
Photovoltaic Market
World annual energy consumption is pre-

dicted to grow from the current 13 terawatt - 
years (TWyr) to as much as 30 TWyr by
2050.1 As we struggle to meet this huge
demand, the global energy sector will also
face two pressing issues: declining fossil
reserves and climate change caused by
artificially produced greenhouse gas
emissions.

Nuclear power is considered a leading
candidate for reduced-carbon-emission
electricity production. There is, however,
uncertainty about the size of nuclear fuel
reserves, the efficiency of nuclear reactors
when using lower - grade uranium ores,
and the likelihood of finding satisfactory
solutions for nuclear waste disposal. Esti-
mates by the International Atomic Energy
Agency in dicate that nuclear power
growth will  flatten in coming years.2

In terms of renewable sources, hydro-
electric power is one of the dominant
technolo gies today, but supply expansion
is limited. 

Wind power is approaching competi-
tiveness with conventional power pro-
duction and must be considered as an
important source in meeting future energy
needs. Some estimates, however, place the

total us able wind energy production in the
2–4 TWyr range, much less than the
30 TWyr level.1

With roughly 125,000 TW of solar
power striking the earth at any time, solar
may be the only renewable energy source
with the capacity to meet a large fraction
of future needs.

There are many different approaches for
capturing solar energy.1 Photosynthetic solar
conversion for biofuel production is under
active investigation. Solar thermal systems
convert the sun’s radiation into thermal en -
ergy for heating applications or, in conjunc -
tion with solar concentration, into electricity.

This ar ticle deals with photovoltaic (PV)
electricity generation, and the key issue is
cost. Assuming a 20 - yr system lifetime, the
present cost of PV - generated electricity is
in the range of $0.25–$0.65/kWh, as com -
pared with the cost of coal - based electricity,
which is closer to $0.04/kWh.3

Generating a significant fraction of future
energy requirements from PVs is a major
challenge, particularly because pres ent PV
production is almost insignificant relative
to fossil - fuel–based generation. In 2003 in
the United States, solar energy produced
�0.1% of the electricity generated by fossil

fuels. At the same time, PV costs have
reached a range where demand is very elas -
tic, with small decreases in price causing
large increases in sales. As a consequence,
PV manufacturing is growing exponentially
at approximately 30% per year, and this
rate is, if anything, increasing (Figure 1). In
2005, the PV market exceeded $10 billion.4
This growth has been driven by govern-
ment policies (subsidies or feed - in tariffs),
mainly in Japan and in Germany.5 PV pro-
duction will be further stimulated by the
PV goals for Europe of supplying 12% of
total energy and 22% of electricity from re-
newable sources in 2010.6,7 Similarly, the
Solar America Initiative in the United
States calls for investments to make PV
power competitive with other forms of re-
newable energy by 2015,8 and more than
15 U.S. states have mandated renewable
energy standards.

This market growth will drive price re-
ductions. The historic learning curve for
PV module manufacturing shows a 20%
price reduction for every doubling of ac-
cumulated sales through about 2003 (see
Figure 2). The price of standard PV mod-
ules, typically expressed in units of cost
divided by the power produced under
peak solar illumination (in watts), is cur-
rently around $3–$4/Wp. Taking into ac-
count PV system costs that are not related
to the solar panel raises the price to about
$6–$8/Wp, which converts to roughly the
$0.25–$0.65/kWh range given earlier. As-
suming a 25%–30% per year market
growth, the learning curve yields a fac-
tor of two drop in cost every 8–10 years.
Reach ing a competitive cost with current
coal - produced electricity would take
30–40 years. Although this extrapolation is
strongly dependent on market growth
and learning curve assumptions, as well
as future prices of conventional electricity,
most estimates give similar time frames. If
these estimates prove true, PVs will have
a limited ability to make significant contri-
butions to 2050 energy needs.

