrodes (instead 
of intercalated into the graphite electrodes).34–36 The safety 
consequences of this lithium metal within the battery are still 
being studied, it is understood that this lithium metal is not 
designed to be within the battery, however, and therefore 
treated as “unsafe.”

Finally, the last damage mechanism discussed here will 
be, broadly, disconnection, where components within the bat-
tery are physically isolated rather than connected. Isolation 
of particles electrically can be caused by physical damage, 
and isolated surfaces can be created because of gassing due 
to the previously mentioned overdischarge and overcharge 
reactions. The danger of disconnection is complementary 
to the danger of the “over-connection” of the various short 
circuits. In batteries, charge rates are normalized internally 

to current densities, but disconnection events are inherently 
heterogeneous, as a result, the current density becomes non-
uniform. In turn, a 1 C charge rate globally may mean a 10 
C charge rate locally, and the safety concerns for overcharge 
apply.37

A brief, incomplete survey of thermophysical 
analyses relevant to battery safety
Since thermophysical couplings lead to battery safety events, 
and the couplings are difficult to fully normalize across dif-
ferent form factors of cells, the field has developed a variety 
of methods to measure thermal and physical behavior of com-
mercially relevant cells.

Thermal methods
Calorimetric methods may be the oldest form of physical 
cell analysis, but they are still critical for measuring battery 
behaviors. Differential scanning calorimetry (DSC) is a com-
mon method for identifying the point of thermal runaway for 
many lithium-ion cathodes as well as understanding phase 
behavior of individual components.6,38–40 DSC measures the 
difference in the amount of heat added or removed to change 
the temperature of an experimental sample in comparison to 
a reference of well-defined heat capacity. DSC is particularly 
interesting for measuring the impact of surface and structural 
enhancements to prevent unwanted phase changes and exo-
thermic events, since the components in the DSC coupon are 
purely chemical driven. DSC chambers, however, are typically 
small and not intended for operando studies of electrochemi-
cal systems.

Accelerating rate calorimetry (ARC)  methods38,41–45 are 
excellent “big siblings” to DSC in that they are similar to 
the heat addition to DSC, but does so in a fully adiabatic set-
ting in which the sample is “allowed” to self-heat while the 
extent of that self-heating is measured as a function of time 
and temperature. Whereas DSC is useful for understanding 
predetermined reaction in simulated cell environments, an 
ARC experiment is useful for emulating the “full cocktail” 
of physical–thermal–chemical couplings that may occur in a 
battery as it drives itself to thermal runaway or other degra-
dation modes.

Thermogravimetric analysis (TGA)46–48 is typically used 
to measure material or simulated cell environment (e.g., 
cathode-in-electrolyte), measuring the mass loss of a sam-
ple on a microbalance as it is heated. Since positive elec-
trodes typically lose oxygen (exothermically) as they heat, 
and electrolytes vaporize or react, to form gases, TGA is an 
excellent method to quantify the extent of reaction (which 
can then be correlated to the expected pressure increases 
within a cell). When combined with spectroscopic meth-
ods, the gaseous compounds can be further classified and/
or quantified depending on the methods (discussed in more 
detail next).

While typically not used to measure critical safety events 
directly, isothermal micro- or nanocalorimetry (ITC) can be 
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used on full cells to measure the onset of reaction over longer 
time scales (minutes to hours) as a function of the fixed tem-
perature and electrochemical operation on commercially rel-
evant  cell:49–58 specifically, electrochemical and temperature 
conditions are set by the user, and the resulting heat flow in or 
out of the cell is measured over time. This thermodynamic data 
can then be analyzed to assess the nature of reactions occur-
ring. This method is good at ascertaining events that form prior 
to critical damage in cells.

Chemical methods
Chemical analysis methods have evolved over the last two 
decades from ex situ tools to near real-time operando tools 
capable of measuring complex couplings in full cells. TGA 
methods combined with Fourier transform infrared (FTIR) 
spectroscopy have been used to directly correlate thermal 
events to evolved gas quantity and composition in a variety 
of systems.46,59,60

Differential electrochemical mass spectroscopy (DEMS) 
is a cousin to TGA-FTIR, but rather than drive the system 
thermally, the system is driven electrochemically.61–68 As a 
result, it can directly quantify and classify redox driven off 

gassing in addition to thermally driven off-gassing. Rowden 
and Garcia-Areaz69 provide a thorough review of gas evolu-
tion analysis methods.

