Skip to main content
Log in

Membranes with selective wettability for the separation of oil-water mixtures

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The separation of oil-water mixtures is a widely utilized unit operation, used for handling a wide variety of mixtures from industry including: petroleum drilling and refining, fracking, waste-water treatment, mining, metal fabrication and machining, textile and leather processing, and rendering. Membrane-based methods have become increasingly attractive for the separation of oil-water mixtures because they are relatively energy-efficient, can be readily used to separate a variety of industrial feed streams, and provide consistent permeate quality. In this perspective, we discuss the design strategies for membranes with selective wettability i.e., membranes that are either selectively wet by, or prevent wetting by, the oil or water phase. The design strategies include the parameterization of two important physical characteristics: the surface porosity and the breakthrough pressure. We also discuss how they are related for membranes with a periodic geometry. On the basis of this understanding, we explore principles that allow for the systematic design of membranes with selective wettability. A review of the current literature on the separation of oil-water mixtures using membranes with differing wettabilities is also presented. Finally, we conclude by discussing the current challenges and outlook for the future of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Y.-T.H.P. Kajitvichyanukul and L.K. Wang: Handbook of Environmental Engineering, Vol 13: Membrane and Desalination Technologies (The Humana Press Inc., New York, 2011).

    Google Scholar 

  2. Office of the Federal Register: Code of Federal Regulations, Title 40-Protection of the Environment, Vol. 30, Part 435.13 (Washington, DC, 2014), pp. 299.

  3. J.W. Patterson: Industrial Wastewater Treatment Technology, 2nd ed. (Buttersworth, Stoneham, MA, 1985).

    Google Scholar 

  4. T.G. Mason, J.N. Wilking, K. Meleson, C.B. Chang, and S.M. Graves: Nanoemulsions: formation, structure, and physical properties. J. Phys.—Condens. Matter. 18, R635 (2006).

    Article  CAS  Google Scholar 

  5. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, and S. Kokot: Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10, 159 (2003).

    Article  CAS  Google Scholar 

  6. M. Cheryan and N. Rajagopalan: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13 (1998).

    Article  CAS  Google Scholar 

  7. A.A. Al-Shamrani, A. James, and H. Xiao: Destabilisation of oil-water emulsions and separation by dissolved air flotation. Water Res. 36, 1503 (2002).

    Article  CAS  Google Scholar 

  8. J. Rubio, M.L. Souza, and R.W. Smith: Overview of flotation as a wastewater treatment technique. Miner. Eng. 15, 139 (2002).

    Article  CAS  Google Scholar 

  9. T. Ichikawa: Electrical demulsification of oil-in-water emulsion. Colloid Surface A 302, 581 (2007).

    Article  CAS  Google Scholar 

  10. A.A. Al-Shamrani, A. James, and H. Xiao: Separation of oil from water by dissolved air flotation. Colloid Surface A 209, 15 (2002).

    Article  CAS  Google Scholar 

  11. M. Toyoda and M. Inagaki: Heavy oil sorption using exfoliated graphite—new application of exfoliated graphite to protect heavy oil pollution. Carbon 38, 199 (2000).

    Article  CAS  Google Scholar 

  12. V.K. Gupta, P.J.M. Carrott, and M.M.L.R. Carrott and Suhas: Low-cost adsorbents: growing approach to wastewater treatmenta review. Crit. Rev. Environ. Sci. Tecnol. 39, 783 (2009).

    Article  Google Scholar 

  13. G. Rios, C. Pazos, and J. Coca: Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloid Surface A 138, 383 (1998).

    Article  CAS  Google Scholar 

  14. L.F. Song: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. J. Membr. Sci. 139, 183 (1998).

    Article  CAS  Google Scholar 

  15. J. Kong and K. Li: Oil removal from oil-in-water emulsions using PVDF membranes. Sep. Purif. Technol. 16, 83 (1999).

    Article  CAS  Google Scholar 

  16. M. Kai, K. Ishii, H. Tsugaya, and T. Miyano: Development of polyether sulfone ultrafiltration membranes. In Reverse Osmosis and Ultrafiltration, edited by S. Sourirajan and T. Matsuura; ACS Symposium Series (ACS Publications, Washington, DC, 1985), pp. 21–33.

