Skip to main content
Log in

Preparation of superhydrophobic magnetic stearic acid polyurethane sponge for oil–water separation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional porous materials with the hydrophobic/oleophilic surface have attracted significant interest in the fields of oil/water separation. In this paper, superhydrophobic magnetic polyurethane sponge was fabricated by the self-polymerization of dopamine to bind the Fe3O4 nanoparticles tightly on the sponge and then soaking in cheap stearic acid aqueous solution. The obtained sponge has the superhydrophobic property and good magnetic property. The surface structure, composition, and properties of the modified sponges were characterized by scanning electron microscopy, energy dispersive spectrometer, Fourier-transform infrared spectrum, and water contact angle (WCA) measurements. The as-prepared superhydrophobic magnetic sponge was able to collect a wide range of oils and organic solvents from oil–water mixture with an absorption capacity up to 16–60 times of its own weight. Under an external magnetic field, it can be guided to a designated area. In addition, combined with the vacuum system, continuous oil separation can be carried out, which is of great significance for removing a good deal of dirty oil on the water surface. Furthermore, the WCA of sponge remains above 141°, and the oil absorption is basically unchanged through repeated cyclic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
TABLE 1:
Scheme 1:

Similar content being viewed by others

References

  1. F. Liu, F. Sun, and Q. Pan: Highly compressible and stretchable superhydrophobic coating inspired by bio-adhesion of marine mussels. J. Mater. Chem. 6, 11365–11371 (2014).

    Article  Google Scholar 

  2. J. Wang, H. Wang, and G. Geng: Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108 (2018).

    Article  CAS  Google Scholar 

  3. H. Gao, P. Sun, Y. Zhang, X. Zeng, D. Wang, Y. Zhang, W. Wang, and J. Wu: A two-step hydrophobic fabrication of melamine sponge for oil absorption and oil/water separation. Surf. Coat. Tech. 339, 147–154 (2018).

    Article  CAS  Google Scholar 

  4. X. Chen, A. Justin, and V.S. Garimella: Continuous oil−water separation using polydimethylsiloxane-functionalized melamine sponge. Ind. Eng. Chem. Res. 55, 3596–3602 (2016).

    Article  CAS  Google Scholar 

  5. T. Yan, X. Chen, T. Zhang, J. Yu, X. Jiang, W. Hu, and F. Jiao: A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chem. Eng. J. 347, 52–63 (2018).

    Article  CAS  Google Scholar 

  6. J.D. Wu, C. Zhang, and D.J. Jiang: Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Adv. 6, 24076–24082 (2016).

    Article  CAS  Google Scholar 

  7. F. Qiang, L. Hu, L. Gong, L. Zhao, S. Li, and L. Tang: Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem. Eng. J. 334, 2154–2166 (2018).

    Article  CAS  Google Scholar 

  8. C. Xia, Y. Li, T. Fei, and W. Gong: Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation. Chem. Eng. J. 345, 314–321 (2018).

    Article  CAS  Google Scholar 

  9. J. Li, Y. Chen, J. Gao, Z. Zuo, Y. Li, and Y. Li: Graphdiyne sponge for direct collection of oils from water. Appl. Mater. Interfaces 2, 201–204 (2018).

    Google Scholar 

  10. C. Su, H. Yang, S. Song, B. Lu, and R. Chen: A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation. Chem. Eng. J. 309, 413–426 (2017).

    Article  CAS  Google Scholar 

  11. L. Wu, L. Li, and B. Li: Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 7, 4936–4946 (2015).

    Article  CAS  Google Scholar 

  12. F. Beshkar, H. Khojasteh, and M. Salavati-Niasari: Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017).

    Article  CAS  Google Scholar 

  13. L. Liu, J. Lei, L. Li, R. Zhang, N. Mi, H. Chen, D. Huang, and N. Li: A facile method to fabricate the superhydrophobic magnetic sponge for oil-water separation. Mater. Lett. 195, 66–70 (2017).

    Article  CAS  Google Scholar 

  14. J. Dai, R. Zhang, W. Ge, A. Xie, Z. Chang, S. Tian, Z. Zhou, and Y. Yan: 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater. Design 139, 122–131 (2018).