Finally, x-ray fluorescence (XRF),70,71 atomic absorp-
tion spectroscopy (AAS),72–74 inductively coupled plasma 
(ICP),75,76 and scanning electron microscopy with energy-
dispersive spectroscopic methods (SEM–EDS) are industrial 
and academic work horses that classify impurities in samples, 
both electrode powders samples as well as finished elec-
trodes. Water content in lithium-ion batteries must be kept to 
a absolute minimum for both operational and safety reasons;  
Karl Fischer titration is the standard tool for assuring water 
content is sufficiently low.

Structural methods
Just as crystal structure analysis and accompanying diffraction 
methods are bedrock methods for understanding equilibrium 
and desired performance aspects of battery materials, these 
methods are important for safety consideration, particularly 
when combined with thermal characterization in operando 
experiments. For example, time-resolved x-ray diffraction 
(TR-XRD)10 in conditions relevant to thermal runaway of 

nickel-rich cathodes was done to 
understand the coupling of structure 
change and oxygen gas generation 
(Figure 2). Recently, localized TR-
XRD methods have been employed 
to spatially map structural changes 
in  cathodes77 as well as unwanted 
lithium deposition within lithium-
ion batteries.

The small x-ray cross section of 
lithium metal makes x-ray analysis 
difficult. These recent methods are 
testaments to the ability of scien-
tists to maximize signal from noise. 
The tools have lower availability; 
neutron diffraction and absorption 
methods have been used frequently 
to study the impact of lithium metal 
on lithium-ion batteries, as well 
as structural changes across full-
format lithium-ion batteries.19,78–81 
The interpretation of neutron data 
is more difficult than x-ray data 
as there are less prior data avail-
able, but the transmissivity of neu-
trons while being lithium-sensitive 
makes it a powerful tool for full cell 
analysis.

Optical imaging methods
While visible optical imaging of 
batteries yields little direct data, 
clever in situ mock cells allow for 
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Figure 2. Contour plots of the time-resolved x-ray diffraction patterns at the selected 2θ 
range for the charged (a) NMC433, (b) NMC532, (c) NMC622, and (d) NMC811.10
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undercomponent-level understanding. For example, as graph-
ite lithiates, it changes in color from black to gold, with spe-
cific hues indicating stages,82,83 and this can be exploited to 
examine strain and heterogenous behavior in cells.84,85 Again, 
heterogeneous behaviors in batteries are often the root cause 
of safety events, so methods such as this allow researchers 
to foresee and develop preventive measures to avoid such 
needle-in-haystack problems. Video rate methods have also 
keyed into key challenges in current distribution and metal 

detachment for metal (Li, Zn, etc.) 
anode systems problems that can 
presage disconnection-related safety 
issues.86–88

In the last decade, x-ray and 
neutron tomography in near real 
time has been made available, and 
with x-rays almost to the labora-
tory scale. Rates of greater than 
10 Hz are available, and this allows 
researchers to connect lower-
resolution maps of the previously 
mentioned phenomena to full cells, 
creating a “zoomable map” in four 
dimensions.89–91 A particularly dra-
matic example by Finegan and co-
authors is the examination of a bat-
tery undergoing thermal runaway in 
real time.92 This example illustrated 
(Figure 3) not only where the runa-
way starts, but how the heat spreads 
and how cell design can accelerate 
or mitigate runaway events.93

Magnetic methods
Since metal objects of vari-
ous sizes can wreak havoc on 
a lithium-ion battery, and the 
lithium-ion positive electrode is 
a collection of valence-changing 
materials, magnetic interrogation 
of cells is natural, and similar the 
other methods described, there 
are complementary component-
level analyses as well as full cell 
methods available. Lithium-metal 
behaviors in full cells have been 
examined via nuclear magnetic 
resonance (NMR) methods in 
imaging mode.94–97 Electrolyte 
behaviors, particularly decomposi-
tions modes, can be teased out of 
NMR data as well.98–102

Recently NMR imaging meth-
ods (nMRI) have been applied in 
clever ways to large-format bat-
teries by Jerschow,103,104 and maps 

can be completed quickly enough to image extent of reaction 
as a function of space, and thereby extract current density 
(Figure 4).

