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Abstract
The growing application of data-driven analytics in materials science has led to the rise of materials informatics. Within the arena of
data analytics, deep learning has emerged as a game-changing technique in the last few years, enabling numerous real-world appli-
cations, such as self-driving cars. In this paper, the authors present an overview of deep learning, its advantages, challenges, and
recent applications on different types of materials data. The increasingly availability of materials databases and big data in general,
along with groundbreaking advances in deep learning offers a lot of promise to accelerate the discovery, design, and deployment
of next-generation materials.

Introduction
In this era of big data, we are being bombarded with huge vol-
umes of data from a variety of different sources (experiments
and simulations) at a staggering velocity in practically all fields
of science and engineering, and materials science is no excep-
tion. This has led to the emergence of the fourth paradigm of
science, which is data-driven science, and builds upon the
big data created by the first three paradigms of science (exper-
iment, theory, and simulation). Advanced techniques for data-
driven analytics are needed to analyze these data in ways that
can help extract meaningful information and knowledge from
them, and thus contribute to accelerating materials discovery
and realize the vision of Materials Genome Initiative (MGI).[1]

The fourth paradigm of science utilizes scalable machine learning
(ML) and data mining techniques to extract actionable insights
from such big data and inform materials design efforts at various
levels. Figure 1 depicts the four paradigms of science.[2]

Materials science and engineering researchers rely on
experiments and simulations to try to understand the process-
ing–structure–property–performance (PSPP) relationships,[2,3]

which are far from being well-understood. In fact, almost
everything in materials science depends on these PSPP rela-
tionships, where the cause–effect relationships of science go
from left to right, and the goals–means relationships of engi-
neering go from right to left. In order to discover and design
new improved materials with desired properties, we need to
better understand this complex system of PSPP relationships.
Figure 2 depicts these PSPP relationships of materials science
and engineering.[2]

The scalable data-driven techniques[4–8] of the fourth para-
digm of science have found numerous applications in a lot

of diverse fields such as marketing and commerce,[9,10] health-
care,[11,12] climate science,[13,14] bioinformatics,[15,16] social
media,[17,18] materials science,[19,20] and cosmology,[21,22]

among many others. In particular, over the last few years,
deep learning[23] has emerged as a game-changing technique
within the arena of data-driven analytics due to its revolu-
tionary success in several traditionally hard artificial intelli-
gence (AI) applications. Deep learning techniques are also
increasingly being used for materials informatics applica-
tions with remarkable success, which we refer to as deep
materials informatics.

In this paper, we discuss some of the recent advances in
deep materials informatics for exploring PSPP linkages in
materials, after a brief introduction to the basics of deep
learning, and its challenges and opportunities. Illustrative
examples of deep materials informatics that we review in
this paper include learning the chemistry of materials using
only elemental composition,[24] structure-aware property pre-
diction,[25,26] crystal structure prediction,[27] learning multi-
scale homogenization[28,29] and localization[30] linkages in
high-contrast composites, structure characterization[31,32] and
quantification,[33,34] and microstructure reconstruction[35] and
design.[36] We also discuss the future outlook and envisioned
impact of deep learning in materials science before summarizing
and concluding the paper.

Deep learning
Deep learning[23] refers to a family of techniques in AI and ML,
and is essentially a rediscovery of neural networks that were
algorithmically conceptualized back in the 1980s.[37,38] The
availability of big data and big compute in recent years have
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allowed these networks to grow deeper (hence the name deep
learning) and realize their promise to be universal approxima-
tors[39] capable learning and representing a wide variety of non-
linear functions. Deep learning has indeed emerged as a very

powerful method to automate the extraction of useful informa-
tion from big data, and has enabled ground-breaking advances
in numerous fields, such as computer vision[40,41] and speech
recognition.[42,43] In the rest of this section, we will briefly
describe the unique advantages and limitations of deep learn-
ing, followed by the key components of a deep neural network,
and finally a few different types of networks being used for
deep materials informatics.

Deep learning: advantages and limitations
Deep learning has certain unique characteristics compared to
traditional ML techniques, which are crucial for determining
whether or not deep learning should be used for a given prob-
lem. These characteristics (both advantages and challenges) are
depicted in Fig. 3, and described below. There are three primary
advantages of deep learning compared to traditional ML
methods:

• Deep learning is largely feature-engineering-free: This is
perhaps the biggest advantage of deep learning. It is well-
known that the efficacy of a ML model depends a lot on
how the data are represented for the ML algorithm to learn
patterns from. Usually for a scientific or engineering applica-
tion, a good representation would often entail careful feature
engineering, which may require extensive domain knowledge
as well as significant manual and intuitive effort to come up
with the appropriate attributes. In contrast, deep learning is

Figure 1. The four paradigms of science in the context of materials. Historically, science has been largely empirical or observational, which is known today as
the experimental branch of science. When calculus was invented in the 17th century, it became possible to describe natural phenomena in the form of
mathematical equations, marking the beginning of second paradigm of science, which is model-based theoretical science. With time, these equations became
larger and more complex, and it was only in the 20th century when computers were invented that such larger and complex theoretical models (system of
equations) became solvable, enabling large-scale simulations of real-world phenomena, which is the third paradigm of science. The last two decades have seen
an explosive growth in the generation of data from the first three paradigms, which has far out-stripped our capacity to make sense of it. All this collected data can
serve as a valuable resource for learning and augmenting the knowledge from first three paradigms, and has led to the emergence of the fourth paradigm of
science, which is (big) data-driven science (reproduced from Ref. 2 under CC-BY license).

