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                  Introduction 
 The inverse design of nanophotonic structures, obtaining a 
geometry for a desired photonic function (  Figure 1  a–b), has 
been a challenge for decades. When treated as a pure opti-
mization problem, due to the highly nonlinear nature of the 
problem, hundreds to several thousands of iterations are 
required for a single design task, even with the most advanced 
algorithms, such as evolutionary or topology optimization 
algorithms ( Figure 1c–d ). Recently, modern machine learning 
algorithms, which have revolutionized a multitude of computer-
assisted processes, from character and speech recognition, 
autonomous vehicles, and cancer diagnostics to name a few, 
have been applied to the inverse problem in nanophotonics 
and have demonstrated great promise.     

 The major contributions to date that have been published 
to design nanostructures by utilizing machine learning tech-
niques can be categorized into three categories ( Figure 1d ). 
The fi rst, and the most fundamental one, is obtaining a model 
that is capable of designing nanostructures from the same 
shape and material it was trained on, but with different proper-
ties, such as sizes, angles, and host material. As we discuss in 
greater detail next, in works that fall within this category the 
general structure is maintained (particle with eight alternating 
shells or thin fi lm with  m  alternating layers as presented 

in   Figure 2   and   Figure 3  ) and the machine learning algorithm 
works to provide optimized parameters of the structure.  1   –   4   Our 
previous work, which introduced a model that was trained on 
different shapes, such as “H,” “h,” “n,” and “L” with given 
matched spectra, also falls within this category.  5 

 The second category incorporates models that are able to 
generalize and design geometries with shapes that differ from 
the set of shapes used during training, but are still considered 
to be in the same family (i.e., the model can generalize to other 
shapes that are similar, but not identical, to the set of shapes 
it was trained on). Attempts to devise such a model have 
recently been presented where the parameters of the model 
are the pixel of a two-dimensional (2D) image, allowing a 
more versatile and general representation of structures.  6   The 
third category is a model that is able to design any geometry, 
with any shape, achieving what the deep learning community 
calls the generalization capability. The generalization ability 
of such models needs to be verifi ed via a proper holdout test 
set (i.e., a test set) comprising structures sampled from a 
completely different distribution than the set the model was 
trained on. To this end, studies that provide a model that is 
able to design nanostructures for any spectra should exercise 
extra care in constructing a test set that would verify the gen-
eralization level of the model at hand. 
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The categories discussed above are ordered by the com-
plexity of the learning task, where each category relates to 
a different level of robustness or generalization. The most  
desirable capability is the last category, which can design 
any geometry with any shape.

Under the context of the model at hand and the assumption 
that a large volume of data is available for learning, the first 
step to achieve such a generic capability is to design a model 
that has enough degrees of freedom to allow the design of any 
geometry.

In this article, we review the topic of inverse design in nano-
photonics based on deep learning architectures and compare 

the advantages and weaknesses of the main published  
approaches. We also expand our current approach toward 
the goal of inverse design of any nanostructure with at-will 
spectral response.

Deep learning versus optimization and genetic 
algorithms
The deep learning approach to inverse design in nanophoton-
ics is still in its infancy and needs to be evaluated against more 
established optimization techniques that have been presented 
over the years. We therefore start with a general compari-
son, along the lines presented in Table I, between the deep 

Figure 1. Deep learning nanophotonics. (a) Interaction of light with plasmonic nanostructures. Incoming electromagnetic radiation interacts 

with human-made subwavelength structures in a resonant manner, leading to an effective optical response where the optical properties 

for both horizontal and vertical polarizations of the designed metamaterial are dictated by the geometry at the nanoscale rather than the 

chemical composition. (b) To date, the approach enabled by computational tools allows only for “direct” modeling (predicting the optical 

response in both polarizations (H = horizontal and V = vertical) of a nanostructure based on its geometry, constituent and surrounding 

media). However, the inverse problem, where the tool outputs a nanostructure for an input desired optical response, is much more relevant 

