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Introduction
Polymers have been a part of life since

the beginning of humankind. From tar and
shellac, tortoise shell and horns, to today’s
synthetic offerings such as polyolefins,
epoxies, and engineering resins, polymers
provide crucial ma te rials for construction,
commerce, transportation, and entertain-
ment across the globe. Estimates of global
polymer production range from 250 billion
pounds to more than 400 billion pounds
(approximately 114–181 billion kg) annually.

In the majority of their diverse applica-
tions, polymeric ma te rials are not chemi-
cally or molecularly homogenous but are
multicomponent systems. By adding fillers,
such as minerals, ceramics, metals, or even
air, ma te rials scientists can generate an infi-
nite variety of ma te rials with unique phys-
ical properties and competitive production
costs. For ex ample, adding filler to a com-
modity thermoplastic such as polypropy-
lene can achieve per form ance levels that
would otherwise require a much more

 expensive engineering plastic. Similarly,
combining different polymers to form a
polymer blend or resin can increase the
value of existing polymers.

Polymer nanocomposites incorporate a
new spectrum of fillers that extend the
function and utility of polymers while
main taining the manufacturing and proc -
essing flexibility inherent to plastics, ther-
mosets, and resins. In particular, polymer
nanocom posites have been successful
with regard to overcoming traditionally
antagonistic combinations of properties.

Since the first reports in the late 1980s,1–6

the term “polymer nanocomposite” has
evolved to refer to a multicomponent sys-
tem in which the major constituent is a
polymer or blend thereof and the minor
constituent has at least one dimension below
100 nm. Polymer nanocomposite is an ap-
propriate synonym for inorganic–organic
hybrids and molecular composites and also
encompasses mature commercial products

such as polymers containing carbon black
or fumed silica. This issue of MRS Bulletin
focuses primarily on polymer nanocompos -
ites containing nanoscale clays and vari-
ous carbon nanotubes to illustrate the status
of this rapidly evolving research and de-
velopment enterprise.

The numerous reports of large prop-
 erty changes with very small additions of
nanopar ticles (�1–5 wt%) have fueled the
view that nanopar ticles are a magic pixie
dust that delivers huge dividends. In fact,
recent market surveys have estimated
global consumption of polymer nanocom-
posites at tens of millions of pounds
(�$250 million), with a potential annual
average growth rate of 24%, to almost
100 million pounds in 2011 at a value
exceeding $500–800 million.7–9 Major rev-
enues are forecast from large commercial
opportunities such as automobile parts,
coatings, flame retardants, and packaging,
where lower - cost, higher - per form ance
materials would improve durability and
design flex ibility while lowering unit price
and life cycle cost.

Whatever the case for the long - term
economic growth of polymer nanocom-
posites, the opportunities to deliver targeted
mate rial per form ance reside with the  im -
plications associated with nanoscale multi-
phase systems. There are important
differences when the fillers shrink from
microscale to nanoscale. This issue of the
MRS Bulletin provides a snapshot of exem -
plary successes, future opportunities, and
the critical scientific challenges still to be
addressed for these nanoscale multiphase
systems. In addition, these ar ticles provide
a perspective on the current status of poly-
mer nanocomposite science and technol-
ogy as well as future directions to move
it beyond additive concepts to designed
ma te rials and devices with prescribed
nanoscale composition and morphology.

The Nano Advantage
When fillers are nanoscopic, there are

advantages afforded to filled polymers and
composites that lead to per form ance en-
hancements. These advantages result pri-
marily from filler size reduction and the
concomitant increase in surface area. The
size of the additive might drop by up to
three orders of magnitude relative to con-
ventional alternatives. In contrast, many
nanotechnologies associated with electri-
cal or optical properties benefit from new
physical phenomena arising from quan-
tum confinement effects induced by the
nanoscale dimensions of the ma te rial. The
literature about polymer nanocomposites
contains many discussions about the im-
plications and physical manifestations of
the reduction in filler length scale.10–14
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For ex ample, compare a microcomposite
and a nanocomposite with the same volume
fraction of a secondary constituent (filler),
where the spherical par ticles have volumes
of 1 μm3 or 1 nm3 per par ticle, respectively.
The mean par ticle–par ticle separation is
smaller by three orders of magnitude, the
total internal interfacial area increases by
six orders of magnitude, and the number
density of constituents increases by nine
orders of magnitude in the nanocomposite.
Although these numbers alone are impres -
sive, the filler size must be viewed relative
to the size of polymer mole cules to cap-
ture the full potential impact of nanoscale
fillers on composite properties.