Figure 2. The PSPP relationships of materials science and engineering,
where science flows from left-to-right, and engineering flows from
right-to-left. Interestingly, each relationship from left to right is many-to-one.
For example, many different processing routes can possibly result in the
same structure, and along similar lines, it is also possible that the same
property is achieved by multiple material structures. Materials informatics
approaches can help decipher these relationships via fast and accurate
forward models, which in turn can also help to realize the more difficult
inverse models of materials discovery and design (reproduced from Ref. 2
under CC-BY license).
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capable of automatically extracting the relevant features from
the training data in a hierarchical fashion, thereby eliminating
or at least reducing the effort for feature engineering. Not only
does this help save the manual effort of having to come up
with attributes, but also opens up opportunities to identify
new, non-intuitive features in a truly data-driven manner
that might help discover new insights.

• Deep learning is generally more accurate with big data: Any
data-driven ML model is expected to become more accurate
with increasing training data, but the accuracy does saturate
at some point, after which additional training data does not
provide significant accuracy gains. It has been found that
although for small data, traditional ML based models are
more accurate than deep learning based models, they saturate
much sooner, so deep learning based models are usually more
accurate when big data is available. This is because of the
higher learning capacity possessed by deep neural networks
with multiple hidden layers.

• Deep learning can produce faster predictions: Although
training neural networks is computationally expensive, it is
only a one-time cost. Once trained properly, they are capable
of making very fast predictions.

The above-described advantages of deep learning clearly
give it an edge over traditional ML techniques, but it nonethe-
less has some characteristics that make its application challeng-
ing in some cases. There are four major challenges in applying
deep learning:

• Deep learning requires big data: In many cases, the biggest
limiting factor for applying deep learning is lack of sufficient
training data. As discussed before, deep learning requires big

data in general. Although big, curated, and labeled datasets do
exist for several problems like image classification,[44] they
are still a rarity in many scientific and engineering fields,
such as materials science.[2]

• Deep learning requires big compute: Training deep learning
based models is compute-intensive and can take a long time
with big data, even on the latest computing hardware.
Parallelization of neural network training algorithms is an active
area of research.[45,46]

• Deep learning network architecture search: Since a neural net-
work is essentially a network of interconnected neurons, there
are unlimited possibilities of network architectures. Although
there are some general guidelines for choosing an architecture
for a given problem based on prior successful designs, there are
no formal methods to identify the optimal architecture for a
given task, and it is an open research problem.[34]

• Model interpretability: Deep learning based models are gen-
erally viewed as black-box models due to being highly com-
plex. Although researchers have tried with some success to
systematically study the workings of the neural network, in
general they are not as readily interpretable as some of the tra-
ditional statistical models like linear regression.[47]

Deep learning: key components and concepts
Artificial neural networks (ANNs) are inspired by biological
neural networks in our brains. The fundamental computing
unit of ANNs is a neuron, which takes multiple inputs, and out-
puts a possibly non-linear function (called the activation func-
tion) of the weighted sum of its inputs. Several activation
functions are commonly used, such as sigmoid, linear, rectified
linear unit (ReLU), leaky ReLU, etc. Figure 4 illustrates a fully-
connected ANN, also known as multilayer perceptron (MLP),
and the ReLU activation function. A deep learning network is
an ANN with two or more hidden layers. The manner in which
the neurons are connected amongst themselves determines the
architecture of the network. The edges or interconnections
between neurons have weights, which are learned during neural
network training with the goal of making the ANN output as
close as possible to the ground truth, which is technically
referred to as minimizing the loss function. The training process
involves making a forward pass of the input data through the
ANN to get predictions, calculating the errors or loss, and sub-
sequently back-propagating them through the network to
update the weights of the interconnections via gradient descent
in order to try to make the outputs more accurate. A single pass
of the entire training data is called an epoch, and it is repeated
iteratively till the weights converge. Usually when the data are
large, the forward passes are done with small subsets of the
training data (called mini-batches), so an epoch would com-
prise of multiple iterations of mini-batches. The inputs of a neu-
ral network are generally normalized to have zero mean and
unit standard deviation, and the same concept is sometimes
applied to the input of hidden layers as well (called batch nor-
malization) to improve the stability of ANNs. Another useful
and interesting concept in ANNs is that of dropouts, where

Figure 3. Pros and cons of deep learning. As with any technique, there are
advantages and challenges of using deep learning that need to be considered
carefully for successful application.
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some neurons are randomly turned off during a particular for-
ward or backward pass. It is a regularization technique for
reducing overfitting, and also turns out to be a remarkably effi-
cient approximation to multi-model averaging.[48]

Convolutional neural networks
A convolutional neural network (CNN) is a special kind of
deep learning network which is designed to be used on spatial
data such as images, and consists of three types of hidden
layers. It is designed to appropriately capture spatially corre-
lated features in images using convolutional layers. A convolu-
tional layer consists of multiple kernels or filters with trainable
weights or parameters. Each filter is applied across the input
image as a convolving window to extract abstract features in
the form of feature maps, which are used as inputs for the
next layer. Pooling layers are usually used after one or more
convolutional layers to reduce the size of the feature maps by
subsampling them in both spatial dimensions using an

aggregation function (such as max, min, avg), which also
reduces the number of parameters and helps in controlling over-
fitting. After several blocks of convolutional and pooling lay-
ers, the outputs are flattened to a long one-dimensional (1-D)
vector, to be used as input to one or more fully connected layers
to finally give the CNN prediction, which could either be a
probability distribution (for classification problems) or a single
numerical value (for regression problems). Two-dimensional
(2-D) CNNs that work with 2-D input matrices (images) as
depicted in Fig. 5 are the most common type of CNNs, but
there are other variants such as 1-D and three-dimensional
(3-D) CNNs that take 1-D vectors and 3-D matrices respec-
tively as input, and graph CNNs[49,50] that can work with
graphs (a collection of nodes and edges) as input.

Generative adversarial networks
A generative adversarial network (GAN)[51] is one of the most
interesting type of deep learning network architectures in recent

Figure 4. A fully-connected deep ANN with four inputs, one output, and five hidden layers with varying number of neurons (left). The ReLU activation function
(right).