from a designer point of view and is currently unachievable in a time efficient way. Note: nanofab, nanofabrication. (c) The plot shows that 

if a more complex optical response is desired, the solution of the inverse problem becomes increasingly unattainable. A deep learning 

approach bridges this gap and unlocks the possibility to design, at the single nanoparticle level, complex optical responses with multiple 

resonances and for both polarizations. (d) The different categories of generalization as explained in the main text. In Category 1, a model 

is capable of designing nanostructures from the same shape and material it was trained on, but with different properties, such as sizes, 

angles, and host material. In Category 2, a model is able to generalize and design geometries with shapes that differ from the training set 

shapes but are still considered to be in the same family. In Category 3, a model is able to design any geometry, with any shape, achieving 

what is called generalization capability. Note: FEM, finite element method; NP, nanoparticle.
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learning approach and genetic algorithms, the most widely 
used type of optimization algorithm, for the inverse design of 
nanophotonics devices.5,7,8

A genetic algorithm is an optimization 
method inspired by natural selection. Such 
an algorithm can be used to solve optimization 
tasks by searching for a good solution among 
many possible solutions, with regard to a pre-
defined set of constraints. This task is further 
defined by a fitness function that measures the 
quality of a candidate solution. The goal is to 
find a solution that maximizes the fit function 
subject to the constraints. In order to find a 
good solution, the algorithm, similar to natu-
ral selection, evolves generations of possible 
solutions. At the beginning of the process, the 
algorithm starts with a random set of simple so-
lutions; it evaluates each one of them and then 
chooses which will be carried over to the next 
generation and how. Some possible solutions 
can move with no change to the next genera-
tion, some will be randomly mutated, and some 
will be randomly matched with other solutions, 
thus creating a new descendant candidate.

In each generation, all of the possible solutions 
are evaluated in order to search for the best fit, 
and the process terminates when a good solution 
is found or when a predefined threshold of the 
number of generations is reached. Although the 
nondeterministic search of the genetic algorithm 
could lead to the discovery of nontrivial solu-
tions, genetic algorithms are not suitable for tasks 
where the computation of the fitness function is 
computationally demanding. The algorithm relies 
on evaluating every single possible candidate 
in every generation, so if the evaluation time is 
demanding, the process becomes intractable.

As a specific example, evaluating a single spectrum of a 
given three-dimensional (3D) geometry for a single polar-
ization for that wavelength range takes at least one minute 

Figure 2. Design of thin-film multilayer filters for on-demand spectral response using 

neural networks.2 (a) A thin film composed of m layers of SiO2 and Si3N4. The design 

parameters of the thin film are the thicknesses of the layers di (i = 1, 2, ..., m), and the 

device response is the transmission spectrum. (b) The forward neural network takes 

D = [d1, d2, ..., dm] as inputs and discretized transmission spectrum R = [r1, r2, ..., rm] as 

output. A tandem network is composed of (left) an inverse design network connected to 

a (right, dashed box) forward modeling network. The forward modeling network is trained 

in advance. In the training process, weights in the pretrained forward modeling network 

are fixed and the weights in the inverse network are adjusted to reduce the cost (i.e., error 

between the predicted response and the target response). Outputs by the intermediate 

layer M (labeled in blue) are designs D. (c, d) Example test results for two different target 

designs queried with the tandem network method showing successful retrieval compared 

to the target design. Note: c, speed of light; a, maximum allowed thickness of each layer.

Figure 3. Multilayer shell nanoparticle inverse design using neural networks (NNs).1 (a) The NN architecture has as its inputs the thickness 

(xi) of each shell of the nanoparticle and as its output the scattering cross section at different wavelengths of the scattering spectrum (yi). 
(b) NN versus numerical nonlinear optimization. The legend gives the dimensions of the particle, and the blue is the desired spectrum. 

The NN is seen to solve the inverse design much more accurately.
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to several tens of minutes even when using efficient scatter-
ing calculations such as the discrete dipole approximation,9 as 
there is no analytical solution for the scattering of a general 
3D geometry. This practical, simple runtime constraint makes 
a genetic algorithm not relevant to this type of task since each 
generation is composed of hundreds or thousands of experi-
ments that demand hours of computations for each generation 
and days for a single design task.

