

SPRING MEETING

April 25-29, 2011 • San Francisco, California

Ø S 0 ۵

В

MATERIALS FOR ENERGY AND SUSTAINABILITY

- Amorphous and Polycrystalline Thin-Film Silicon Science and Technology
- Third-Generation and Emerging Solar-Cell Technologies
- C Advanced Materials Processing for Scalable Solar-Cell
- D Compound Semiconductors for Energy Applications and Environmental Sustainability
- E Energy Harvesting-From Fundamentals to Devices
- Renewable Fuels and Nanotechnology
- G Complex Oxide Materials for Emerging Energy Technologies
- H Electrochromic Materials and Devices
- Nanoscale Heat Transfer—Thermoelectrics. Thermophotovoltaics, and Emerging Thermal Devices
- J Protons in Solids
- Frontiers of Solid-State Ionics K
- Interfacial Phenomena and In-situ Techniques L for Electrochemical Energy Storage and Conversion
- M Nanostructured Materials for Energy Storage
- Recent Developments in Materials for Hydrogen N Storage and Carbon-Capture Technologies

ELECTRONIC AND PHOTONIC MATERIALS

- Materials, Processes, and Reliability for Advanced 0 Interconnects for Micro- and Nanoelectronics
- Interface Engineering for Post-CMOS Emerging Channel Materials
- New Functional Materials and Emerging Device Q Architectures for Nonvolatile Memories
- R Phase-Change Materials for Memory and Reconfigurable Electronics Applications
- S Plasma-Assisted Materials Processing and Synthesis
- T High-Speed and Large-Area Printing of Micro/ Nanostructures and Devices
- 11 **Nuclear Radiation Detection Materials**
- Rare-Earth Doping of Advanced Materials V for Photonic Applications
- W Recent Progress in Metamaterials and Plasmonics

NANOMATERIALS AND NANOTECHNOLOGY

- Functional Two-Dimensional Layered Materials
- Z Nanoscale Electromechanics of Inorganic, Macromolecular, and Biological Systems
- Micro- and Nanofluidic Systems for Materials AA Synthesis, Device Assembly, and Bioanalysis II
- BB Nanoscale Heat Transport—From Fundamentals to Devices

- Hybrid Interfaces and Devices
- Quantitative Characterization of Nanostructured Materials
- EE Semiconductor Nanowires—From Fundamentals to Applications
- Surfaces and Nanomaterials for Catalysis through In-situ or Ex-situ Studies
- GG Titanium Dioxide Nanomaterials
- The Business of Nanotechnology III
- Ion Beams-New Applications from Mesoscale to Nanoscale

ORGANIC AND BIOMATERIALS

- Biological Hybrid Materials for Life Sciences
- Microbial Life on Surfaces-Biofilm-Material
- Biomimetic Engineering of Micro- and Nanoparticles
- Organic Bioelectronics and Photonics for Sensing and Regulation
- Electronic Organic and Inorganic Hybrid Nanomaterials-Synthesis, Device Physics, and Their Applications
- Synthesis and Processing of Organic and Polymeric Materials for Semiconductor Applications
- Engineering Polymers for Stem-Cell-Fate Regulation and Regenerative Medicine

GENERAL MATERIALS SCIENCE

- Carbon Functional Interfaces
- Fundamental Science of Defects and Microstructure in Advanced Materials for Energy
- Forum on Materials Education and Evaluation-K-12, Undergraduate, Graduate, and Informal
- Laser-Material Interactions at Micro/Nanoscales
- Crystalline Nanoporous Framework Materials-Applications and Technological Feasibility
- Future Directions in High-Temperature Superconductivity—New Materials and Applications
- Multiferroic, Ferroelectric, and Functional Materials, Interfaces, and Heterostructures
- Computational Studies of Phase Stability and Microstructure Evolution
- Computational Semiconductor Materials Science

GENERAL

Frontiers of Materials Research

Meeting Chairs

Ping Chen

Dalian Institute of Chemical Physics pchen@dicp.ac.cn phychenp@nus.edu.sg

Chang-Beom Eom

University of Wisconsin-Madison eom@engr.wisc.edu

Samuel S. Mao

Lawrence Berkeley National Laboratory ssmao@lbl.gov

Ryan O'Hayre

Colorado School of Mines rohayre@mines.edu

www.mrs.org/spring2011