Figure 5. A CNN with three convolution layers, two pooling layers, and three fully connected layers. It takes a 64 × 64 RGB image (i.e., three channels) as input.
The first convolution layer has two filters resulting in a feature map with two channels (depicted in purple and blue). The second convolution layer has three
filters, thereby producing a feature map with three channels. It is then followed by a 2 × 2 pooling layer, which reduces the dimensionality of the feature map from
64 × 64 to 32 × 32. This is followed by another convolution layer of five filters, and another pooling layer to reduce feature map dimension to 16 × 16 (five
channels). Next, the feature map is flattened to get a 1-D vector of 16 × 16 × 5 = 1280 values, which is fed into three fully connected layers of 640, 64, and one
neuron(s) respectively, finally producing the output value.
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years, and has originated from game theory. It consists of not one
but two neural networks that are trained simultaneously in a com-
petitive fashion. One of the networks is called a generator, which
is essentially an inverse convolutional network, taking in a ran-
dom noise vector and up-sampling it to a fake image. Then there
is a discriminator, which is a standard convolutional network,
taking an image as input and down-sampling it to produce a
probability distribution, to classify the input image as fake or
real. Figure 6 illustrates the concept of GANs. A common anal-
ogy often used to describe GANs is that the generator can be
thought of like a criminal trying to produce fake currency, and
the discriminator like the police whose aim is to identify the cur-
rency as fake or real. As the two networks are trained together,
they make each other progressively strong till they achieve the
Nash equilibrium.[52] It is not surprising that GANs have
found numerous interesting applications in image analysis,
such as high-resolution image synthesis,[53] text to image synthe-
sis,[54] image editing,[55] blending,[56] inpainting,[57] etc., as well
as in non-image domains, like music generation.[58]

Illustrative deep materials informatics
We now review some recent applications of deep learning in
materials science for understanding PSPP relationships, both
in terms of forward models and inverse models. These exam-
ples also illustrate the previously discussed unique characteris-
tics of deep learning in the context of materials.

Learning the chemistry of materials from only
elemental composition
As described before, one of the biggest advantages of deep
learning is that it is feature-engineering-free and capable of
directly working on raw inputs without the need of manually
engineered features to incorporate domain knowledge. Jha
et al.[24] recently demonstrated the same on materials composi-
tion data, by developing a new deep learning network called
ElemNet, which takes only the elemental composition of a crys-
talline compound as input and predicts its formation enthalpy.

They used a large simulation dataset of density functional the-
ory (DFT) calculations from the Open Quantum Materials
Database (OQMD) for building the deep learning model. The
dataset consisted of 275,759 compounds and their correspond-
ing formation enthalpies. Previous studies[59–61] on formation
enthalpy prediction have relied on the use of hundreds of
composition-derived features called physical attributes (such
as average atomic number, average electronegativity, and so
on) for constructing ML models, in a bid to provide known
chemistry knowledge to the model. However, such a feature
extraction step depends heavily on human intuition and domain
expertise. Moreover, it may not always be possible to do this
step for all problems, as the necessary domain knowledge
may not be available or it may be difficult to transform it into
quantitative features for ML algorithms to use. Therefore, the
authors in Ref. 24 purposely did not provide any domain
knowledge to the model in order to investigate how well a
model can perform in such a situation. They explored different
depths of the fully-connected neural network until 24 layers.
The accuracy of the deep learning model rapidly improved
until 17 layers, after which it plateaued. ElemNet, the best-
performing 17-layer neural network was found to outperform
traditional ML algorithms, both with and without physical attri-
butes. The Random Forest model (the best performing tradi-
tional ML technique) gave a mean absolute error (MAE) of
0.157 eV/atom using only elemental compositions as features,
and 0.071 eV/atom using composition-derived physical attri-
butes as input. In contrast, ElemNet, which only uses elemental
compositions as input, was found to give a significantly lower
MAE of 0.055 eV/atom. Modeling experiments with different
training set size revealed that ElemNet performs better than
Random Forest model (even with physical attributes) for all
training set sizes greater than 4000, thereby serving as another
testimony of the superior performance of deep learning models
on large datasets. In terms of computation time, ElemNet took
significantly longer for training (about 7 h on a GPU for a train-
ing set of ∼250,000 compounds), but was much faster in terms

Figure 6. A GAN consists of two neural networks—generator and discriminator, and with proper training, is capable of generating realistic images/data from
noise.
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of prediction time (9.28 s on a CPU and 0.08 s on a GPU for a
test set of ∼25,000 compounds). ElemNet was also evaluated
with two specially designed training-test splits (withholding
the Ti–O binary system and Na–Fe–Mn–O quaternary system,
respectively) to find that it can also predict the phase diagrams
(convex hulls) for unseen materials systems.

In order to understand why ElemNet was performing well,
the authors also studied the representation learned by the net-
work, to try to interpret the model, by analyzing the activations
produced within the network at different layers for specific
inputs provided to the model. It was found that ElemNet self-
learns some interesting chemistry like groups (element similar-
ity) in the early layers, and charge balance (element interaction)
in later layers of the network, although no periodic table infor-
mation was provided to the model during training. For example,
the activations of first and second layers produced by group-I
elements such as Li, Na, K, Rb, and Cs were all clustered
together in a straight line (in that order), when projected in a
2-D space using principal component analysis (PCA).
Similarly, when binary combinations of group-I/II and
group-VI/VII elements were passed through the model, it was
found that the charge balanced and unbalanced compositions
tend to cluster separately in the eighth layer of ElemNet. This
is consistent with other applications of deep learning, for example,
on images, where the initial layers learn simple features such as
edges and corners, and then use those features to learn more com-
plex ones such as shapes in next few layers, and so on. The high
accuracy and speed of ElemNet allowed the authors to perform
combinatorial screening on about half-a-billion compounds
in the quaternary space. They found a number of systems
with at least one new potential stable compound, including
several new compounds that were not in the OQMD but
exist in the Inorganic Crystal Structure Database (ICSD),
thereby confirming their stability.