Many properties are related to the size of
the polymer chain, which can be expressed
as the radius of gyration Rg (the second
moment of the three - dimensional distri-
bution of the monomers of the polymer
chain—approximately the expanse of the
mole cule). Rg is on the order of 3–30 nm.
Depending on the strength of interaction
between the filler surface and the matrix,
the polymer chains in close proximity to the
filler will be perturbed with respect to
those in the bulk (i.e., away from the in-
terface). The thickness t of this interfacial
region that surrounds the par ticle is, to
first order, independent of the size of the
particle. Thus, as the par ticle size decreases,
the relative volume of this interfacial ma -
te rial, Vinterface, with respect to the volume
of the par ticle, Vpar ticle, will increase.

Figure 1 shows this ratio, Vinterface/Vpar ticle,
as a function of par ticle aspect ratio from
plates (aspect ratio �1) to spheres to rods
(aspect ratio �1). The filler size is ex-
pressed as δ, the ratio of the thickness of the
interface to the smallest dimension of
the par ticle. Micrometer - sized fillers have
δ� 0.01, so that at any aspect ratio, the vol -
ume of the par ticles exceeds that of the in-
terfacial region. However, when the fillers
are reduced to the nanoscale and δ� 1–10,
the volume of the interfacial region exceeds
the volume of the par ticle. In addition, at a
fixed value of δ, the aspect ratio has an ef-
fect on Vinterface/Vpar ticle, showing an expected
increase from plates to rods to spheres as
the fillers change from two - dimensional
(plate) to one - dimensional (rod) to zero -
 dimensional (sphere) objects. The magni-
tude of this change increases dramatically
as the filler size drops; for ex ample, at δ
10, Vinterface/Vpar ticle increases by two orders
of magnitude between plates and spheres.

Furthermore, these calculations demon-
strate the impact that even a small volume
fraction of filler has on the surrounding
polymers. For ex ample, by dispersing a
mere 1 vol% of a nanosphere (radius
�2 nm) in a polymer (interfacial thickness
�6 nm), the volume fraction occupied by

the interfacial region is �63 vol%, sug-
gesting that more than half of the com -
posite is affected by the presence of the
second - phase par ticles. If the par ticle is in-
creased to 20 nm in radius without chang-
ing the interfacial thickness or par ticle
loading, the volume occupied by the in-
terfacial region would be only �1.2 vol%.

The importance of polymer–par ticle in-
teractions is amplified in polymer nanocom -
posites such that the interface and the
cooperativity between par ticles dominate
the macroscopic properties. For ex ample,
weak forces between par ticles, such as
van der Waals, are more pronounced for
nano - sized par ticles because of lower sur-
face roughness, smaller average par ticle
separations, and thus higher dispersive
forces. Also, because of the nanoscopic di-
mensions of the par ticles, the accessible
aspect ratio of discrete secondary con-
stituents can approach 100 or more. These
high - aspect - ratio, nanoscale fillers can
reach percolation thresholds at �1–5 vol%
and thereby exhibit large increases in bulk
mechanical and transport properties at
these low loadings. The percolation
threshold is the filler concentration at
which the electrical conductivity increases
sharply by orders of magnitude, indicat-
ing that conductive pathways span the
macroscopic sample. Thus, the casual ob-
servation that nanofillers act as pixie dust
is firmly rooted in the implications of re-
ducing the size of the fillers by up to three
orders of magnitude.