The learning curve derives primarily from
wafer - based crystalline silicon (monocrys-
talline or single - crystal, multicrystalline, and
some ribbon silicon) modules that domi-
nate the PV market, comprising more than
90% of shipments in 2005 (Figure 3). This
is typically referred to as the first genera-
tion of photovoltaics. The dominance of
crystalline silicon stems from its wide avail -
ability and reliability, as well as from
knowledge and technology borrowed
from the microelectronics industry and
 resulting from more than two decades of
terrestrial PV research with substantial gov-
ernment funding. The price reductions
already achieved with silicon are significant
(Figure 2). Although the shortage in silicon
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feedstock that is currently influencing
the learning curve (Figure 2) is likely to
be resolved in the near future, there are
still questions about whether the present
curve can be maintained with silicon.9 The
movement toward thinner silicon wafers
and the future development of higher -
 efficiency cells will certainly help. Even if
this trend is maintained, a discontinuity
in the learning curve is needed for the

30–40 - year time frame discussed here to
be reduced. 

It is a common belief that lowering PV
costs to a level competitive with conven-
tional power sources will require sig -
nificant reductions in manufacturing
costs, which may be realized in thin films,
and/or new architectures that lead to
dra matic im provements in efficiency.10 In-
deed, once in large-volume production,

second - generation cells based on thin
films will offer the potential for apprecia-
bly lower areal manufacturing costs with
reason able efficiencies. 

On the other hand, third - generation
concepts attempt to exploit a much larger
fraction of the solar spectrum to achieve
very high efficiencies while also lower-
ing costs.

Second -and third - generation inorganic
PV technologies are the principal subject
of this issue of MRS Bulletin. Although not
discussed in detail here, organic solar cells
also have significant potential for low - cost
energy production, and the interested
reader is referred to the January 2005 MRS
Bulletin for an in - depth review of these
technologies.11

Photovoltaic Devices
A solar cell is a semiconductor device

that converts photons from the sun into
elec tricity. Figure 4 shows the generic struc -
ture and operation of a  single - junction in-
organic solar cell. The highest efficiency
devices (e.g.,  single - crystal Si) are made on
crystalline substrates. This is an important
contributor to system costs, which second -
 generation approaches seek to reduce
through thin - film techniques compat i ble
with low - cost substrates like glass. At the
heart of the cell is the light - absorbing ma -
te rial that converts photons into carriers
(electrons and holes) via the photovoltaic
effect. The different PV technologies dis-
cussed in this issue are identified by the
composition of the absorbing ma te rial. After
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Figure 1. Photovoltaic cell production in peak megawatts (MWp) as reported by the PV
industry. Shipments for Japan, Europe, the United States, China, and the rest of the world
(ROW) are shown. (Source: PV News, Photon International, and the IEA Photovoltaic Power
Systems Program.)

Figure 2. Photovoltaic module prices per peak watt (Wp) against cumulative production in
peak megawatts (MWp). (After T. Surek, National Renewable Energy Laboratory, 2007).

Figure 3. Distribution of photovoltaic
cell production by technology in 2006:
multicrystalline Si (mc-Si),  single-crystal
Si (sc-Si), amorphous Si (a-Si), ribbon
Si, CdTe, and copper indium diselenide
(CIS). [Source: Photon International
(March 2006).]
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carrier generation, the electrons and holes
separate and are collected at the contacts.
There are two main modes for charge
carrier separation: drift of carriers, driven
by the built - in electrostatic field of a p–n
junction, and diffusion of car riers from
zones of high   to low  carrier con centration
following an electrochemical potential gra -
dient. These are illustrated in Figure 4.
When drift is important, the structure of
the cell (e.g., the depletion width) can be
used to compensate for poor diffusion.
When diffusion is dominant, optimizing
ma te rials quality becomes more impor-
tant. Drift is typical of inorganic cells,
which are normally p–n junction devices.
The highest - efficiency de vices, however,
rely on diffusion to transport carriers to
the junction for collection. Diffusion is the
dominant transport mechanism for dye or
organic solar cells.

The properties of the contacts and win-
dow layers are also critical to device per -
form ance. At least one contact must be
electrically conducting and transparent to
photons in the spectral range where the
absorber creates carriers. Transparent con-
ducting oxides are the ma te rial of choice
for this purpose. It is also important to
point out that the simple structure and the
division into well - defined layers with spe-
cific functions shown in Figure 4 are not
adequate to describe many solar cells. In a
number of designs, light enters through
the substrate, and contacts can be quite
complicated, fabricated from several layers

with significant interdiffusion at metallur-
gical junctions.