Crystal structure aware property prediction
Although composition-based models can be quite accurate as
illustrated in the previous example, the role of structure is crit-
ical in materials, as allotropes and polymorphs can have con-
trasting properties with the same composition. Hence, it is
also important to build structure-aware models for materials
property prediction. There exist a number of studies that use
different set of attributes to represent the structure informa-
tion[62–65] for the ML algorithms to build predictive models.
Recently, deep learning has also been applied directly on the
crystal structure, as discussed next.

Xie and Grossman[25] developed a crystal graph CNN
framework to directly learn material properties from the con-
nection of atoms in the crystal. Their approach first represents
the crystal structure by a crystal graph where nodes represent
the atoms in the unit cell and edges represent the bonds between
the atoms, and then builds a CNN on the graph with convolu-
tional layers, fully connected layers, and pooling layers, to
automatically extract optimum representations for modeling
the target properties. Their database consisted of 46,744

materials from the Materials Project[66] covering 87 elements,
7 lattice systems, and 216 space groups. A simple convolution
function using a shared weight matrix for all neighbors of an
atom resulted in a MAE of 0.108 eV/atom for formation energy
prediction. However, it neglected the differences of interaction
strength between neighbors, so they designed a new convolu-
tion function taking into account the interaction strength in
the form of a learned weight matrix, which gave a much
improved MAE of 0.039 eV/atom. The same framework was
subsequently applied to other DFT-computed properties from
the Materials Project, such as absolute energy, band gap,
Fermi energy, bulk moduli, shear moduli, and Poisson ratio.
Apart from impressive model accuracies obtained by deep-
learning models, their framework also provided for model
interpretability to some degree, by removing the fully-
connected hidden layers after atom feature vector extraction
and directly performing a linear pooling to predict the property.
This allowed the model to learn the contribution of different
local chemical environments for each atom to the target prop-
erty, at the cost of a dip in accuracy [MAE of 0.130 eV/atom
on 3787 test perovskites (ABX3) with the interpretable model
versus 0.099 eV/atom with the full model]. The empirical
rules generalized from the perovskites study were found to be
consistent with known knowledge, and a combinatorial search
leveraging the learned chemical insights led to the discovery of
several new perovskites.

Of course, another way to take structure information into
account is to build structure-specific models, i.e., only train
on materials of a specific structure class. For example, Ye
et al.[26] recently demonstrated that ANNs utilizing just two
descriptors (the Pauling electronegativity and ionic radii of con-
stituent elements) can predict DFT formation energies of
C3A2D3O12 garnets and ABO3 perovskites with low MAEs
of 0.007–0.010 eV/atom and 0.020–0.034 eV/atom, respec-
tively. For mixed garnets, i.e., garnets with more than one
type of species in the C, A, and D sites, the authors derived
an averaging scheme to model complete cation disorder and a
binary encoding scheme to account for the effect of orderings,
with minimal loss in accuracy.

Crystal structure prediction
One of the grand challenges in materials science has been crys-
tal structure prediction,[67] much like protein structure predic-
tion in bioinformatics.[68] The problem of crystal structure
prediction for a given composition can be decomposed into
two primary sub-problems: generation of candidate structures,
followed by subsequent evaluation of those structures to iden-
tify the most likely one(s). Typically, structure generation
approaches use evolutionary algorithms with random initializa-
tion,[69,70] which are then evaluated by quantum mechanical
methods.[71] Ryan et al.[27] recently presented a remarkable
application of deep learning for crystal structure prediction, in
particular for crystal structure evaluation. They reformulated
the crystal structure prediction problem into that of predicting
the likelihoods of individual atomic sites in the structure,
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thereby approximating the likelihood of a crystal structure to
exist by the product of the likelihoods for each element to reside
on a specific atomic site.

To calculate the element likelihood for a given atomic site
(element prediction problem), the authors in Ref. 27 designed
a deep neural network using training data from the ICSD and
Crystallographic Open Database, with 704,334 unique crystal-
lographic sites in 51,723 crystal structures. The input represen-
tation of atomic sites for model training consisted of multiple
perspectives of normalized atomic fingerprints, to capture the
local topology around each unique atomic site. This input repre-
sentation provided several useful characteristics such as transla-
tional invariance, fixed dimensionality, and retention of 3-D
information, and allowed the model to learn structural topolo-
gies rather than crystal structures with specific scale. The deep
neural network itself consisted of three subnetworks. First, a
42-layer convolutional variational autoencoder was used to
allow the model to learn its own representation of the atomic fin-
gerprints, which reduced the 3072-dimensional atomic finger-
prints to 64-dimensional latent representations. Then, these
latent representations were fed into a five-layer sigmoid classi-
fier to predict what combinations of elements were likely to
form specific structural topologies. Finally, the resulting likeli-
hoods from the sigmoid classifier were fed into a five-layer aux-
iliary softmax classifier with batch normalization and 118
output neurons to predict what specific element corresponded
to the input, thereby formulating the element prediction problem
as a 118-class classification problem. The average error rate on
the test set (20% of entire atomic fingerprints data) was found to
be 31%, which is quite impressive for a 118-class problem.
Interestingly, most of the errors made by the model were
found to be chemically reasonable (e.g., within blocks of 3d
and 4f elements). Further, a t-SNE (t-distributed stochastic
neighbor embedding, an iterative method for mapping high-
dimensional data onto a 2-D or 3-D projection for visualiza-
tion[72]) embedding of the sigmoid classifier weights for the ele-
ments revealed groupings similar to those in the periodic table.
It is indeed quite remarkable that the deep learning model was
able to learn periodic trends and chemical similarities not explic-
itly provided to the model while training, simply by learning
from raw structural information, just like the ElemNet
model[24] did from raw composition information.

