Skip to main content
Log in

Solvothermal synthesis of manganese sulfides and control of their phase and morphology

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Manganese sulfides (MnS) with a diversity of well-defined morphologies and phases have been successfully synthesized by the solvothermal approach. The phase structure and morphology of MnS could readily be tuned by adjusting the sulfur sources and solvents. Hollow γ-MnS spheres were obtained by treating L-cysteine and manganese source in ethylene glycol (EG) at 200 °C for 2 h, whereas a replacement of the mixture solvent by EG and deionized water yields the hierarchical flower-like γ-MnS. γ-MnS tubes were also produced under the same condition by using diethylene glycol and deionized water as solvents. When thioacetamide used as the sulfur source and oleylamine used as the solvent, monodisperse α-MnS nanoparticles with the mean diameter of 17 nm could be synthesized successfully. The phase structures, sizes, and morphologies of samples were investigated in detail by powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The UV-vis absorption peak and the width of band gap with different morphologies of the as-prepared MnS were measured. The samples described in this paper are promising to be utilized in solar cells, biomedicine, short wavelength electronic devices, photocatalysis, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
SCHEME 1
FIG. 6

Similar content being viewed by others

References

  1. H.M. Joshi, Y.P. Lin, M. Aslam, P.V. Prasad, E.A. Schultz-Sikma, R. Edelman, T. Meade, and V.P. Dravid: Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113, 17761 (2009).

    Article  CAS  Google Scholar 

  2. D. Xu, W. Shi, C. Xu, S. Yang, H. Bai, C. Song, and B. Chen: Hydrothermal synthesis of 3D Ba5Ta4O15 flower-like microsphere photocatalyst with high photocatalytic properties. J. Mater. Res. 31, 2640 (2016).

    Article  CAS  Google Scholar 

  3. Z. Shen, Z. Zhao, J. Qian, Z. Peng, and X. Fu: Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).

    Article  CAS  Google Scholar 

  4. R.E. Algra, M. Hocevar, M.A. Verheijen, I. Zardo, G.G. Immink, W.J. van Enckevort, G. Abstreiter, L.P. Kouwenhoven, E. Vlieg, and E.P. Bakkers: Crystal structure transfer in core/shell nanowires. Nano Lett. 11, 1690 (2011).

    Article  CAS  Google Scholar 

  5. Y. Li and J. Shi: Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 26, 3176 (2014).

    Article  CAS  Google Scholar 

  6. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  7. Q. Zhang, W. Wang, J. Goebl, and Y. Yin: Self-templated synthesis of hollow nanostructures. Nano Today 4, 494 (2009).

    Article  CAS  Google Scholar 

  8. X. Li, J. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    Article  CAS  Google Scholar 

  9. M.R. Gao, J. Jiang, and S.H. Yu: Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8, 13 (2012).

    Article  CAS  Google Scholar 

  10. S. Ma, Y. Deng, J. Xie, and K. He: Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl. Catal., B 227, 218 (2018).

    Article  CAS  Google Scholar 

  11. J. Qian, Z. Zhao, Z. Shen, G. Zhang, and Z. Peng: A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 30, 3746 (2015).

    Article  CAS  Google Scholar 

  12. C.H. Lai, M.Y. Lu, and L.J. Chen: Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19 (2012).

    Article  CAS  Google Scholar 

  13. P.D. Antunez, J.J. Buckley, and R.L. Brutchey: Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 3, 2399 (2011).

    Article  CAS  Google Scholar 

  14. M. Yuan and D.B. Mitzi: Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. Dalton Trans. 31, 6078 (2009).

    Article  Google Scholar 

  15. M. Chen, C. Ye, S. Zhou, and L. Wu: Recent advances in applications and performance of inorganic hollow spheres in devices. Adv. Mater. 25, 5343 (2013).

    Article  CAS  Google Scholar 

  16. L. Mi, Y. Chen, Z. Zheng, H. Hou, W. Chen, and S. Cui: Beneficial metal ion insertion into dandelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Adv. 4, 19257 (2014).

    Article  CAS  Google Scholar 

  17. Y. Ren, L. Gao, J. Sun, Y. Liu, and X. Xie: Facile synthesis of γ-MnS hierarchical nanostructures with high photoluminescence. Ceram. Int. 38, 875 (2012).

