
Introduction
From the earliest work on laser interac-

tions with materials, direct-write processes
have been important and relevant tech-
niques to modify, add, and subtract mate-
rials for a wide variety of systems and for
applications such as metal cutting and
welding. In general, direct-write process-
ing refers to any technique that is able to
create a pattern on a surface or volume in
a serial or “spot-by-spot” fashion. This is
in contrast to lithography, stamping, di-
rected self-assembly, or other patterning
approaches that require masks or preexist-
ing patterns. At first glance, one may think
that direct-write processes are slower or
less important than these parallelized ap-
proaches. However, direct-write allows
for precise control of material properties
with high resolution and enables struc-
tures that are either impossible or imprac-
tical to make with traditional parallel
techniques. Furthermore, with continuing
developments in laser technology provid-
ing a decrease in cost and an increase in
repetition rates, there is a plethora of ap-
plications for which laser direct-write
(LDW) methods are a fast and competitive

way to produce novel structures and de-
vices. This issue of MRS Bulletin seeks to
assess the current status and future op-
portunities of LDW processes in the con-
text of emerging applications.

There are many types of direct-write
techniques used in science and engineer-
ing.1 For instance, previous MRS Bulletin
issues discussed topics such as inkjet
printing (November 2003) and focused
ion-beam processing (February 2000, July
2001, and December 2005). In the most
classical sense, engraving or milling can
be considered a direct-write process, since
a tool or stylus makes contact with a sur-
face and is moved in a desired pattern to
produce a feature. The coupling of a high-
powered laser with direct-write pro-
cessing enables similar features to be 
produced without requiring physical 
contact between a tool and the material 
of interest. Because of this, few tech-
niques share the versatility of LDW in
adding, subtracting, and modifying differ-
ent types of materials over many different
length scales, from the nanometer to the
millimeter scale.

In LDW, the beam is typically focused
or collimated to a small spot (in industrial
processes, this “small” spot can be several
millimeters in diameter). Patterning is
achieved by either rastering the beam
above a fixed surface or by moving the
substrate or part within a fixed beam. An
important feature of LDW is that the de-
sired patterns can be constructed in both
two and three dimensions on arbitrarily
shaped surfaces, limited only by the de-
grees of freedom and resolution of the
motion-control apparatus. In this manner,
LDW can be considered a “rapid prototyp-
ing”2�4 tool, because designs and patterns
can be changed and immediately applied
without the need to fabricate new masks
or molds.

The key elements of any LDW system
can be divided into three subsystems:
(1) laser source, (2) beam delivery system,
and (3) substrate/target mounting system
(see Figure 1). At the heart of any LDW
process is the laser source. Typical experi-
ments and applications use anywhere
from ultrafast femtosecond-pulsed systems
to continuous-wave systems employing
solid-state, gas, fiber, semiconductor, or
other lasing media. In choosing an appro-
priate source, one must consider the fun-
damental interactions of lasers with the
material of interest. This requires knowl-
edge of the pulse duration, wavelength,
divergence, and other spatial and temporal
characteristics that determine the energy
absorption and the material response. In
beam delivery, there are a variety of ways
to generate a laser spot, including fixed fo-
cusing objectives and mirrors, galvano-
metric scanners, optical fibers, or even
fluidic methods such as liquid-core wave-
guides5 or water jets.6 The choice depends
on the application demands, for instance,
the required working distances, the focus
spot size, or the energy required. The ulti-
mate beam properties will be determined
by the combination of laser and beam 
delivery optics. Finally, the substrate mount-
ing is done in accordance with experimental
or industrial requirements and can be ma-
nipulated in multiple directions to achieve
a desired result. Robotics and active feed-
back control, on either the substrate or beam
delivery optics, can add further design flex-
ibility to the technique.