Returning to the crystal structure prediction problem, the
work in Ref. 27 used the set of known structure types as the
starting point for generating new crystal structures, and the
above-described deep learning model for crystal structure eval-
uation. The unique crystallographic sites in 51,723 known
structures were used as structural templates for the generator
to produce new crystal structures by combinatorial substitution
across the series of all elements, thus leading to 623,380 binary
and 2,703,834 ternary candidate crystal structures. Coupling
this structure generation approach with deep learning based
structure evaluation allowed the authors to perform crystal
structure prediction. The performance of the structure predic-
tion was evaluated on a holdout test set of 5845 crystal

structures, and it was found that the model is able to predict
the correct structure as the top-ranked candidate 27% of the
time, and the correct structure is within top-10 predicted struc-
tures 59% of the time, which is an underestimate of its true per-
formance due to the presence of isostructural crystal structures
in the candidate list. The authors also presented a case study of
Mn–Ge and Li–Mn–Ge systems, and reported new unique
chemical compositions in these systems, with corresponding
predicted structure templates. The key takeaway from this
work is the demonstrated potential of deep learning models
to self-learn chemistry knowledge from purely geometric and
topological data, and its application to the important problem
of crystal structure prediction.

Multiscale homogenization and localization
linkages in high-contrast composites
While the previous examples used deep learning on composi-
tion and crystal structure data, in this subsection, we look at
some examples of the application of deep learning on 3-D
microstructure data of two-phase composites for understanding
structure–property linkages, which are often required to be
understood across different length scales. In such multi-scale
modeling, homogenization refers to transfer of microstructure
information from lower length scales to higher length scales,
e.g., prediction of macroscale property given its microstructure
information. Localization deals with transfer of salient micro-
structure information from a higher length scale to lower length
scale. For example, when a material is subject to a macroscopic
loading condition (like imposed stress or strain rate), localiza-
tion refers to the manner in which the load gets distributed at
the microscale for a given microstructure. Both homogeniza-
tion and localization linkages are modeled together by numer-
ical approaches like microscale finite element simulations or
iterative methods employing Green’s functions. In recent
years, materials knowledge systems (MKS)[73] have emerged
as a promising approach for understanding localization rela-
tionships, which utilize calibrated Green’s function-based ker-
nels in a non-iterative series solution, as well as ML-based
methods that rely on feature engineering to capture the local
neighborhood of the microstructure.

Yang et al.[28] present a feature-engineering-free deep learn-
ing based homogenization solution for predicting macroscale
effective stiffness in two-phase composites of contrast 50.
Contrast refers to the relative dissimilarity in the property of
the two constituent phases. In this case, it is the ratio of the
Young’s moduli of the two phases. The dataset consisted of
8550 simulated 3-D microstructures of size 51 × 51 × 51, also
referred to as microscale volume elements (MVEs). Recall
from PSPP relationships that structure is the cause and property
is the effect. Therefore for a given loading condition, the mac-
roscale property (in this case effective stiffness) depends on the
microstructure. The effective stiffness was calculated using
micromechanical finite element simulations with periodic
boundary conditions. In order to learn homogenization linkages
using deep leaning, the authors used 3-D CNNs to map
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microstructure information to effective stiffness. The best deep-
learning network was identified as a 14-layer model with five
convolution blocks (consisting of a convolution layer followed
by a pooling layer) stacked together, and subsequently followed
by two fully connected layers. In total, this network had about
3.8 million trainable parameters. The accuracy of the deep-
learning model [MAE of 1.04 GPa (3.10%)] was found to be
significantly better than simple physics-based approaches or
rule of mixtures method [MAE of 15.68 GPa (46.66%)] and
sophisticated physics-inspired data science approaches that uti-
lize PCA on two-point statistics as input features for regres-
sion[74] [MAE of 2.28 GPa (6.79%)]. Another recent related
work[29] on using deep learning for homogenization has dem-
onstrated that the filters/kernels learned by the CNN during
training can be interpreted as microstructure features that the
model learns to be influential for improving the macroscale
property of interest. This can be extremely valuable for solving
the inverse problem of design exploration, thereby closing the
loop and informing materials design.

Yang et al.[30] present a novel feature-engineering-free
approach for localization using deep learning. They used two
datasets of contrast-10 (2500 MVEs) and contrast-50 (3000
MVEs) of size 21 × 21 × 21 with varying volume fraction and
periodic boundary conditions, and were split into training, valida-
tion, and test sets. Since each voxel is a data point for the local-
ization problem, a 3-D neighborhood of size 11 × 11 × 11 around
the focal voxel was used to represent the focal voxel. Although
3-D CNNs could be used for this problem as well, the dataset
here is almost four orders of magnitude larger, and since 3-D
CNNs are much more computationally expensive, the authors
in Ref. 30 designed a neat workaround to be able to use 2-D
CNNs for localization. They accomplished this by treating the
3-D image of size 11 × 11 × 11 as 11 channels of a 2-D images
of size 11 × 11, perpendicular to the maximum principal strain
direction. The best performing CNN architecture for this problem
consisted of six layers, with two convolution layers and two fully-
connected layers. The accuracy of the deep learning model was
compared against the MKSmethod,[73] and twoML-based meth-
ods called single-agent method[75] and multi-agent method,[76]

which is essentially a hierarchical application of the single-agent
method. On contrast-10 dataset, the MKS method resulted in a
mean absolute strain error (MASE) of 10.86%, while the single-
agent and multi-agent methods gave a MASE of 13.02% and
8.04%, respectively. In contrast, the deep learning CNN model
gave a significantly lower MASE of 3.07%. For contrast-50,
the MKS method gave a MASE of 26.46% as compared to just
5.71% by the deep learning model. A closer look at what the
CNN learned revealed that the influence of different level neigh-
bors decreases with increasing level of neighbors, which is con-
sistent with known domain knowledge.

