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Abstract
The ever-increasing demand for information storage has pushed research and

development of nonvolatile memories, particularly magnetic disk drives and silicon-
based memories, to areal densities where bit sizes are approaching nanometer
dimensions. At this level, material and device phenomena make further scaling
increasingly difficult. The difficulties are illustrated in the examples of magnetic media
and flash memory, such as thermal instability of sub-100-nm bits in magnetic memory
and charge retention in flash memory, and solutions are discussed in the form of
patterned media and crosspoint memories. The materials-based difficulties are replaced
by nanofabrication challenges, requiring the introduction of new techniques such as
nanoimprinting lithography for cost-effective manufacturing and self-assembly for
fabrication on the sub-25-nm scale. Articles in this issue describe block-copolymer
lithographic fabrication of patterned media, materials studies on the scaling limits of
phase-change-based crosspoint memories, nanoscale fabrication using imprint
lithography, and biologically inspired protein-based memory.
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the number of bits stored per unit area
of the (typically) two-dimensional storage
devices. For example, in the case of
 magnetic-media hard-disk drives, areal
density has increased over eight orders of
 magnitude in the past 50 years, and the
device weight (measured per megabyte)
has correspondingly decreased over eight
orders of magnitude. These improvements
have allowed for 320 gigabyte (GB) mobile
disk drives weighing just slightly more
than 100 g.

A perpendicularly oriented magnetic-
media disk drive sold today typically has
an areal density of 250 Gb/in.2 (and this
value is likely to be outdated by the time
this issue of MRS Bulletin is published).
Laboratory demonstrations have recently
shown areal densities in the range
between 420 Gb/in.2 and 600 Gb/in.2,
which correspond to bit areas smaller than
1,500 nm2. The area corresponding to one
bit is typically 80 nm × 20 nm or smaller
and is clearly well in the sub-100-nm
range. Similarly, many manufacturers of
silicon flash memories are upgrading their
facilities for 45-nm production.

Further increases in storage capacity
requirements will likely push bit sizes
even smaller, to the point where further
scaling of either magnetic thin-film or
 silicon-based storage devices becomes
very difficult or impossible. A common
example is the scaling of magnetic-media
bits in magnetic hard-disk drives. This
scaling is limited by the phenomenon
where the energy required to switch the
orientation of a particle’s magnetic
moment becomes comparable to the parti-
cle’s thermal energy, or the superpara-
magnetic effect. The area corresponding to
one bit of information is presently approx-
imately 100 nm × 20 nm and contains
approximately 50–100 grains with an
average diameter of 8 nm. The size of the
grains determines the effective signal-to-
noise ratio, as the line roughness of the
transition between two bits depends on
the size of the grains. A reduction of the bit
size (and an increase of the areal density)
therefore requires a reduction of the aver-
age grain size. However, the grain volume
cannot be arbitrarily reduced: the super-
paramagnetic limit is reached at the point
when a grain becomes so small that ther-
mal energy alone can flip its magnetiza-
tion direction. The critical grain volume,
Vg, that determines the onset of the super-
paramagnetic limit is determined by the
condition that the stored magnetic energy,
KuVg, remains about 40–60 times larger
than the thermal energy, kBT, where Ku
and kB are the magnetic anisotropy and
the Boltzmann constant, respectively, and
T is the temperature.1 This implies that the

We have been witnessing increasing
demand for information storage since the
very first IBM 350 disk drive with 4.4
megabytes of storage space was sold over
50 years ago. The growing amounts of both
personal and Web-stored digital media
content, accelerated by faster networks,
and Web 2.0 represent just a few of the
stimuli for an already rapidly growing stor-
age demand. The data storage industry has
traditionally answered this demand by
providing increasing capacity in storage
devices: magnetic-media-based hard-disk
drives for personal and server-based
 storage and optical removable media and
 magnetic-media-based tapes for portability
and archival uses. Additionally, solid-state
drives based on silicon flash memory have
recently emerged, offering compelling all-
electronic nonvolatile storage devices with-
out any moving parts. Such drives are
widely available both as universal serial
bus flash drives and as solid-state drives
for mobile computers.

The key magnetic recording components
of hard-disk drives are magnetic media
(where information bits are stored) and

recording heads (which write to and read
from the media). Magnetic media comprise
a thin-film structure consisting of several
nonmagnetic and magnetic thin films,
capped with a thin (sub-5-nm) carbon film
coating and a thin (sub-1-nm) lubricant
layer. The information is stored in the
CoCr-based thin film located close to the
disk surface in the form of magnetic
domains with perpendicular magnetic ori-
entation, which are also called bits. The bits
which are produced or written with a mag-
netic recording head that utilizes a write
head to produce a varying magnetic field
and write bits to the media. The bits are
read back with the magnetic read head that
utilizes the giant magnetoresistance effect
to register changes in the magnetic orienta-
tion of the written bits.3 In the case of sili-
con flash memory, the information is stored
as charge on the insulated floating gate of
the metal oxide semiconductor transistor.