Scope and Impact
As with traditional filled plastics, an

 infinite variety of possible polymer–
nanopar ticle combinations conceptually
affords tunability. Thus, given the diver-
sity of possible properties and tolerable
costs, there is no universal “best” nanopar-
 ticle filler for polymer nanocomposites.
The best nanopar ticle filler (or traditional
filler, for that matter) is determined by
meeting both a specific set of physical
properties and a price point associated
with a particular part or product. Table I
compares the size, shape, properties, and
uses of traditional fillers and newer nano-
scale fillers. As noted earlier, a few tradi-
tional fillers have sizes below 100 nm, and
nanoscale fillers can access high aspect ra-
tios. Although there is considerable over-
lap in the elastic moduli and thermal
conductivities between the traditional and
nanoscale fillers, the electrical properties
of the carbon -based nanofillers are in a
class by themselves, with conductivities
more than 100 times higher. This sum-
mary of fillers encourages one to imagine
many possibilities for remarkable proper-
ties within the broad ma te rials class of
polymer nanocomposites.

The first key demonstration of polymer
nanocomposites was provided by the pio-
neering work of Okada and co - workers at
Toyota Central Research in the late
1980s.1–4 By combining inclusion and col-
loidal chemistry of mica - type layered sili-
cates (nanoclay) with surface - initiated

Figure 1. The ratio of interfacial volume to the par ticle volume (Vinterface/Vpar ticle) as a function
of the par ticle aspect ratio and the ratio of the interfacial thickness to the par ticle size (�).
The aspect ratio and δ are defined in the schematic at right (r is radius, l is length, h is
height). The interfacial thickness (red shell, t) is assumed to be independent of the par ticle
size. As par ticles decrease in size to less than 100 nm, the interfacial volume around a par ticle
can dominate the physical properties, and this is particularly evident for spheres and rods.
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polymerization, they demonstrated that
only �2–4 vol% of layered silicate suffi-
ciently improved the mechanical proper-
ties of nylon - 6 polymer at elevated
temperatures to enable its use inside an
automotive engine compartment.

Since then, the patent and literature ac-
tivity has been astonishing (Figure 2).15

From 1992 to 2004, the number of citations
for polymer nanocomposites has doubled
every two years, indicating that these ma -
te rials are still on the steep part of the tech-
nology S - curve (Figure 2a). Since 2001,
polymer nanocomposites represent �43%
of the broader nanocomposite field, which
includes metals, ceramics, and thin films
(Figure 2b). Of the publicly available liter-
ature on polymer nanocomposites, the ma -
jority (80%) is in peer - reviewed journals,
whereas patents have maintained a con-
stant fraction (8–10%). Together, layered
silicates (nanoclays) and carbon nanotubes
represent almost 50% of the ongoing in-
vestigations. Polymer–clay nanocomposites,
however, might be reaching saturation, as
evidenced by a diminishing growth rate in
publications and patents per year. In con-
trast, polymer–carbon nanotube composites
have rapidly accelerated since the
availabil ity of carbon nanotubes became
widespread in the late 1990s and are still
exhibiting a steady growth rate (Figure 2b).

After almost 20 years, the diversity in
scientific investigations, technology ad-
vancements, proc essing innovations, and
product development is staggering. A sig-
nificant number of excellent review papers
(e.g., clays16–23 and carbon nanotubes22–26)
and books27–30 are available that chronicle
and summarize the status of various
nanopar ticle–polymer combinations and
the broad scientific and technological chal-
lenges that still need to be overcome.

This issue of MRS Bulletin provides six
ar ticles to illustrate the breadth of activity
in polymer nanocomposites. Hunter et al.
highlight the issues in polymer–nanoclay
composites, where the most commercial
activity currently exists. Baur and Silver-
man consider the opportunities in adding
nanofillers to traditional engineering poly-
mer composites that use continuous fiber
reinforcements. Schadler and co - workers
focus on the implications and engineering
possibilities of larger interfacial areas per
unit volume. Krishnamoorti addresses the
issues of weak forces becoming significant
for nano - sized components and strategies
for overcoming their tendency to agglom-
erate. Winey et al. explore opportunities
for nanofillers to modify electrical and
thermal properties of polymers. Finally,
Hule and Pochan consider the opportuni-
ties of polymer nanocomposites in the
medical arena.