Microstructure characterization and
quantification
Materials characterization broadly refers to learning structural
information of a given material, and is one of the fundamental

processes to further our understanding of materials.[77]

Advances in materials characterization technologies at different
time and length scales such as numerous kinds of microscopy,
spectroscopy, and macroscopic testing has led to a proliferation
in materials image data, which has motivated the use of deep
learning to solve this inverse characterization problem.

Electron backscatter diffraction (EBSD) is one of the many
materials imaging tools to determine crystal orientation of crys-
talline materials, which can be represented by the three Euler
angles 〈φ1,Φ,φ2〉. The inverse structure characterization prob-
lem of determining the orientation angles given an EBSD pat-
tern is called EBSD indexing. The commercially available
method for EBSD indexing is the Hough transform based
method,[78] which is quite effective in general, but susceptible
to the presence of noise in the patterns. In recent years, a new
method called dictionary based indexing[79] has been devel-
oped, which is essentially a nearest neighbor search approach,
where the output angles correspond to the orientation angles of
the closest EBSD pattern present in a pre-computed high-
resolution dictionary. This method is very robust to noise, but
computationally very expensive, as the input EBSD pattern
needs to be compared to every pattern in the dictionary. Liu
et al.[31] presented the first application of deep learning
(CNNs) for indexing EBSD patterns using a dictionary of
333,227 simulated EBSD patterns (60 × 60 gray scale images),
out of which 300,000 were used from training and rest for test-
ing. Although the CNN results were found to be more accurate
than the dictionary method, this work had two significant lim-
itations. First of all, not using the entire dictionary for training
is suboptimal and thus would underestimate the accuracy of
both dictionary method and the CNN. Second, they created
three separate models for the three Euler angles thereby treating
them independent, which is not true as they are actually partial
representations of the same orientation. Therefore, rather than
individually minimizing the difference between the three actual
and predicted Euler angles, the model should really be trying to
minimize the one angle between the corresponding orienta-
tions, which is technically called disorientation. Jha et al.[32]

recently presented a new deep learning solution for EBSD
indexing overcoming these limitations. They used two dictio-
naries consisting of a total of 374,852 EBSD patterns for train-
ing the model, and an independent set of 1000 simulated EBSD
patterns with known orientations for testing. Here the authors
optimized for mean disorientation error between the predicted
and true orientations as the loss function for CNN training,
which posed two challenges. First, the disorientation metric is
computationally expensive, as one needs to compute 24 × 24
symmetrically equivalent orientation pairs. Second, the pres-
ence of crystal symmetries introduces degeneracies in the
orientation space resulting in discontinuities in the gradients
of the disorientation loss function, thereby rendering it inappro-
priate for optimization using stochastic gradient descent. To
overcome the above challenges, the authors designed a differ-
entiable approximation to the original disorientation function
by building a computational tensor graph in TensorFlow,[80]
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leveraging its auto-differentiation support. The CNN consisted
of eight convolution layers, two pooling layers, and five fully
connected layers, making it a 17-layer network with about
200 million parameters. In terms of accuracy, the deep learning
model outperformed dictionary-based indexing by 16% (mean
disorientation of 0.548° versus 0.652° for the dictionary
method).

DeCost et al.[33] present a deep learning solution for quanti-
tative microstructure analysis for ultrahigh carbon steel, by
building models for two microstructure segmentation tasks:
(i) semantic segmentation of steel micrographs into
four regions (grain boundary carbide, spheroidized particle
matrix, particle-free grain boundary denuded zone, and
Widmanstätten cementite); and (ii) segmenting cementite parti-
cles within the spheroidized particle matrix. Unlike image clas-
sification, segmentation is a pixel-level task, and thus the CNN
needs to produce a latent representation of each pixel instead of
the entire image. The authors used the PixelNet[81] architecture
for this purpose, where each pixel is represented by the concat-
enation of its representations in each convolutional layer by
applying bilinear interpolation to intermediate feature maps
and getting a hypercolumn feature vector for each pixel.
Subsequently a MLP is used to map the hypercolumn pixel fea-
tures to the corresponding target, i.e., segmentation classes.
They used the pretrained VGG16 network[82] (trained on the
ImageNet database[44]) for the convolutional layers of
PixelNet, and trained the MLP layers from scratch, with
batch normalization, dropout, weight decay regularization,
and data augmentation. Two kinds of loss functions were eval-
uated: the standard cross-entropy classification loss and focal
loss, which extends the cross-entropy classification loss func-
tion with a modulating factor and scaling parameter to account
for the model confidence and class imbalance respectively. The
dataset consisted of 24 ultrahigh carbon steel micrographs at a
resolution of 645 × 484. Sixfold cross validation was used to
evaluate the models in terms of segmentation accuracy as
well as comparison of actual and predicted distributions of par-
ticle size and denuded zone widths. The segmentation model
with focal loss function was found to be the most accurate
for spheroidite and particle segmentation. However, most of
the predicted particle size distributions were found to differ
from those from human-annotated micrographs, as the model
failed to identify small particles with radii smaller than 5 pixels,
indicating the need of higher quality input for training. This
work nonetheless demonstrated the efficacy of deep learning
for microstructural segmentation and quantitative analysis for
complex microstructures at a high level of abstraction.

Patton et al.[34] recently presented a 167-petaflop projected
(152.5-petaflop measured; petaflop is a unit of computing
speed, equaling 1015 floating point operations per second)
deep learning system called MENNDL to automate raw elec-
tron microscopy image based atomic defect identification and
analysis on a supercomputer using 4200 nodes (with six
GPUs per node). It intelligently generates and evaluates mil-
lions of deep neural networks with varying architectures and

hyperparameters using a scalable, parallel, asynchronous,
genetic algorithm augmented with a support vector machine
to automatically find the best performing network, all in a mat-
ter of hours, which is much faster than a human expert can do.
The resulting deep learning network also allowed the authors to
create a library of defects, map chemical transformation path-
ways at the atomic level, including detailed transition probabil-
ities, and explore subtle distortions in local atomic environment
around the defects of interest. Further, it also lets the computer
automatically choose the best region in the sample to make a
measurement or perform atomic manipulations without
human supervision, which is a critical step toward enabling
an autonomous (self-driving) microscope.