Photovoltaic Figures of Merit
Some of the basic metrics for character-

izing PV devices will appear in the ar ticles
in this issue. Figure 5 shows a typical
current–voltage characteristic of a solar
cell in the dark and under illumination.
Power is generated when the cell operates
in the fourth quadrant of the graph where
voltage is positive and current is negative.
The fill factor is the power produced at the
maximum power point on the illuminated
J–V curve divided by the product of the
open - circuit voltage (Voc) and short - circuit
current (Jsc). Think of it as a meas ure of
how rectangular the J–V characteristic is in
the fourth quadrant. Another useful meas -
ure, quantum efficiency (QE), is the ratio
of the number of charge carriers collected
by the solar cell to the number of photons
at a given illuminating energy. Ideally, it is
a step function at the bandgap of the ab-
sorber. In real devices, however, the absorp -
tion threshold is less abrupt12—the step
is sloped instead of vertical—and there is
also a roll - off at higher energies.

The most fundamental meas ure of per -
form ance is, of course, the energy conver-
sion efficiency—the percentage of power
converted from sunlight to electrical en-
ergy. Two decades ago, Shockley and
Queisser13 used a detailed-balance approach
to estimate the thermodynamic efficiency
limit for solar cells with a  single absorbing

ma te rial ( single junction). Their approach
balanced the radiative transfer be tween the
sun, modeled as a black body at 6000 K,
and the solar cell, assumed to be a 300 K
black body, which absorbs photons with
energy above an energy threshold (the
bandgap). They varied the bandgap of the
absorber and the solid angle from which
the solar cell can collect the sun’s radiation
(concentration). As the bandgap of the
 absorber is increased, the open - circuit
voltage increases, but because only pho-
tons with energy above the bandgap are
converted into carriers, the short - circuit
current decreases. This tradeoff between
voltage and current leads to a maximum
in efficiency as a function of bandgap. For
unconcentrated solar irradiance (one sun),
a maximum efficiency limit of �31% at a
gap near 1.3 eV was found. For full solar
concentration (46,300 suns), maximum
 efficiency was �41% for a 1.1 eV ma te rial.

Improving the Cost Performance
of PV Devices

The record unconcentrated efficiencies
for  single - crystal Si (sc - Si) cells and mod-
ules are 24.7% and 22.7%, respectively. For
multicrystalline Si (mc - Si), the best effi-
ciencies are 20.3% and 15.3%, respec-
tively.14 These values are far enough below
the theoretical limit that there is still room
for efficiency improvements; hence, labo-
ratory and industrial - scale efforts focus on
improving cell efficiencies and also on im-
plementing innovative and low - cost fab -
rication proc esses. Whereas wafer - based
Si solar cells dominate the market and are
likely to maintain this dominance in the
near future, approaches with the potential
for much more significant solar electricity
cost reductions are needed if PVs are to
contribute substantially to future energy
needs. In this issue of MRS Bulletin, we
have chosen to focus on second - and third -
generation approaches with the potential
for achieving significant cost re ductions.
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Figure 4. Schematic illustration of a p–n junction solar cell, showing the structure, carrier
generation, and separation. Wavy arrows represent photons. Ev is the valence-band energy,
Ef is the Fermi level, and Ec is the conduction-band energy. (Courtesy of S. Kurtz.)

Figure 5. Current–voltage (J–V ) charac -
teristic of a solar cell with and without
illumination. The open-circuit voltage
(Voc), short-circuit current (Jsc), and fill
factor are identified.
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For a review of the status of crystalline and
mc - Si photovoltaic technology, interested
readers are referred to Reference 15.

In the simplest view, the cost of PV -
 generated electricity is set by a tradeoff  be -
tween manufacturing cost, system lifetime,
and solar conversion efficiency. Second -
 generation approaches focus on reduced
manufacturing cost using thin - film tech-
niques to lower substrate costs, ma te rials
usage, and proc essing expense. The first
two ar ticles in this issue, by Schropp et al.
and Beach and McCandless, describe
 recent activities in polycrystalline/
 amorphous silicon solar cells and in
chalcogenide - based thin - film PVs. Despite
the remarkable progress these technolo-
gies have made in the last years, the actual
market share of thin - film technologies is
very modest (�7% total for CIS, CdTe,
and a - Si; see Figure 3). In part, this is be-
cause proc esses and equipment for manu-
facturing thin - film modules are less
mature than for crystalline silicon. There is
considerable room for ma te rials, energy
utilization, and proc ess optimization. This
drives a strong need for basic ma te rials
 research, especially as it relates to lower
manufacturing costs with improved relia-
bility and module efficiency.