There is a vast range of LDW processes.
For the purposes of this issue, we categorize
them into three main classes: laser direct-
write subtraction (LDW�), where material
is removed by ablation; laser direct-write
modification (LDWM), where material is
modified to produce a desired effect; and
laser direct-write addition (LDW�),
where material is added by the laser.
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Laser Direct-Write Subtraction
(LDW–)

LDW� is the most common type of 
laser direct-write. In general, this entails
processes that result in photochemical,
photothermal, or photophysical ablation
on a substrate or target surface, directly
leading to the features of interest.7 Com-
mon processes include laser scribing, cut-
ting, drilling, or etching to produce relief
structures or holes in materials in ambient
or controlled atmospheres.8 Industrial 
applications using this technique range
from high-throughput steel fabrication, to
inkjet and fuel-injection nozzle fabrica-
tion,9,10 to high-resolution manufacturing
and texturing of stents or other im-
plantable biomaterials.11 At a smaller scale,
inexpensive benchtop laser cutting and en-
graving systems can be purchased by the
hobbyist or small company for artistic and
architectural renderings. More recent de-
velopments in LDW� include chemically
assisted techniques such as laser-drilling
ceramics or biomaterials and laser-induced
backside wet etching (LIBWE) of glass.12,13

In fact, one may also consider laser clean-
ing to be a controlled LDW� process.14

The fundamental interactions leading
to material removal can be thermal or
athermal, depending primarily on the ma-
terial/environment characteristics and the
pulse duration of the laser. These interac-
tions have a direct effect on the quality of
the resulting features. For instance, a heat-
affected zone (HAZ) tends to occur in the
vicinity of thermally removed material.
This region has structures and properties
that can differ from the bulk material and

can exhibit additional surface relief. Either
of these effects may be beneficial or detri-
mental, depending on the application. In
contrast, athermal and multiphoton ab-
sorption processes caused by ultrafast
lasers can reduce the formation of a HAZ
and enable features smaller than the dif-
fraction limit.15,16

Laser Direct-Write Modification
(LDWM)

In LDWM, the incident laser energy is
usually not sufficient to cause ablative ef-
fects but is sufficient to cause a permanent
change in the material properties. Typi-
cally, these processes rely on thermal
modifications that cause a structural or
chemical change in the material. A com-
mon example of such processes is the
rewritable compact disc, in which a diode
laser induces a phase transition between
crystalline and amorphous material.17 In
industrial applications, one may consider
laser cladding, where a surface layer dif-
ferent from the bulk material is produced
through melting and resolidification,18

or solid free-form fabrication (SFF) ap-
proaches such as selective laser sintering
(SLS),19 as important modifying processes
that would fall under the umbrella of
LDWM.

Many LDWM applications require a
specific optical response in the material of
interest beyond simple thermal effects.
Optically induced defects or changes in
mechanical properties can lead to many
non-ablative material modifications. For
instance, photoresists respond to light by
breaking or reforming bonds, leading to

pattern formation in the material. Alterna-
tively, LDW can cause defects in photo-
etchable glass ceramics20 or other optical
materials through single- and multiphoton
mechanisms,21 enabling novel applications
in optical storage,22 photonic devices,23,24

and microfluidics.25

Laser Direct-Write Addition
(LDW�)

LDW� is perhaps the most recent of the
laser direct-write processes. In this tech-
nique, material is added to a substrate
using various laser-induced processes.
Many techniques are derived from laser-
induced forward transfer (LIFT), where a
sacrificial substrate of solid metal is posi-
tioned in close proximity to a second sub-
strate to receive the removed material.26

The incident laser is absorbed by the ma-
terial of interest, causing local evapora-
tion. This vapor is propelled toward the
waiting substrate, where it recondenses as
an individual three-dimensional pixel, or
voxel, of solid material. Such an approach
has found important use in circuit and
mask repair and other small-scale applica-
tions where one needs to deposit material
locally to add value to an existing structure.
This general technique has significant ad-
vantages over other additive direct-write
processes, in that these laser approaches
do not require contact between the de-
positing material and a nozzle, and can en-
able a broad range of materials to be trans-
ferred. Variations on the general LIFT
principle allow liquids, inks, and multi-
phase solutions to be patterned with
computer-controlled accuracy for use in a
variety of applications such as passive
electronics or sensors.27,28

Alternatively, LDW� techniques can
rely on optical forces to push particles or
clusters into precise positions,29 or on chem-
ical changes in liquids and gases to pro-
duce patterns. For instance, laser-induced
chemical vapor deposition,30 or multipho-
ton polymerization schemes of liquid 
photoresists,31 can be used to fabricate
three-dimensional stereographic patterns.
Examples of this have been demonstrated
and show promise for many applications
such as fabricating photonic structures or
biological scaffolding.