Figure 2. Growth trends of the polymer nanocomposite enterprise based on yearly pub -
lications catalogued in the CAPLUS and MEDLINE databases of the American Chemical
Society.15 (a) Number of occurrences per year of the term “nanocomposite” (NC, open
squares) and “nanocomposite” appearing with “polymer” (PNC, solid circles). “Polymer
nanocomposites” (PNC) is further refined to those discussing “clay” PNC (red symbols)
and “nanotube” PNC (blue symbols). (b) Analysis of the number of citations per year,
showing the total fraction of “nanocomposite” occurrences that discuss polymer nanocom -
posites (PNC:NC, open squares), as well as the total fraction of “polymer nanocomposite”
occurrences that are patents (PNC patents, solid circles) that discuss clay-based PNCs
(PNC with “clay,” red symbols) and that discuss nanotube-containing PNCs (PNC with
“nanotube,” blue symbols).
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Future Outlook
What’s next? Where are the ground-

breaking opportunities? What are the
challenges that pervade polymer nano-
com posites? Of extreme importance in all
the potential markets is the establishment
of a better, quantitative understanding of
the occupational health risks.31 For poly-
mer nanocomposites, this is particularly
impor tant during the production of nano -
 sized fillers and composite fabrication, as
well as during recycling, incineration, or
combustion.

Whereas the recent increased availabil-
ity of the new nanoscale fillers has been a
major contributor to the rapid develop-
ment of polymer nanocomposites, robust
structure–property–proc essing relation-
ships are critical to further market infiltra-
tion. Relationships that provide a priori
predictions of macroscopic properties for
a given polymer, a specific nanoscale filler
(or fillers), and a particular spatial arrange -
ment of the filler are still in their infancy.
For ex ample, to what extent can existing
continuum composite theories be modi-
fied to account for the implications that
arise when the filler is comparable to the
polymer in size? Are the properties cur-
rently being achieved in polymer nanocom -
posites as high as we can expect to obtain?

However, approaches to these chal-
lenges are not without precedent. The
 underlying science and constitutive rela-
tionships for these nanoscopic ma te rials
should share commonality with collections
of nanoscopic polymer chains, whose frame -
work has been developed through nearly
a century of chemistry and physics and is
the foundation of the global polymer in-
dustry. Future developments toward the
full potential of nanoscale multicomponent
polymer blends rely on these previous in-
sights to tackle the ambiguities associated
with smaller filler sizes, where the distinc-
tion between filler and polymer fade into
filler - mole cules and polymer - mole cules.

Economically, given the current diver-
sity in nanopar ticle cost (carbon black and
montmorillonite versus  single - wall car-
bon nanotubes), two approaches are de-
veloping based on potential markets. The
lower - cost nanopar ticles provide competi-
tion to traditional filler technologies and
have important advantages in commodity
applications, whereas the higher - cost
nanopar ticles target higher - value indus-
trial sectors such as medical and elec-
tronics. Rather than replacing existing
ma te rials and traditional filled plastics, a
common business strategy is to develop
new applications based on the uniqueness
of polymer nanocom posites, such as
shape - memory ma te rials for morphing
aircraft, self - passivating films for satellites,

and piezore sistive ma te rials for MEMs -
 based sensors. In addition, new proc -
essing tools and on - line controls are being
developed to either (1) uniformly distrib-
ute nanofiller to produce homogeneous
bulk properties or (2) spatially vary the
nanofiller concentration to meet specific
design criteria. One might refer to these
two classes of polymer nanocomposites
as nano - “filled” systems and nano -
 “composite” systems, respectively. By
drawing inspiration from biology and en-
gineered fiber - reinforced composites,
polymer nanocomposites with spatially
controlled morphology are beginning to
provide viable options to critical compo-
nents of active devices, such as fuel cell
membranes, batteries, photovoltaics, sen-
sors, and actuators.

Polymer nanocomposites have recently
become part of established modern tech-
nologies, but the most significant accom-
plishments of these ma te rials are still
ahead of us. As an increasing number of
scientists and engineers contribute to the
understanding of polymer nanocompos-
ites, what remains to be seen is which
products will be critically enhanced and
enabled by this broad and evolving class
of ma te rials.
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