    Article  CAS  Google Scholar 

  15. J. Wang, G. Geng, X. Liu, F. Han, and J. Xu: Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water. Chem. Eng. Res. Des. 137, 360–365 (2016).

    Google Scholar 

  16. H. Peng, H. Wang, and J. Wu: Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Ind. Eng. Chem. Res. 55, 832–838 (2016).

    Article  CAS  Google Scholar 

  17. Y. Ito, A. Miyazaki, K. Takai, V. Sivamurugan, T. Maeno, T. Kadono, M. Kitano, Y. Ogawa, N. Nakamura, M. Hara, S. Valiyaveettil, and T. Enoki: Magnetic sponge prepared with an alkanedithiol-bridged network of nanomagnets. J. Am. Chem. Soc. 133, 11470–11473 (2011).

    Article  CAS  Google Scholar 

  18. M. Wriedt, A.A. Yakovenko, G.J. Halder, A.V. Prosvirin, K.R. Dunbar, and H.-C. Zhou: Reversible switching from antiferro- to ferromagnetic behavior by solvent-mediated, thermally-induced phase transitions in a trimorphic MOF-based magnetic sponge system. J. Am. Chem. Soc. 135, 4040–4050 (2013).

    Article  CAS  Google Scholar 

  19. A.V. Dudchenko, J. Rolf, L. Shi, L. Olivas, W. Duan, and D. Jassby: Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: An experimental and theoretical study. J. Am. Chem. Soc. 9, 9930–9941 (2015).

    CAS  Google Scholar 

  20. H. Mi, X. Jing, H. Xie, H. Huang, and L. Turng: Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chem. Eng. J. 337, 69–81 (2018).

    Article  CAS  Google Scholar 

  21. H. Meng, T. Yan, J. Yu, and F. Jiao: Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation. Chinese J. Chem. Eng. 26, 501–503 (2018).

    Article  CAS  Google Scholar 

  22. Z. Li, B. Lin, L. Jiang, E. Lin, J. Chen, S. Zhang, Y. Tang, F. He, and D. Li: Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation. Appl. Surf. Sci. 427, 56–64 (2018).

    Article  CAS  Google Scholar 

  23. Y. Wu, S. Xue, H. Yang, H. Zhang, T. Zhang, and S. Gou: Polymerization-induced phase separation for the fabrication of magnetic sponges for oil spill reclamation. Chem. Eng. J. 328, 23–34 (2017).

    Google Scholar 

  24. L. Zhang, L. Li, and Z. Dang: Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. J. Colloid Interface Sci. 463, 168–179 (2016).

    Google Scholar 

  25. Q. Zhu and Q. Pan: Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation. ACS Nano. 8, 1402–1409 (2014).

    Article  CAS  Google Scholar 

  26. M. Khosravi and S. Azizian: Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Interfaces 7, 25326–25333 (2015).

    Article  CAS  Google Scholar 

  27. S. Kabiri, D.N.H. Tran, and Altalhi: Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80, 523–533 (2014).

    Article  CAS  Google Scholar 

  28. S. Liu, Q. Xu, S. Latthe, A. Gurav, and R. Xing: Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. RSC Adv. 5, 68293–68298 (2015).

    Article  CAS  Google Scholar 

  29. Y. Xu, F. You, H. Sun, and L. Shao: Realizing mussel-inspired polydopamine selective layer with strong solvent resistance in nanofiltration towards sustanable reclamation. ACS Sustain. Chem. Eng. 3, 35–38 (2017).

    Google Scholar 

  30. Z. Wang, X. Jiang, X. Cheng, C. Lan, and L. Shao: Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 7, 9534–9545 (2015).

    Article  CAS  Google Scholar 

  31. B. Ge, X. Zhu, Y. Li, X. Men, P. Li, and Z. Zhang: Versatile fabrication of magnetic superhydrophobic foams and application for oil–water separation. Colloids Surf. A 482, 1509–1517 (2015).

    Article  CAS  Google Scholar 

  32. N. Zhang, W. Jiang, and T. Wang: Facile preparation of magnetic poly(styrene-divinylbenzene) foam and its application as an oil absorbent. Ind. Eng. Chem. Res. 54, 11033–11039 (2015).