Highlights of Articles in This Issue
The breadth of LDW processing makes

it impossible to cover the entire topic in a
single MRS Bulletin issue. The situation is
further complicated by the fact that many
LDW processes have either grown into
mature fields in and of themselves (laser
cutting, welding, etc.) or provide ample
topical material for an independent MRS
Bulletin issue (solid free-form fabrication,
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Figure 1. Schematic illustration of a laser direct-write system. The basic components of an
LDW system are (left to right) a substrate mounting system, a beam delivery system, and a
laser source. Motion control of either the beam delivery system or the substrate mounting
system is typically accomplished using computer-assisted design and manufacturing
(CAD/CAM) integrated with the laser source.



laser cleaning, fiber laser development,
etc.). Therefore, we restrict ourselves to
LDW processes developed in the past few
years that provide opportunities for
growth beyond the traditional industrial
applications. Clearly, this coverage is not
exhaustive, and there are many other LDW
approaches that could be discussed. How-
ever, the reader of this issue should get a
good sense of the possibilities of LDW.

We have purposely avoided focusing
on femtosecond laser techniques because
the August 2006 issue of MRS Bulletin on
“Ultrafast Lasers in Materials Science”
covered this topic in detail, including
some LDW approaches. Femtosecond
lasers are very important in many of the
newer LDW approaches, as they enable
higher-resolution features, detailed control
over structures, and unique nonthermal
processing capabilities. The reader is re-
ferred to the earlier MRS Bulletin for more
information.

In the first article in this issue, by 
Grigoropoulos et al., we look at ap-
proaches for LDW� that can produce fea-
tures significantly smaller than the
diffraction limit of light. In this approach,
a near-field phenomenon is utilized that
radiates the electromagnetic field to the re-
gion directly below an atomic force micro-
scope (AFM) tip, removing material in an
area as small as 10 nm. Rastering is con-
trolled by the motion of the AFM stage,
and various features can be produced. By
coating the tip with metal, deposition on
the nanoscale by LDW� can also be 
accomplished.

Two articles on LDW� follow. In the
first, by Arnold et al., we look at LDW� of
complex materials, including biological
materials such as cells and proteins, elec-
trochemical materials for energy storage,
and even complete semiconductor devices.
The approach relies on laser forward
transfer of multicomponent suspensions
composed of different liquid and/or solid
materials, which allows for deposition
without harming sensitive material prop-
erties. This technique can be further com-
bined with LDWM or LDW� to perform
postdeposition processing with the same
tool. Next, Stuke et al. turn our atten-
tion to the LDW� fabrication of three-
dimensional structures such as cages for
trapping particles and photonic structures
for guiding light. In this technique, a laser-
based chemical vapor deposition method
produces highly conductive, freestanding
metal features. One particularly interest-
ing application is the production of carbon
nanotubes and wires in an LDW fashion.

One of the key advantages of LDWM
for material modification, in contrast to
many parallel approaches, is the ability to
apply a unique photon flux at each laser
spot. Livingston and Helvajian discuss a
real-time sequencing approach that pro-
grams the incident laser pulses to enable
distinctive, site-selective processes. This
can be applied to photomodifiable glasses
and glass ceramics to produce complex
features that would be difficult or impos-
sible to make by other methods.

Finally, we look toward the future of
LDW with Sugioka et al., who discuss the
global industrial aspects of LDW process-
ing. Cutting-edge applications in Europe,
the United States, and Japan are discussed,
with implications for long-term growth.

Summary
One of the unique attributes of laser

direct-write processes is that the general
methodology enables a complete range of
materials processing in order to fabricate
devices and structures. These techniques
make it possible for a single tool, located
in the research lab or on the factory floor,
to design and build an entire part with
precise control over the composition,
structure, and properties on each laser 
pulse.

Although that vision of LDW has not
been reached, the articles in this issue of
MRS Bulletin cover additive, subtractive,
and modification methods and demon-
strate a commercially viable technology
with abundant opportunities for funda-
mental research that will continue to push
advancements in the field. Ideally, these 
approaches lend themselves to rapid proto-
typing and small-scale production where
unique features are needed for a desired
application. However, they also find im-
portant implementation in commercial
ventures where high-repetition-rate, multi-
beam laser systems allow LDW to compete
with parallel processing in speed and cost.
The impact of LDW processes in ad-
vanced applications will continue to grow
as new methods and technologies become
available and the demands for more precise
control over material structures and prop-
erties are met. 
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