    Chapter  Google Scholar 

  17. A.K. Kota, W. Choi, and A. Tuteja: Superomniphobic surfaces: design and durability. MRS Bull. 38, 383 (2013).

    Article  CAS  Google Scholar 

  18. T. Young: An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 65 (1805).

    Article  Google Scholar 

  19. A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, and R.E. Cohen: Designing superoleophobic surfaces. Science 318, 1618 (2007).

    Article  CAS  Google Scholar 

  20. X.J. Feng and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).

    Article  CAS  Google Scholar 

  21. A.K. Kota, G. Kwon, and A. Tuteja: The design and applications of superomniphobic surfaces. NPG Asia Mater. 6, e109 (2014).

  22. R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936).

    Article  CAS  Google Scholar 

  23. A.B.D. Cassie and S. Baxter: Wettability of porous surfaces. Trans. Faraday Soc. 40, 0546 (1944).

    Article  CAS  Google Scholar 

  24. W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, and G.H. McKinley: A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interface Sci. 339, 208 (2009).

    Article  CAS  Google Scholar 

  25. R. Johnson and R. Dettre: Wettability and contact angles. Surface Colloid Sci. 2, 85 (1969).

    CAS  Google Scholar 

  26. D. Quere: Rough ideas on wetting. Physica A 313, 32 (2002).

    Article  CAS  Google Scholar 

  27. G. McHale, N.J. Shirtcliffe, and M.I. Newton: Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10146 (2004).

    Article  CAS  Google Scholar 

  28. A. Marmur: From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24, 7573 (2008).

    Article  CAS  Google Scholar 

  29. A. Marmur: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?Langmuir 19, 8343 (2003).

    Article  CAS  Google Scholar 

  30. A. Tuteja, W. Choi, J.M. Mabry, G.H. McKinley, and R.E. Cohen: Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 105, 18200 (2008).

    Article  CAS  Google Scholar 

  31. M. Nosonovsky: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157 (2007).

    Article  CAS  Google Scholar 

  32. A.K. Kota, G. Kwon, W. Choi, J.M. Mabry, and A. Tuteja: Hygro-responsive membranes for effective oil-water separation. Nat Commun 3, 1025 (2012).

    Article  CAS  Google Scholar 

  33. G.K. Batchelor: An Introduction to Fluid Dynamics (Cambridge University Press, New York, NY, 2000).

    Book  Google Scholar 

  34. W. Choi, A. Tuteja, S. Chhatre, J.M. Mabry, R.E. Cohen, and G.H. McKinley: Fabrics with tunable oleophobicity. Adv. Mater. 21, 2190 (2009).

    Article  CAS  Google Scholar 

  35. A. Tuteja, W.J. Choi, G.H. McKinley, R.E. Cohen, and M.F. Rubner: Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 33, 752 (2008).

    Article  CAS  Google Scholar 

  36. S.S. Chhatre, W. Choi, A. Tuteja, K.C. Park, J.M. Mabry, G.H. McKinley, and R.E. Cohen: Scale dependence of omniphobic mesh surfaces. Langmuir 26, 4027 (2010).

    Article  CAS  Google Scholar 

  37. K. Golovin, D.H. Lee, J.M. Mabry, and A. Tuteja: Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Int. Ed. Engl. 52, 13007 (2013).

    Article  CAS  Google Scholar 

  38. R. Hensel, A. Finn, R. Helbig, H.G. Braun, C. Neinhuis, W.J. Fischer, and C. Werner: Biologically inspired omniphobic surfaces by reverse imprint lithography. Adv. Mater. 26, 2029 (2014).