Microstructure reconstruction and design
Reconstruction of the structure of a disordered heterogeneous
material using limited structural information about the original
system remains an important problem in modeling of heteroge-
neous materials.[83] Li et al.[35] developed a deep transfer
learning based approach for reconstructing statistically equiva-
lent microstructures from arbitrary material systems based on a
single given microstructure. In their approach, the input micro-
structure with k labeled material phases is first encoded to a
three-channel (RGB) representation to make it amenable to
be used as an input to a pruned version of a pretrained CNN
called VGG19.[82] At the same time, another randomly initial-
ized RGB image (which would iteratively be updated to
become the encoded microstructure reconstruction) is also
passed through the pruned VGG19 network. The loss function
to be minimized is the difference of Gram-matrix (a measure of
texture of a given image)[84] between the activations of the orig-
inal and reconstructed microstructure, summed over selected
convolutional layers of the pruned VGG19. During neural net-
work training, typically the gradient of the loss function with
respect to the network weights is calculated to iteratively opti-
mize the weights and refine the model. But here, the weights of
the network are kept constant, and the pixel values of the ran-
domly initialized reconstructed microstructure are the variables
to be optimized. Therefore, the gradient of the loss with respect
to each pixel in the reconstructed microstructure is computed
via backpropagation, and is subsequently fed into a nonlinear
optimization algorithm to iteratively update the pixel values
of the microstructure reconstruction, till it converges. The con-
verged reconstruction at this point is still encoded though, and
thus is subsequently decoded using k-means clustering to sep-
arate the pixels into k groups, where k is the number of material
phases in the original microstructure. Since this process pipe-
line ending with k-means clustering does not enforce retention
of the original volume fraction (relative ratio of different
phases), it is possible that the volume fractions are slightly dif-
ferent from the original microstructure, which is not desirable.
Therefore, the authors employed another post-processing step
using simulated annealing to switch the phase label of some
of the boundary pixels in order to match the phase volume frac-
tions in original and reconstructed microstructures. The
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approach was successfully tested on a wide variety of structural
morphologies (carbonate, polymer composites, sandstone,
ceramics, a block copolymer, a metallic alloy, and three-phase
rubber composites) and found to outperform other approaches
(decision tree based synthesis,[85] Gaussian random field
(GRF),[86] two point correlation,[87] and physical descriptor[88])
in four out of the five material systems.

Microstructure design is an important inverse problem for
materials design. One of the key tasks for this purpose is to
identify suitable microstructure representations that could be
used for design. Yang and Li et al.[36] have recently developed
a deep adversarial learning methodology for an end-to-end sol-
ution for low-dimensional and non-linear embedding of micro-
structures for microstructural materials design using GANs.
GAN-based microstructure design is able to capture complex,
non-linear microstructure characteristics owing to the large
model capacity offered by deep learning networks, and learn
the mapping between latent variables (input noise vector)
and microstructures. Subsequently, the low-dimensional latent
variables can serve as design variables. The GAN was trained
on 5000 synthetic microstructure images of size 128 × 128 cre-
ated using the GRF method. The GAN generator (discrimina-
tor) consisted of five layers with the size of feature maps
doubling (halving) along each dimension for each layer.
Therefore, the 128 × 128 images are reduced by a factor of
25 (=32) in each dimension, thus converting it to a 4 × 4 latent
variable matrix, or 16-dimensional latent variable vector. Once
the GAN was trained, it was able to generate new microstruc-
ture images simply by randomly sampling the latent variable
vector and passing it through the generator. Not only did the
generated microstructure images visually looked similar to
the real images, but they were also confirmed to be similar in
terms of two-point correlation function and lineal-path correla-
tion function. To evaluate the capability of the trained GAN for
microstructure optimization and design, it was coupled with a
Bayesian optimization approach to search for the optimal
microstructure representation (in terms of latent variable vec-
tor) along with rigorous coupled wave analysis to simulate
the optical absorption performance of a given microstructure.
Results indicated that the optical performance of the
GAN-generated microstructures (even without Bayesian opti-
mization) was 4.8% better than that of randomly sampled
microstructures, and the same for the optimized microstructure
(with Bayesian optimization) was 17.2% better than that of
randomly sampled microstructures, thereby verifying the
effectiveness of the design optimization framework. In addi-
tion to the demonstrated capability of generating realistic
microstructure images as well as microstructure optimization
and design, the authors report a couple of other desirable fea-
tures of the developed GAN model. These include the ability
of the trained generator to generate arbitrary sized microstruc-
tures by changing the size of the latent variables (scalability),
and the ability of the discriminator to be used as a pre-trained
model for developing structure–property prediction models
(transferability).

Future outlook and impact
Deep learning is a fast growing field that has attracted a lot of
attention, which has led to fascinating algorithmic advances
being introduced at an incredible pace. In this section, we dis-
cuss some other crucial facets of deep learning in context of
materials informatics, which are expected to shape the growing
impact of data-driven approaches in materials science.

Other types of deep learning networks
In addition to the different kinds of deep learning neural net-
works (such as MLPs, CNNs, and GANs) we have seen so
far in this paper, there are several others that are capable of ana-
lyzing other forms of data. For example, recurrent neural net-
works are designed to work with sequence data (also known as
temporal or time-series data) of varying lengths, with most pop-
ular applications in speech recognition[89] natural language pro-
cessing,[90] as well as some recent applications in materials
informatics.[91,92] A relatively new class of deep learning is
called geometric deep learning which is capable of dealing
with non-Euclidean data, such as graphs with nodes and
edges, where standard deep learning kernels like convolution
are not well-defined. Due to its ability to work with graph
data, it has found applications in quantum chemistry,[93,94] in
particular for analyzing data from molecular dynamics
simulations.