Third - generation technologies attempt
to “leapfrog” to a cost - efficiency per form -
ance competitive with conventional elec-
tricity production. They are sometimes
defined as approaches that do not rely on
conventional p–n junctions. Organic and
dye - sensitized solar cells are ex amples. A
more formal definition involves cells ca-
pable of higher efficiency then the  single -
 junction Shockley–Queisser limit. Using
this definition, the next two ar ticles, by
Dimroth and Kurtz and by Luque et al.,
discuss third - generation PV approaches,
such as multijunction and quantum dot
solar cells. Returning to the efficiency dis-
cussion, from a purely thermodynamic ar-
gument, the maximum solar conversion
efficiency for the sun at 6000 K and a solar
conversion device at 300 K  follows from
the Carnot efficiency and is about 95%.
The much lower  single - junction Shockley–
Queisser limit of roughly �30% arises
from two fundamental loss mechanisms:
transmission loss of photons with energies
below the bandgap, and thermal relax-
ation of hot carriers created by photons
with energies greater than the bandgap.

Tandem or multijunction approaches
are discussed first by Dimroth and Kurtz.
They integrate mul tiple absorbers with
different bandgaps into the same cell. A
broader portion of the solar spectrum is
absorbed while minimizing thermal relax-
ation losses. Tandem solar cells based on
III–V compound semiconductors are a

relatively mature technology used exten-
sively in space power applications where
the power - to - weight ratio is the key figure
of merit. They have the highest reported
efficiencies but are fabricated on  single -
crystal substrates using epitaxial deposition
techniques and, hence, are relatively ex-
pensive to manufacture. Generating low -
 cost electricity with these devices requires
solar concentration to reduce the  required
cell area. Research and development in
this field is focused on increasing the effi-
ciency from 40% to 50% and on reducing
manufacturing cost while optimizing the
cells for specific applications.

In their ar ticle, Luque et al. discuss a
more speculative approach toward very
high efficiencies based on nanotechnology.
Quantum-dot – based cells have a theoreti-
cal thermodynamic conversion efficiency
of up to �66% under high concentration,
similar to that of a three - junction cell. In
particular, approaches based on mul tiple
exciton generation (two or three excitons
generated per incident photon) mitigate
the losses associated with thermalization
of carriers created by above - bandgap ab-
sorption, whereas intermediate - band solar
cells focus on capturing energy from sub-
bandgap photons.

The final ar ticle, by Fortunato et al., is
devoted to an important class of inorganic
ma te rials found in nearly every thin - film
PV device, namely, transparent conduct-
ing oxides (TCOs). TCOs function simul-
taneously as a window layer, enabling light
to reach the active absorbing ma te rial, and
as an ohmic contact, transporting photo-
generated charge carriers away from the
absorber. Indium-oxide–based films are
presently the dominant TCO. The high cost
of In, coupled with the grow ing realization
that the properties required of TCOs are
dependent on the PV technology under
consideration, is driving research into alter-
native ma te rials and proc esses tailored to
specific applications. The ar ticle reviews
TCOs in current use, the requirements that
present and future PV technologies place
on TCOs, and research directions designed
to meet these needs.

Summary
Photovoltaic technology holds the

promise of an almost inexhaustible energy
source with minimal environmental im-
pact. Significant reductions in the cost of
PV - produced power are required to real-
ize this potential, and the inorganic PV
technologies reviewed in this issue are fo-
cused on meeting this challenge. In the
simplest view, all PV devices perform
the same two functions: conversion of
photons into carriers and collection of
those carriers. In addition, the research

directions pursued in each technology
have the same ultimate goals of reduced
manufacturing cost and increased conver-
sion efficiency. In reality, the rich set of ma -
te rials issues that must be resolved to
achieve these goals vary significantly from
one ma te rials system to the next. The abil-
ity of researchers in this field to identify
and overcome the challenges associated
with each technology will determine
which are successful in making it to the
marketplace and ultimately whether PVs
are successful in realizing their promise.
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