    Article  CAS  Google Scholar 

  39. L. Feng, Z.Y. Zhang, Z.H. Mai, Y.M. Ma, B.Q. Liu, L. Jiang, and D.B. Zhu: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 116, 2046 (2004).

    Article  Google Scholar 

  40. J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B.P. Wang: A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol. 87, 427 (2012).

    Article  CAS  Google Scholar 

  41. Q.J. Wang, Z. Cui, Y. Mao, and Q.M. Chen: Stable highly hydrophobic and oleophilic meshes for oil-water separation. Appl. Surf. Sci. 253, 9054 (2007).

    Article  CAS  Google Scholar 

  42. Y.Z. Cao, X.Y. Zhang, L. Tao, K. Li, Z.X. Xue, L. Feng, and Y. Wei: Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater Interfaces 5, 4438 (2013).

    Article  CAS  Google Scholar 

  43. S.T. Wang, Y.L. Song, and L. Jiang: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology 18, 015103 (2007).

  44. B. Wang and Z.G. Guo: Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl. Phys. Lett. 103, 063704 (2013).

  45. C.X. Wang, T.J. Yao, J. Wu, C. Ma, Z.X. Fan, Z.Y. Wang, Y.R. Cheng, Q. Lin, and B. Yang: Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces 1, 2613 (2009).

    Article  CAS  Google Scholar 

  46. N. Liu, Y.Z. Cao, X. Lin, Y.N. Chen, L. Feng, and Y. Wei: A facile solvent-manipulated mesh for reversible oil/water separation. ACS Appl. Mater. Interfaces 6, 12821 (2014).

    Article  CAS  Google Scholar 

  47. C.R. Crick, J.A. Gibbins, and I.P. Parkin: Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation. J. Mater. Chem. A 1, 5943 (2013).

    Article  CAS  Google Scholar 

  48. Y.W. Shang, Y. Si, A. Raza, L.P. Yang, X. Mao, B. Ding, and J.Y. Yu: An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 4, 7847 (2012).

    Article  CAS  Google Scholar 

  49. X.M. Tang, Y. Si, J.L. Ge, B. Ding, L.F. Liu, G. Zheng, W.J. Luo, and J.Y. Yu: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale 5, 11657 (2013).

    Article  CAS  Google Scholar 

  50. M.L. Huang, Y. Si, X.M. Tang, Z.G. Zhu, B. Ding, L.F. Liu, G. Zheng, W.J. Luo, and J.Y. Yu: Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A 1, 14071 (2013).

    Article  CAS  Google Scholar 

  51. W.B. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25, 2071 (2013).

    Article  CAS  Google Scholar 

  52. S.H. Wang, M. Li, and Q.H. Lu: Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces 2, 677 (2010).

    Article  CAS  Google Scholar 

  53. C. Du, J.D. Wang, Z.F. Chen, and D.R. Chen: Durable superhydrophobic and superoleophilic filter paper for oil-water separation prepared by a colloidal deposition method. Appl. Surf. Sci. 313, 304 (2014).

    Article  CAS  Google Scholar 

  54. A. Asthana, T. Maitra, R. Buchel, M.K. Tiwari, and D. Poulikakos: Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black?ACS Appl. Mater. Interfaces 6, 8859 (2014).

    Article  CAS  Google Scholar 

  55. Z. Shi, W.B. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang: Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 25, 2422 (2013).

    Article  CAS  Google Scholar 

  56. J.P. Zhang and S. Seeger: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21, 4699 (2011).

    Article  CAS  Google Scholar 

  57. J. Li, L. Shi, Y. Chen, Y.B. Zhang, Z.G. Guo, B.L. Su, and W.M. Liu: Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J. Mater. Chem. 22, 9774 (2012).

    Article  CAS  Google Scholar 

  58. M.N. Kavalenka, A. Hopf, M. Schneider, M. Worgull, and H. Holscher: Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation. RSC Adv. 4, 31079 (2014).