In comparison to evolutionary algorithms and other similar 
stochastic optimization methods, mainstream learning techniques 

such as deep learning optimize a generic 
model during the training process. 
Although there may be a relatively long 
training process, using such a network 
to predict new samples typically takes 
less than 1 s. In the approach developed 
by the authors,5,7 training the network 
takes up to 3 h. When the training pro-
cess is complete, each query takes 3 ms 
to compute. This way, given a query, 

deep learning would design a solution in 3 ms, while a genetic 
algorithm will perform thousands of simulations where each 
one of the simulations could take hours to perform.

We emphasize that the evolutionary approach is fundamen-
tally different since for every single design task, it searches the 
parameter space over dozens (sometimes hundreds) of genera-
tions with each generation encompassing dozens or hundreds 
of individual designs (e.g., individuals). For this reason, the 
individuals should be simple enough to analytically solve for 
their electromagnetic response, otherwise the optimization 

Figure 4. Our previous work5,7,8 introduced a bilateral deep learning (DL) network able to predict the response (in two polarizations) of 

any of the structures defined in the “H” family (see main text). It also allows the design of “H” structures based on the required response. 

(a) The “H” geometry is parametrized to allow easy vector representation where the presence of Legs 1–5 is binarily coded (1 = leg 

present, 0 = leg absent). Note: L1 = length of Legs 1, 2, 4, and 5; L0 = Leg 3 length; φ = Leg 1 angle. (b) The network architecture allows 

the input of the horizontal and vertical spectrum vectors (sampled at 43 wavelength points each) as well as a material’s properties 

vector representation (43 parameters). This input is then fed into the first three fully connected 100 neuron (described by the solid black 

circles) layers followed by eight fully connected layers. The DL is given a (c) measured horizontal polarization (horizontal red double-

headed arrow) and (d) vertical polarization (vertical blue double-headed arrow). (e) The predicted geometry, which is in good agreement 

compared to the geometry measured in scanning electron microscope (inset [c]). Comparison between the fed spectra and the predicted 

ones are found in (c, d). Note: DNN, deep neural network.

Table I. Performance comparison with respect to different parameters  
between different computational approaches (shallow neural network, deep neural  

network, and genetic algorithms).

Shallow Neural Network Deep Neural Network Genetic Algorithms

Query run time Fast Fast Slow

AI technique Learning Learning Optimization

Design/Retrieval quality Poor Good Poor; see MSE results

Note: AI, artificial intelligence; MSE, mean squared error.
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task will take a prohibitive amount of time and thus limit the 
usefulness of such an approach.

The deep neural network (DNN) approach is radically  
different. A DNN is trained on a set encompassing structures 
that are not trivial, for which the response must be calculated 
using time-consuming numerical approaches. However, once 
the data set is created and learned, this task is nonrecurring, 
and each design task takes only a query of the DNN, which 
takes only a few milliseconds.

Recent advances in DNNs for nanophotonics
In this section, we review recent advances in DNNs applied to 
the inverse design problem of nanophotonic devices. Recently, 
we introduced the bidirectional neural network for the design 
of nanostructures (Figure 4).5,8 The bidirectional model, which 
proceeds from the optical response spectrum to the nanopar-
ticle geometry and then back, solves both the inverse problem 
of designing a nanostructure and the direct problem of infer-
ring the optical characteristics of the designed geometry. The 
advantages of the bidirectional model are twofold. First, this 

model is able to streamline the design process by retrieving an 
immediate prediction for the optical properties of the designed 
nanostructure. In this model, the designer can match the desired 
spectra (as depicted in Figure 1a) with the recovered spectra, 
which can also be used in understanding the confidence level of 
the model for the specific design. Second, a bidirectional model 
allows co-adaptation between both directions, leading to better 
robustness and higher stability for the predictions.