The increasing capacity of these devices
has traditionally been achieved by improv-
ing the areal density to preserve constant
volume, weight, and power demands of
storage. The bit areal density is defined as



size of thermally stable grains should be
larger than approximately 8 nm.2

Most of the scaling challenges are
being addressed with media and disk
head improvements,3 such as transition-
ing from longitudinal to perpendicular
media. The current consensus in the hard-
disk drive industry is that magnetic
recording on continuous perpendicular
media can be scaled to bit areal densities
in the range of 500–1,000 gigabits/in.2. In
the long term, alternative technologies
such as heat-assisted magnetic recording
and patterned media are being considered
as likely routes to terabit per square inch
densities and beyond.

Silicon-based flash memories are facing
scaling challenges as well, albeit quite dif-
ferent in physical nature. The core element
of the flash memory is the floating-gate
metal oxide semiconductor transistor that
stores information as charge on the insu-
lated encapsulated floating gate. The most
significant challenge is the thickness of the
oxide film required to isolate a floating
gate. As the gate length is reduced (to
increase the effective areal density), the
oxide thickness has to be reduced propor-
tionally. However, when the oxide thick-
ness becomes approximately 8 nm or less,
charge retention (or actual memory)
becomes degraded through trap-assisted
tunneling through the oxide.4 Even if the
density of the positively charged clusters
(traps) generated in the oxide during erase
cycles can be controlled, reduction of the
oxide thickness is limited to 6–7 nm
because of an exponentially increasing
tunneling current, unless new oxide mate-
rials are introduced.

Another scaling limitation is related to
so-called read/write “disturb” capacitive
coupling through parasitic capacitors
around the floating gate that causes shifts
of the threshold voltages of a cell propor-
tional to the threshold changes in adjacent
cells. As the device size is reduced, this
capacitive coupling is more pronounced
because of the smaller insulation thick-
ness. In the short term, some of these chal-
lenges can be addressed by device design
improvements, architectural improve-
ments (such as storing multiple levels per
cell), and attempts at three-dimensional
integration. In the long term, transition to
crosspoint memories based on non-silicon
materials such as phase-change, ferroelec-
tric, or magnetic materials will become
required. Crosspoint memory, or crossbar
memory, indicates a type of solid-state
memory based on a matrix of active mem-
ory elements located at the intersection of
two arrays of conducting lines.

Figure 1 shows the impact of nanostruc-
tured materials on information storage and

how they have enabled continued scaling
toward higher capacity memories over
time. In the case of patterned media (Figure
2a), one bit that contains many exchange-
decoupled grains is replaced by a single
magnetic island composed of magnetically
exchange-coupled material. The size of the
island can be as small as 3 nm for FePt,
well beyond the superparamagnetic limit.
These islands can be packed in bit cells as
small as 6 nm × 6 nm, reaching areal densi-
ties as high as 15–20 terabits/in.2. In the
case of crosspoint memories (Figure 2b),
silicon-based transistors are replaced with
ferroelectric materials, phase-change mate-
rials, or magnetic tunnel junctions, to name
a few of the proposed alternatives to
address the difficulty of scaling silicon-
based flash memory. For example, phase-
change materials are shown to be scalable
down to a cross section of 3 nm × 20 nm.5

The scaling challenges of conventional
technologies are circumvented by the
smart choice of new nanostructured mate-
rials, which come at the expense of chal-
lenging processing and fabrication. For
example, efficient fabrication of patterned
media disks requires high-resolution
 electron-beam lithography tools with rota-
tional stages for the fabrication of masters
and nanoimprinting lithography for the
cost-effective replication of master patterns
onto disk substrates.6–8 Additionally, self-
assembly or template-guided self-assem-
bly is likely to be required for patterns with
critical dimension features smaller than 25

nm.8 Proximity effects and long electron-
beam writing times make electron-beam
lithography impractical at such small criti-
cal dimension sizes. Nanofabrication of
crosspoint memories will likely require the
same approach based on high-resolution
low-throughput electron-beam lithogra-
phy for imprinting masters and low-cost
high-throughput nanoimprinting lithogra-
phy for final device fabrication.7

Biological systems might hold the key to
a paradigm shift in storage and ultimate
nanoscale engineering that can enable
future memory scaling. Either DNA9 or
proteins10 could be used. For example, it
might be possible to encode digital signals
or data using DNA in its double-stranded
form, which is stable, compact, and inex-
pensive.9 The data can be duplicated
using polymer chain recombination and
queried using DNA annealing and pairing
processes.9 One interesting feature of such
a system is that the querying time is not
dependent on the size of the database,
unlike its digital counterpart. DNA kinet-
ics is dependent only on relative concen-
trations and not the number of different
molecules.9

In this issue, we have collected state-of-
the-art reviews that demonstrate how
nanostructured materials engineering
drives information storage and enables
future growth in areal density and memory
capacity for nonvolatile memories. We
address key technologies such as hard-disk
drives and solid-state memories, as well as
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Figure 1. Progress in bit areal density in magnetic hard-disk drives. The acceleration to
60–100% compound growth rate (CGR) in the period from 1992 to 2000 was achieved by
advances in thin-film magnetic recording media, reducing the sizes of magnetic recording
heads and improving read channels. In the period after 2010, the introduction of new
technologies such as patterned media or heat-assisted magnetic recording (HAMR) is
expected to enable continuation of the bit areal density.



nanofabrication methods such as nanoim-
printing lithography and self-assembly, as
applied to information  storage.