    Article  CAS  Google Scholar 

  59. A. Maartens, E.P. Jacobs, and P. Swart: UF of pulp and paper effluent: membrane fouling-prevention and cleaning. J. Membr. Sci. 209, 81 (2002).

    Article  CAS  Google Scholar 

  60. B. Hu and K. Scott: Influence of membrane material and corrugation and process conditions on emulsion microfiltration. J. Membr. Sci. 294, 30 (2007).

    Article  CAS  Google Scholar 

  61. M.J. Liu, S.T. Wang, Z.X. Wei, Y.L. Song, and L. Jiang: Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21, 665 (2009).

    Article  CAS  Google Scholar 

  62. Z.X. Xue, M.J. Liu, and L. Jiang: Recent developments in polymeric superoleophobic surfaces. J. Polym. Sci. Polym. Phys. 50, 1209 (2012).

    Article  CAS  Google Scholar 

  63. Z.X. Xue, S.T. Wang, L. Lin, L. Chen, M.J. Liu, L. Feng, and L. Jiang: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23, 4270 (2011).

    Article  CAS  Google Scholar 

  64. C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang: Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces 1, 1400099 (2014).

    Article  CAS  Google Scholar 

  65. S.Y. Zhang, F. Lu, L. Tao, N. Liu, C.R. Gao, L. Feng, and Y. Wei: Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Appl. Mater. Interfaces 5, 11971 (2013).

    Article  CAS  Google Scholar 

  66. F. Lu, Y.N. Chen, N. Liu, Y.Z. Cao, L.X. Xu, Y. Wei, and L. Feng: A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil-water separation. RSC Adv. 4, 32544 (2014).

    Article  CAS  Google Scholar 

  67. B.X. Jing, H.T. Wang, K.Y. Lin, P.J. McGinn, C.Z. Na, and Y.X. Zhu: A facile method to functionalize engineering solid membrane supports for rapid and efficient oil-water separation. Polymer 54, 5771 (2013).

    Article  CAS  Google Scholar 

  68. Y. Dong, J. Li, L. Shi, X.B. Wang, Z.G. Guo, and W.M. Liu: Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem. Commun. 50, 5586 (2014).

    Article  CAS  Google Scholar 

  69. Q. Wen, J.C. Di, L. Jiang, J.H. Yu, and R.R. Xu: Zeolite-coated mesh film for efficient oil-water separation. Chem. Sci. 4, 591 (2013).

    Article  CAS  Google Scholar 

  70. J.W. Zeng and Z.G. Guo: Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloid Surf. A 444, 283 (2014).

    Article  CAS  Google Scholar 

  71. N. Liu, Y.N. Chen, F. Lu, Y.Z. Cao, Z.X. Xue, K. Li, L. Feng, and Y. Wei: Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. Chemphyschem 14, 3489 (2013).

    Article  CAS  Google Scholar 

  72. Y.Z. Zhu, F. Zhang, D. Wang, X.F. Pei, W.B. Zhang, and J. Jin: A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A 1, 5758 (2013).

    Article  CAS  Google Scholar 

  73. P.C. Chen and Z.K. Xu: Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep. -UK 3, 2776 (2013).

    Article  Google Scholar 

  74. H.C. Yang, K.J. Liao, H. Huang, Q.Y. Wu, L.S. Wan, and Z.K. Xu: Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A 2, 10225 (2014).

    Article  CAS  Google Scholar 

  75. H.C. Yang, J.K. Pi, K.J. Liao, H. Huang, Q.Y. Wu, X.J. Huang, and Z.K. Xu: Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 6, 12566 (2014).

    Article  CAS  Google Scholar 

  76. F.E. Ahmed, B.S. Lalia, N. Hilal, and R. Hashaikeh: Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination 344, 48 (2014).