Transfer learning
As discussed before, deep learning generally requires big data,
but transfer learning can enable the application of deep learn-
ing for problems where big data are not available, by transfer-
ring knowledge from a deep learning model built on big data
for a different but related problem, to build a new model on the
smaller data for the problem at hand. Transfer learning is
expected to be very useful for materials informatics, since
most of the materials datasets are usually small in size, com-
pared to the big data available in some other domains such
as social media, bioinformatics, cosmology, etc. It is widely
used in image classification, where pre-trained deep learning
models built on ImageNet[44] (a large image database of
more than 14 million labeled images) like VGG[82] are used
to extract key features from small image datasets and build
ML models.[95]

Uncertainty quantification and active learning
Uncertainty quantification (UQ) for predictive analytics is an
important topic, and one that is expected to gain more and
more attention in materials informatics in the coming years. It
essentially means the ability to identify calibrated uncertainty
estimates for the predictions made by a ML model, by trying
to capture the expected variance in the response within a spec-
ified confidence interval. A commonly used methodology for
UQ that has also been used in materials informatics is an
ensemble data mining approach,[96] where multiple predictive
models are constructed for the same task by using different
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techniques on the same data and/or the same technique on dif-
ferent subsets of the training data, and the final prediction is cal-
culated as a function of the individual predictions, such as
mean. In such cases, the uncertainty can be quantified using
the standard deviation of the individual predictions, possibly
combined with the model prediction error. Deep learning mod-
els provide an alternate way to do the same without having to
build multiple models. Recall that dropout during neural net-
work training randomly shuts down some neurons, thereby
helping the model to become more generalizable, and it can
also approximate model ensembling.[48] While making predic-
tions from the model (testing phase), dropout again randomly
drops some neurons, so the same input to the model would gen-
erate (slightly) different predictions every time the model is run
with dropout. The resulting set of predictions can be used to
calculate uncertainty estimates, just like with ensemble learning
models or using more sophisticated methods.[97]

UQ also holds the key for active learning and reinforcement
learning, where the predictive model is used to recommend
which new unlabeled inputs should be labeled next (based on
their predicted value and associated uncertainties) in order to
have the greatest improvement in the accuracy of the model,
or to take a suitable action in a given situation that would max-
imize the reward. Interestingly, active learning has a direct
application for data-driven materials discovery, where based
on a given experimental or simulation materials dataset, it
can recommend which experiment or simulation should be
done next to further improve the predictive models. The new
improved models can again be used with active learning to
identify the next best experiment or simulation, and so on. In
this way, it can significantly reduce the number of experiments
needed to discover the optimal material with a target property
of interest, thereby accelerating the inverse models of materials
discovery and design.

Model interpretability
The issue of model interpretability has always been a crucial
one for many applications such as financial modeling, autono-
mous driving, as well as materials engineering, where the cost
of a false positive can be immeasurably large, making it critical
to ensure that the model is not just quantitatively accurate but is
in fact learning from the correct features and learning things
that make sense, at least not learning something known to be
false. Lipton[98] presents one of the first attempts toward a com-
prehensive taxonomy of the desiderata and methods in inter-
pretability research, and identifies transparency to humans
and post-hoc explanations as two primary and competing
notions of interpretability. The transparency aspect of interpret-
ability relates to understanding how the model works, in terms
of the training algorithm, the intuitive significance of individual
model inputs and parameters, and the overall working of the
trained model. There is usually a trade-off between model
transparency and model complexity, and Lipton[98] suggests
that no model is intrinsically interpretable, e.g., even linear
models with highly engineered and complex inputs, deep

decision trees, ensembles, etc. could be considered less trans-
parent than comparatively compact neural networks with raw
or lightly processed inputs. Post-hoc explanations, on the
other hand, relates to understanding what the model has
learned. Since deep learning models learn rich representations,
they are especially useful for post-hoc interpretability, which
can be done via visualization techniques such as t-SNE[72] to
visualize its latent representations in 2-D, or saliency
maps[99] to identify the regions of the input that influence the
output the most. Further, for a given test example, its low-
dimensional latent representation (e.g., activations of the hid-
den layers) can be used to identify its k-nearest neighbors in
the training set, so as to explain the decisions of the model
by reporting other similar examples,[98] and provide another
way of interpreting deep learning models. Several other meth-
ods and guidelines to understand deep leaning networks are
available.[100]

Potential long-term impact
Materials are fundamental building blocks of a civilization. The
advancement of our society relies on the development of better,
safer, more efficient, cost-effective, and environment-friendly
materials. Deep materials informatics approaches have the
potential to be game changing for materials scientists and
industry, by assisting researchers to navigate through the prac-
tically infinite space of possible materials and identify a few
most promising ones, which can then be evaluated with
appropriate simulations and experiments, thereby signifi-
cantly reducing costs and accelerating the discovery and
deployment of advanced materials. Deep materials informat-
ics therefore provides remarkable promise to accelerate the
discovery and design of next generation materials in a cost-
effective manner, and thus realize the vision of MGI.
Illustrative real-world applications that could potentially be
impacted by deep materials informatics include construction,
automobile, clean energy, aerospace, healthcare, transporta-
tion, and so on.

Summary and conclusion
Materials informatics is a rapidly emerging field but still in its
early stages, similar to what bioinformatics was about 20 years
ago,[2] and this is even more true for deep materials informatics,
which is the application of deep learning in materials science.
In this paper, we discussed some of the recent advances in
deep materials informatics on a variety of materials data like
elemental composition, crystal structure, and 2-D/3-D micro-
structures images. The fundamental concepts in deep learning,
its advantages, challenges, types of popular deep learning net-
works, and future outlook and impact of deep materials
informatics were also discussed. The increasingly availabil-
ity of materials databases and big data in general, along with
groundbreaking advances in data science and deep learning
approaches offer a lot of promise to revolutionize materials
property prediction, discovery, design, and deployment of
next-generation materials.
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