The model we introduced was trained on synthetic data 
centered around different variants of the H shape, and was also 
applied on measured spectra from nanofabricated materials 
from our laboratory. This model was the first7 neural-based 
architecture applied for the design of a nanostructure, but its 
architecture is inherently limited to the H family (Figure 4). 
To date, this is the only experimental demonstration of geom-
etry prediction capability of a deep learning network.

Ma and co-workers introduced a model for the design of 
chiral metamaterials incorporating two bidirectional networks 
along with a synthetic data set composed of a vectorized rep-
resentation of geometries associated with materials, reflection 

Figure 5. Bidirectional deep learning network applied to the design of chiral metamaterials.4 (a) Schematic of the designed chiral metamaterial. 

The inset is the zoomed-in structure of a single meta-atom. (b) A bidirectional deep neural network is designed to retrieve the chiral metamaterial 

geometry from the reflections (σ+-input-σ+-output [blue curve], σ–-input-σ–-output [green curve]), and the cross-polarization term σ+-input-σ–-

output (red curve) and CD, and vice versa. (c, d) CD spectra predicted by the deep neural network (blue dots), which are in good agreement 

with the simulations (red curve). Note: CD, circular dichroism; σ+, σ– right-handed and left-handed circular polarization, respectively.
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spectra, and circular dichroism spectra.4 The dual bidirectional 
model comprises two networks, a primary network and an aux-
iliary network. The primary network predicts the back and forth 
geometry encoding vector and its associated reflection spectra 
(Figure 5a). The auxiliary network predicts the back and forth 
geometry (represented as an encoding vector) and its associated 
circular dichroism spectra. Both networks are separately trained 
using the previously discussed data set. The authors4 show that 
a model that combines both the auxiliary network and the pri-
mary network yields more accurate predictions.

Sajedian and co-workers suggest a neural network that 
solves the direct problem of inferring spectra for a given 
geometry (Figure 6).3 This problem can be solved via (slow) 
simulations, and is considered to be more feasible compared 
to the ill-posed inverse problem of inferring a geometry for 
on-demand spectra.

Liu and co-workers propose a generative adversarial net-
work (GAN)—an algorithm that uses two neural networks that 
contest each other to generate new data—for generating 2D 
nanostructure images from spectra (Figure 7).6 The authors 
created a synthetic data set of geometries associated with mul-
tiple families, such as squares, circles, sectors, crosses, and 

shapes from the Modified National Institute of Standards and 
Technology (MNIST) data set (which incorporate handwritten 
digits [numbers]). The authors demonstrated the ability of the 
model to randomly design test samples from each one of the 
families previously discussed, using a model that was trained 
with samples from all families. This evaluation corresponds 
to Category 1 previously presented in Figure 1d, as the model 
task is to infer geometries from the same template it already 
saw in the training (this time, only with different attributes 
such as sizes and angles).

During a second evaluation, Liu and co-workers tested a 
higher level of generalization, which correlates to the second 
category previously described.6 In this evaluation, the authors 
used a holdout test set composed of a complete subfamily set 
of geometries. Specifically, and to showcase the capability of 
their approach, the authors decided to keep all of the samples 
that correspond to digit “5” from the MNIST family in a hold-
out test set and trained their model on the rest of the data set. 
They reported the topologies of the predicted geometry and the 
original (i.e., ground truth) geometry differ considerably (the 
predicted geometry comprised a variation of the digit “3”),  
but the overall spectra of the predicted geometry possess 

similar features to the input spectra, with some 
discrepancies in a few specific locations.6

In addition, the authors argue that with-
out GAN training, their model collapses and 
generates images of random pixels. When opti-
mizing an inverse function of a single network, 
one can often obtain a solution that satisfies the 
inversion criteria; however, this does not create 
a valid input, as has been shown in the case of 
adversarial examples.10 This is why, similar to 
the mapping between MNIST and SVHN (the 
Street View House Numbers) digits results pre-
sented,11 a GAN loss is needed. An alternative 
way for GANs to improve generalization may 
be to rely on activations from multiple layers 
of the direct network, as is done in the percep-
tual loss.12