    Article  CAS  Google Scholar 

  18. A. Puglisi, S. Mondini, S. Cenedese, A.M. Ferretti, N. Santo, and A. Ponti: Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 22, 2804 (2010).

    Article  CAS  Google Scholar 

  19. C.C. Chen, A.B. Heerhold, C.S. Johnson, and A.P. Alivisatos: Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398 (1997).

    Article  CAS  Google Scholar 

  20. S. Lei, K. Tang, Q. Yang, and H. Zheng: Solvothermal synthesis of metastable γ-MnS hollow spheres and control of their phase. Eur. J. Inorg. Chem. 20, 4124 (2005).

    Article  Google Scholar 

  21. X. Yang, Y. Wang, K. Wang, Y. Sui, M. Zhang, B. Li, Y. Ma, B. Liu, G. Zou, and B. Zou: Polymorphism and formation mechanism of nanobipods in manganese sulfide nanocrystals induced by temperature or pressure. J. Phys. Chem. C 116, 3292 (2012).

    Article  CAS  Google Scholar 

  22. F. Li, T. Han, H. Wang, and X. Zheng: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  23. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan: Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172 (2002).

    Article  CAS  Google Scholar 

  24. Y. Ao, Y. Gao, P. Wang, C. Wang, J. Hou, and J. Qian: Solvent-controlled preparation and photocatalytic properties of nanostructured TiO2 thin films with different morphologies. Mater. Res. Bull. 49, 223 (2014).

    Article  CAS  Google Scholar 

  25. H.G. Yang and H.C. Zeng: Preparation of hollow anatase TiO2 nanospheres via qstwald ripening. J. Phys. Chem. B 108, 3492 (2004).

    Article  CAS  Google Scholar 

  26. W. Shi, S. Song, and H. Zhang: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42, 5714 (2013).

    Article  CAS  Google Scholar 

  27. L. Jiang and Y.J. Zhu: Cu2S nanostructures prepared by Cu-cysteine precursor templated route. Mater. Lett. 63, 1935 (2009).

    Article  CAS  Google Scholar 

  28. Z.X. Chen, Y.H. Shen, A.J. Xie, J.M. Zhu, Z.F. Wu, and F.Z. Huang: L-Cysteine-assisted controlled synthesis of selenium nanospheres and nanorods. Cryst. Growth Des. 9, 1327 (2008).

    Article  Google Scholar 

  29. X. Zhang, Y. Chen, C. Jia, Q. Zhou, Y. Su, B. Peng, S. Yin, and M. Xin: Two-step solvothermal synthesis of α-MnS spheres: Growth mechanism and characterization. Mater. Lett. 62, 125 (2008).

    Article  CAS  Google Scholar 

  30. F. Huang, H.Z. Zhang, and J.F. Banfield: Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373 (2003).

    Article  CAS  Google Scholar 

  31. Y. Shi, F. Xue, C. Li, Q. Zhao, and Z. Qu: Preparation and hydrothermal annealing of pure metastable β-MnS thin films by chemical bath deposition (CBD). Mater. Res. Bull. 46, 483 (2011).

    Article  CAS  Google Scholar 

  32. Y.H. Zheng, Y. Cheng, Y.S. Wang, L.H. Zhou, F. Bao, and C. Jia: Metastable γ-MnS hierarchical architectures: Synthesis, characterization, and growth mechanism. J. Phys. Chem. 110, 8284 (2006).

    Article  CAS  Google Scholar 

  33. J. Mu, Z. Gu, L. Wang, Z. Zhang, H. Sun, and S.Z. Kang: Phase and shape controlling of MnS nanocrystals in the solvothermal process. J. Nanopart. Res. 10, 197 (2007).

    Article  Google Scholar 

  34. M. Liu, N. Shan, L. Chen, X. Li, and B. Li: A mild l-cystine-assisted hydrothermal route to metastable γ-MnS multipods. Appl. Surf. Sci. 258, 7922 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Nos. 51204085 and 51502123), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120211120007), and Fundamental Research Funds for the Central Universities of China (No. lzujbky-2016-125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Shi, R., Zhang, C. et al. Solvothermal synthesis of manganese sulfides and control of their phase and morphology. Journal of Materials Research 33, 4224–4232 (2018). https://doi.org/10.1557/jmr.2018.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.365

Navigation