    Article  CAS  Google Scholar 

  77. A. Raza, B. Ding, G. Zainab, M. El-Newehy, S.S. Al-Deyab, and J.Y. Yu: In situ cross-linked superwetting nanofibrous membranes for ultrafast oil-water separation. J. Mater. Chem. A 2, 10137 (2014).

    Article  CAS  Google Scholar 

  78. Q.S. Liu, A.A. Patel, and L.Y. Liu: Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil-water separation. ACS Appl. Mater. Interfaces 6, 8996 (2014).

    Article  CAS  Google Scholar 

  79. Y.N. Chen, Z.X. Xue, N. Liu, F. Lu, Y.Z. Cao, Z.X. Sun, and L. Feng: Fabrication of a silica gel coated quartz fiber mesh for oil-water separation under strong acidic and concentrated salt conditions. RSC Adv. 4, 11447 (2014).

    Article  CAS  Google Scholar 

  80. J. Yang, Z.Z. Zhang, X.H. Xu, X.T. Zhu, X.H. Men, and X.Y. Zhou: Superhydrophilic-superoleophobic coatings. J. Mater. Chem. 22, 2834 (2012).

    Article  CAS  Google Scholar 

  81. J.A. Howarter and J.P. Youngblood: Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv. Mater. 19, 3838 (2007).

    Article  CAS  Google Scholar 

  82. L.B. Zhang, Y.J. Zhong, D. Cha, and P. Wang: A self-cleaning underwater superoleophobic mesh for oil-water separation. Sci. Rep. - UK 3, 2326 (2013).

  83. P. Gao, Z.Y. Liu, D.D. Sun, and W.J. Ng: The efficient separation of surfactant-stabilized oil-water emulsions with a flexible and superhydrophilic graphene-TiO2 composite membrane. J. Mater. Chem. A 2, 14082 (2014).

    Article  CAS  Google Scholar 

  84. Y. Sawai, S. Nishimoto, Y. Kameshima, E. Fujii, and M. Miyake: Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29, 6784 (2013).

    Article  CAS  Google Scholar 

  85. J. Yang, H.J. Song, X.H. Yan, H. Tang, and C.S. Li: Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose 21, 1851 (2014).

    Article  CAS  Google Scholar 

  86. X.Y. Zhu, H.E. Loo, and R.B. Bai: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 436, 47 (2013).

    Article  CAS  Google Scholar 

  87. X.Y. Zhu, W.T. Tu, K.H. Wee, and R.B. Bai: Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci. 466, 36 (2014).

    Article  CAS  Google Scholar 

  88. J.A. Howarter and J.P. Youngblood: Amphiphile grafted membranes for the separation of oil-in-water dispersions. J. ColloidInterface Sci. 329, 127 (2009).

    Article  CAS  Google Scholar 

  89. H. Yoon, S.H. Na, J.Y. Choi, S.S. Latthe, M.T. Swihart, S.S. Al-Deyab, and S.S. Yoon: Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil-water separation and water purification by graphene. Langmuir 30, 11761 (2014).

    Article  CAS  Google Scholar 

  90. B. Berge: Electrocapillarity and wetting of insulator films by water. C. R. Acad. Sci. II 317, 157 (1993).

    CAS  Google Scholar 

  91. G. Kwon, A.K. Kota, Y.X. Li, A. Sohani, J.M. Mabry, and A. Tuteja: On-demand separation of oil-water mixtures. Adv. Mater. 24, 3666 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ki-Han Kim and the Office of Naval Research (ONR) for financial support under grant N00014-12-1-0874. We also thank Dr. Charles Y. Lee and the Air Force Office of Scientific Research (AFOSR) for financial support under grant FA9550-10-1-0523. We also thank the National Science Foundation and the Nanomanufacturing program for supporting this work through grant no. 1351412. EP would like to acknowledge support through the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Tuteja.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, G., Post, E. & Tuteja, A. Membranes with selective wettability for the separation of oil-water mixtures. MRS Communications 5, 475–494 (2015). https://doi.org/10.1557/mrc.2015.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.61

Navigation