Mechanical methods
The mechanical correlations of reversible electrochemi-
cal reactions have been studied for as long as batter-
ies have been in field use, but the last decade has seen a 
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Figure 3.  (a) Radiograph of the y–z plane before thermal runaway; (b–d) sequential images 
showing the propagation of thermal runaway through the cell. The thermal runaway initi-
ates at the inner layers where the maximum temperature is apparent and spreads radially 
outward. The formation of copper globules can be observed as highly attenuating white blots 
in images b–d. Heating is applied from the right of the images but continuous rotation at 180° 
every 0.4 s maintains an even circumferential temperature distribution. Scale bar = 1 mm.92

41.7 mAh 83.3 mAh 125.0 mAh

Discharged at 125 mA (0.5 C)

Charged at 125 mA (0.5 C)

M
agnetic Field (ppm

)

166.7 mAh 208.3 mAh 216.0 mAh

16.0 mAh 49.4 mAh 91.0 mAh 132.7 mAh 174.4 mAh
0.0

–0.5

–1.0

–1.5

Figure 4.  Series of magnetic field maps taken at intervals during discharge and then charge 
of the cell. The plots are labeled by the discharge capacity of the cell at each step. The mag-
netic field maps are referenced to the field map produced by the fully charged cell.103
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distillation of practical know-how to scientific understand-
ing. Stress–strain relationships for lithium and lithium-ion 
systems have been extensively studied with classical tools 
of physical metallurgy,105–111 and recently, acoustic analysis 
of such systems has revealed similar information in addition 
to structural mappings.35,36,112–116

For example, Chang et al. 
showed the progression of lithium-
metal deposition to dead lithium 
to gas formation in a multilayer 
stack.35 In this case, the lithium 
metal showed itself not to be a 
danger because of rapid heating 
during a short circuit, but rather, 
because the reactive lithium metal 
is not stable in the context of the 
lithium-metal electrolyte, which 
causes excess chemical gassing 
and leads to physical disconnection 
(Figure 5).

Conclusion and case study 
in these methods
The preceding descriptions of ther-
mophysical safety challenges for 
lithium-ion batteries and methods 
to assess these dangers are in some 
part responsible for the relatively 
low number of battery safety inci-
dents that have occurred despite the 
significant increase in high energy 
density lithium-ion batteries over 
the last decade. But as mentioned, 
safety is a measure of what does not 
happen, and engineering for safety 
requires statistics and event analysis 
in equal proportion to hypotheses 
and fundamental understanding.

The former qualities can be 
difficult to access for academic 
battery researchers, as liability 
and confidentiality often accom-
pany analyses of real-world safety 
events. A fire on April 19,  2019, at 
the APS McMicken Battery in Sur-
prise, Arizona, is unusually openly 
documented for a large-scale bat-
tery-safety event. An entire battery 
module was destroyed, and sev-
eral firefighters were injured when 
combating the fire, and two teams 
of battery-safety experts analyzed 
immolated cells with methods such 
as those previously mentioned to 

piece together what may have happened.
An analysis by DNV-GL117 suggested that a possible 

trigger for thermal runaway was a significant amount of 
plated lithium that formed a hard short in the lithium-ion 
cell. Figure 6 shows an x-ray tomograph of a failed cell, 
where missing material is considered evidence of ejecta 
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Figure 5.  (a) Acoustic and electrochemical data of 210 mAh pouch cells initially cycled 
at cold (< 10°C) temperature to induce plating, before the environmental temperature was 
shifted higher to (a) 20°C, (b) 30°C, (c) 40°C, (d) 50°C, and (e) 60°C while keeping the cell 
at open-circuit potential and bottom-of-charge. For each condition, plots are shown for the 
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time-of-flight [ToF]), the total amplitude versus time, the voltage/current profiles, and the 
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Figure 6.  Vacancy of material in battery cell 7-2 during x-ray tomography (a) and evidence 
of ejected material during the disassembly of Module 2, Rack 15 (b).117 Note: Part numbers 
refer to different cells in a destroyed lithium-ion battery.
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from a fire triggered by internal thermal runaway. Figure 7 
shows a cell that was not destroyed, displaying significant 
evidence of lithium-metal deposition in the lithium-ion 
battery.

However, a second report on the incident by Exponent 
questioned the root cause analysis by DNV-GL,118 question-
ing the ability of lithium metal to persist long enough in a 
short-circuit configuration before oxidizing, thus self-limiting 
instead of allowing enough heat to be generated to cause ther-
mal runaway. The Exponent report hypothesized that an ESC 
from a misconfigured wiring bus started the heating event 
which then triggered the cell rupture which then led to a fire. 
In short, the second theory is that the heat came from outside 
the cell. 

As of the writing of this piece, the root cause has not 
been publicly agreed upon, but the reader is strongly encour-
aged to read both reports to see how the methods outlined 
here are applied in practice, and to develop an apprecia-
tion of how well lithium-ion batteries have been “hard-
ened” such that events such as this are few and far between. 
While method development, specifically for online analysis, 
needs to be improved so events such as McMicken can be 
studied in real time, the tools for assessing thermophysical 

correlations within battery are 
sufficiently developed such that 
forensic engineers can begin to 
piece together and learn from bat-
tery safety events to ensure future 
systems do not suffer the same 
fate.
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