As previously mentioned,5,8 we introduced a 
model able to infer geometries of the same or 
similar shapes it was trained on (Category 1),  
which have variable sizes, angles, and the 
permittivity (epsilon) of the host materials. 
However, in order to be able to design any 
geometry, one needs to allow for larger degrees 
of freedom. Specifically, our model architec-
ture was designed to retrieve coding vectors 
that encode the geometry shape to the “H” 
family. To circumvent the inherent limitation of 
this encoding, further degrees of freedom were 
obtained as we asked the model to predict each 
edge presence, the length of the edge, and the 
angle between the inner edge and the top right 
edge.5,7,8

Figure 6. Spectrum prediction for one polarization based on the geometry represented as 

a 2D map of pixels using convolutional neural networks. (a) Convolutional neural networks 

are used to extract spatial features from an image of a structure by extracting data from 

smaller parts of the image. (b) (Right) The solid blue lines show the absorption curves 

obtained from the simulation package (SIM) for (left) a random geometry, and the dotted 

orange lines show the absorption curves predicted by the deep learning (DL) model. 

These curves show a one-to-one comparison of predicted absorption value versus real 

absorption value for each frequency. Adapted with permission from Reference 3. © 2019 

Nature Publishing Group. Note: relu, rectified linear unit.
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Toward generalization
Recent work in computer vision has suggested pix2pix,13 a 
neural-based model that learns to map images from the source 
domain to the target domain. Given an input image, the model 

learns to generate images according to some ground truth 
image labels. Applied on different types of data sets, pix2pix 
showcases the ability of neural networks to generate realistic 
images that preserve different types of underlying logic, such 
as mapping gray images to color images, facade labels to 
images, maps to aerial views.

Following the pix2pix approach, and by building upon our 
previous work, we recently published the spectra2pix model,14 
which aims to expand our capabilities to the second or even 
third more desirable categories. The model focuses on solv-
ing the inverse problem of inferring a nanostructure geometry 

Figure 7. Generative adversarial networks-based inverse design of 

metasurfaces.6 (a) Three networks, the generator, the simulator, and 

the critic constitute the complete architecture. The generator accepts 

the spectra T and noise z and produces possible patterns. The 

simulator is a pretrained network that approximates the transmittance 

spectrum T� for a given pattern at its input, and the critic evaluates 

the distance of the distributions between the geometric data and 

the patterns from the generator. While training the generator, the 

produced patterns vary according to the feedback obtained from 

S and D. Valid patterns are documented during the training process, 

and are smoothed to qualify as candidate structures. (b) Test patterns 

are depicted in the top row and the corresponding generated patterns 

are listed in the bottom row. Each shape provides a sample of 

the different classes of geometric data input to the critic network. 

Note: S, simulator network; D, critic network.

Figure 8. Six samples from the transform data set of spectra2pix.14,15 We see the wide variety of (left) spectra and (right) geometries 

spanned by the family of the “H” shapes. The spectra correspond to horizontal and vertical polarizations in transmission. In all experiments, 

the structures are made of gold, each with a different host dielectric, with dielectric values varying in range (1.0, 3.0) (not shown in the 

figure). Each image is composed of 64 × 64 pixels, with a pixel size of 15.625 × 15.625 nm.
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from a given spectrum and material properties. Compared to 
the previous bidirectional model, the spectra2pix architecture 
supports the generation of any geometry by training the model 
to regress the raw pixel values of the 2D images of the geom-
etries at hand. The training task is enforced by optimizing the 
spectra2pix model to minimize a pixelwise loss term, applied 
on the generated image with the ground truth image. In this 
new work, we published a new version of our data set, incor-
porating the 2D images of the geometries. The data set and the 
code can be found on Github.15

In spectra2pix, we utilize the data set from References 5 
and 7. This data set comprises ∼13 K samples of synthetic experi-
ments, where each sample is associated with a geometry, a single  
polarization (vertical or horizontal), and materials properties.  
By pairing the polarization, we formed ∼6 K experiments com-
prising the quadruplet of horizontal spectrum, vertical spectrum, 
epsilon host dielectric, and 2D image of the geometry. The epsi-
lon host dielectric values vary in the range of 1.0 to 3.0.