    Article  CAS  Google Scholar 

  33. B. Liu, L. Zhang, H. Wang, and Z. Bia: Preparation of MCC/MC silica sponge and its oil/water separation apparatus application. Ind. Eng. Chem. Res. 4, 5795–5801 (2017).

    Article  CAS  Google Scholar 

  34. J. Wang and Y. Zheng: Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method. Sep. Purif. Technol. 181, 148–157 (2017).

    Article  CAS  Google Scholar 

  35. Q. Cheng, X. An, Y. Li, C. Huang, and J. Zeng: Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustain. Chem. Eng. 10, 11440–11450 (2017).

    Article  CAS  Google Scholar 

  36. A. Banerjee, R. Gokhale, and S. Bhatnagar: MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J. Mater. Chem. 22, 19694–19699 (2017).

    Article  CAS  Google Scholar 

  37. J. Zhang, Y. Shao, C. Hsieh, Y. Chen, T. Su, J. Hsu, and R. Juang: Synthesis of magnetic iron oxide nanoparticles onto fluorinated carbon fabrics for contaminant removal and oil-water separation. Sep. Purif. Technol. 147, 312–319 (2017).

    Article  CAS  Google Scholar 

  38. S. Zhang, T. Lü, D. Qi, Z. Cao, D. Zhang, and H. Zhao: Synthesis of quaternized chitosan-coated magnetic nanoparticles for oil-water separation. Mater. Lett. 5, 128–131 (2016).

    Article  CAS  Google Scholar 

  39. O. Guselnikova, A. Barras, A. Addad, E. Sviridova, S. Szunerits, P. Postnikov, and R. Boukherroub: Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Sep. Purif. Technol. 240, 116627 (2020).

    Article  CAS  Google Scholar 

  40. J.J. Li, Y.N. Zhou, and Z.H. Luo: Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 322, 693–701 (2017).

    Article  CAS  Google Scholar 

  41. S. Rella, E. Mazzotta, A. Caroli, M. De Luca, C. Bucci, and C. Malitesta: Investigation of polydopamine coatings by X-ray photoelectron spectroscopy as an effective tool for improving biomolecule conjugation. Appl. Surf. Sci. 447, 31–39 (2018).

    Article  CAS  Google Scholar 

  42. S.W. Li, Y.J. Zheng, Z.Y. Qi, X.H. Li, and C.F. Chen: Thermal behavior of self-assembled stearic acid monolayers on sapphire surface. Phys. Procedia 85, 41–46 (2016).

    Article  CAS  Google Scholar 

  43. R. Du, Q. Zhao, P. Li, H. Ren, X. Gao, and J. Zhang: Ultrathermostable, magnetic-driven, and superhydrophobic quartz fibers for water remediation. ACS Appl. Mater. Interfaces 8, 1025–1032 (2015).

    Article  CAS  Google Scholar 

  44. Y. Yu, H. Chen, Y. Liu, and Z. Lai: Selective separation of oil and water with mesh membranes by capillarity. Adv. Colloid Interfaces 235, 46–55 (2016).

    Article  CAS  Google Scholar 

  45. Z. Wang, X. Yang, Z. Cheng, Y. Liu, L. Shao, and L. Jiang: Simply realizing “water diode janus” membranes for multifunctional smart applications. Chem. Eng. J. 4, 57–65 (2017).

    Google Scholar 

  46. S. Zhou, W. Jiang, T. Wang, and H. Hydrophobic: Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil–water separation. Ind. Eng. Chem. Res. 54, 5460–5467 (2015).

    Article  CAS  Google Scholar 

  47. V. Pham and J. Dickerson: Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl. Mater. Interfaces 6, 14181–14188 (2014).

    Article  CAS  Google Scholar 

  48. X. Wang, Y. Shi, W.R. Graff, D. Lee, and H. Gao: Developing recyclable pH-responsive magnetic nanoparticles for oil–water separation. Polymer 72, 12–19 (2015).

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Natural Science Fund Project of Gansu Province, China (18JR3RA109) and the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihong Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Liu, H., Su, S. et al. Preparation of superhydrophobic magnetic stearic acid polyurethane sponge for oil–water separation. Journal of Materials Research 35, 2925–2935 (2020). https://doi.org/10.1557/jmr.2020.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.260

Navigation