Caroline Ross from the Massachusetts
Institute of Technology and J.Y. Cheng
from IBM Almaden Research describe
block-copolymer lithographic fabrication
of patterned media. As modern electron-
beam lithography tools reach their limit at
resolutions beyond critical dimensions of
25 nm, self-assembly-based patterning
will likely be required for scalable fabrica-
tion of patterned media (and crosspoint
memories). Block copolymers that phase-
 separate into ordered periodic nanoscale
structures provide a path to such pattern-
ing. Ross and Cheng discuss topographic
and chemical patterning of the surface
required to introduce long-range order into
patterns, pattern transfer into magnetic
materials, properties of block-copolymer
patterned media, and finally pattern place-
ment uniformity and accuracy.

Simone Raoux, Charles T. Rettner, and
Geoffrey W. Burr from IBM Almaden
Research and Yi-Chou Chen from
Macronix International focus on phase-
change random-access memory. A series of
time-resolved x-ray diffraction experi-
ments was used to measure large arrays of
phase-change nanoparticles of various
materials fabricated by electron-beam
lithography or self-assembly and to exam-
ine the associated phase transitions. All

nanoparticle arrays (with particle sizes
varying between 20 nm and 80 nm) exhib-
ited clear evidence of crystallization tem-
peratures similar to those of thick films.
Electron-beam-lithography-based tech-
niques were used to fabricate prototype
“phase-change bridge” phase-change ran-
dom access memory devices and to meas-
ure their current–voltage and switching
characteristics. Raoux et al. demonstrate
that devices with cross sections as small as
3 nm × 20 nm still have the expected
threshold switching behavior.

Sanjay V. Sreenivasan from the Univer -
sity of Texas at Austin and Molecular
Imprints, Inc., who has made major contri-
butions in nanoscale fabrication using
imprint lithography, reviews state-of-the-
art nanoscale manufacturing opportunities
enabled by nanoimprinting. Sreenivasan
reviews representative nanoscale devices,
namely, patterned media, silicon-based
integrated circuits, and photonic crystals.
The article discusses the nanofabrication
requirements of the devices and the three
key building blocks of nanoimprinting:
nanoimprinting masks, resists, and tools.
Finally, a comprehensive overview follows
on resolution, critical dimension control,
alignment, overlay, template lifetime, cost,
and throughput, ending with a discussion
of future directions.

Next, biological-material-based infor-
mation storage systems are reviewed by

Sakhrat Khizroev from the University of
California–Riverside and co-authors. The
authors discuss an exciting protein-based
recording system and its potential appli-
cation in the form of a hard-disk drive.
They focus on bacteriodopsin (BR) protein
and discuss the photocycle of BR, in par-
ticular, the core photocycle and “branched
photocycle” at room temperature. The
article explains how this material can be
applied to two-dimensional BR-protein-
based infor mation storage systems.
Khizroev et al. discuss two-step writing
and reading mechanisms for such a sys-
tem and outline key challenges in opti-
cally based write and read transducers.
Solutions for power loss in the near-field
optical regime are addressed by nanoscale
apertures (fabricated by focused-ion-
beam lithography), capable of focusing up
to 250 nW into a 30-nm spot. The authors
also describe a spinstand-based labora-
tory setup for studying protein-based disk
recording.

In this issue of MRS Bulletin, we have
sought to cover areas of materials science
and engineering research that are key
enablers for future increases in the density
and capacity of nonvolatile memory. From
patterned media to phase-change memory,
from block-copolymer self-assembly to
nanoimprinting lithography, and all the
way to biologically inspired information
storage systems, we introduce the span of
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Figure 2. (a) Schematic overview of patterned media disk. Tracks contain an array of prepatterned magnetic islands, and each island consists
of magnetic exchange-coupled material that behaves as a single magnetic entity storing one bit of information. (b) Schematic overview of
crosspoint memory,5 with a non-silicon-based material located at the crossing point. Many materials have been proposed for crosspoint
memories, including phase-change materials (shown in the inset), ferroelectric materials, and magnetic tunnel junctions.
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novel nanostructured systems for memory
devices. These systems are capable of high
areal densities and high capacities required
to bridge the gap to an information-rich
and storage-hungry future.
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