The geometries are composed of different combinations 
of edges, which together form a template with the shape “H.” 
All three data parts, geometry, spectrum, and material prop-
erties are represented as vectors. Using spectra2pix, we were 
able to transform the previously discussed data set from the 
vectorized representation of the geometry encoding into 2D 
binary images comprising geometry shapes. A sample of the 
transformed images, along with the matched spectra of each 

geometry can be seen in Figure 8. The transformed data set is 
available for the public on Github.15

The architecture of spectra2pix is composed of two parts. 
The first part is built upon our previous work and utilizes three 
sequences of fully connected layers, each receiving a vectorized 
representation of a different part of the input data (two polariza-
tions and host material). A few key properties of the second part 
of the architecture were adapted from pix2pix work, for which, 
following the fully connected sequences, the spectra2pix model 
reshapes the internal vectorized representation into a 2D matrix 
and utilizes a sequence of convolutional layers. The last layer 
in this model is a convolutional layer, with a single filter, which 
outputs a 2D image of the desired geometry.

To study the ability of spectra2pix to generalize, we split 
the previously discussed data set into train, test, and validation 
sets. The test set contains all of the geometries of the shape 
“L” and its variants. The train set contains all of the rest of 
the experiments (H family shapes), leaving 5% as a holdout 
validation set. The spectra2pix network was trained for 1 M 
training steps. We used the validation set for early stopping. 
At the end of the training, we used the model to infer geom-
etries for the test set.

Figure 9 shows a representative sample from the test set 
predictions. Each row represents a different query. The left 
column (Figure 9a) displays the input spectra (both vertical 
and horizontal polarization), the middle (Figure 9b) presents 

the generated geometry, and the right (Figure 
9c) showcases the ground truth label.

These results indicate that the spectra2pix is 
fairly able to generate unseen geometries sam-
pled from a different distribution than what the 
model was trained on.

Compared to the research reported in 
Reference 5, in the spectra2pix work, we utilize 
our model and showcase its ability to converge  
without GAN training, and more importantly, 
we demonstrate a successful generalization 
ability of the model to design a complete un-
seen subfamily set of geometries, taken from 
a somewhat different distribution the model 
was trained on. This generalization capabil-
ity is associated with category two previously 
described.

Conclusions
The use of machine learning techniques, and 
deep learning in particular, has spawned huge 
interest over the past few years in the nanopho-
tonics communities, due to the great promise 
these techniques offer for the inverse design of 
novel nanophotonic devices and functionalities. 
In this article, we have reviewed the main ad-
vances that have occurred in the past four years. 
We discussed the advantages and weaknesses 
of the different approaches presented so far, and 

Figure 9. Results of queries with three designs from the test set (“L” family) to 

spectra2pix after the learning phase.14 (a) Input spectra are presented; (b) the predicted 

geometry by spectra2pix, and (c) the ground truth geometry is depicted. Each image is 

composed of 64 × 64 pixels, with a pixel size of 15.625 × 15.625 nm.
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introduced our spectra2pix network, a model composed of 
ultimate degrees of freedom, which conceptually allows the 
design of any 2D geometry. In addition, we presented the abil-
ity of spectra2pix to successfully generalize the set design of a 
completely unseen subfamily of geometries. Our results high-
light the importance and the generalization ability of DNNs 
toward the goal of inverse design of any nanostructure with 
at-will spectral response.
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Do you have an announcement about yourself or a 
colleague that you’d like to share with the Materials 
Research Society and materials communities? We 
will publish a selection of these in upcoming issues 
of MRS Bulletin. Send your news to Bulletin@mrs.org.

 Important awards
 Research recognition
 Recent accomplishment
 A significant move
 And more ...

NEW! Spread the good news! 


