Skip to main content
Log in

Nanostructured resorcinol-formaldehyde ink for 3D direct writing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We designed a resorcinol-formaldehyde (RF) sol–gel ink for direct ink writing of the microlattices. To improve the formability, the fresh microlattices were strengthened by surface catalysis with HCl atmosphere. After supercritical drying and carbonization, the sample’s specific surface area was 631 m2/g and the average pore size was 3.81 nm. Both RF aerogel and carbonized RF aerogel samples had millimeter-scale pore, micron-scale pore, and nanoscale skeleton. The pore and skeleton could provide high surface area and diffusion channels, which were beneficial to the adsorption performances. The carbonized RF aerogel sample fully adsorbed Dulbecco’s modified eagle medium in 250 min, which exhibited a good capacity of quick adsorption and indicated the potential application for cell supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C. Zhu, T.Y-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, and M.A. Worsely: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2014).

    Google Scholar 

  2. B.G. Compton and J.A. Lewis: 3D printing of lightweight cellular composites. Adv. Mater. 26, 5930 (2014).

    CAS  Google Scholar 

  3. R.A. Bary, III, R.F. Shephers, J.N. Hanson, R.G. Nuzzo, P. Wiltzius, and J.A. Lewis: Direct write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater., 21, 2407 (2010).

    Google Scholar 

  4. W. Wu, A. DeConinck, and J.A. Lewis: Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, 178 (2011).

    Google Scholar 

  5. J.P. Lewicki, J.N. Rodriguez, C. Zhu, M.A. Worsley, A.S. Wu, Y. Kanarska, J.D. Hprn, E.B. Duoss, J.M. Ortega, W. Elmer, R. Hensleigh, R.A. Fellini, and M.J. King: 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci. Rep. 7, 43401 (2017).

    Google Scholar 

  6. J.N.H. Shepherd, S.T. Parker, R.F. Shepherd, M.U. Gillette, J.A. Lewis, and R.G. Nuzzo: 3D microperiodic hydrogel caffolds for robust neuronal cultures. Adv. Funct. Mater. 21, 47 (2011).

    Google Scholar 

  7. M. Gratson and J.A. Lewis: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly. Langmuir 21, 457 (2005).

    CAS  Google Scholar 

  8. E. Vorndran, U. Klammert, A. Ewald, J.E. Barralet, and U. Gbureck: Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug release matrices. Adv. Funct. Mater. 20, 1585 (2010).

    CAS  Google Scholar 

  9. J.E. Smay, G.M. Gratson, R.F. Shepherd, J. Cesarano, and J.A. Lewis: Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279 (2002).

    CAS  Google Scholar 

  10. M. Sweeney, L.L. Campbell, J. Hanson, M.L. Pantoyo, and G.F. Christopher: Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing. J. Mater. Sci. 4, 1 (2017).

    Google Scholar 

  11. J.M. McCracken, A. Badea, M.E. Kandel, A.S. Gladman, D.J. Wetzel, G. Popescu, J.A. Lewis, and R.G. Nuzzo: Programming mechanical and physicochemical properties of 3D hydrogel cellular microcultures via direct ink writing. Adv. Healthcare Mater. 5, 1025 (2016).

    CAS  Google Scholar 

  12. D. Therriault, R. Shepherd, S. White, and J.A. Lewis: Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17, 395 (2005).

    CAS  Google Scholar 

  13. H. Zhang, A. Ramm, S. Lim, W. Xie, B.Y. Ahn, W. Xu, A. Mahajan, W.J. Suszynski, C. Kim, J.A. Lewis, C.D. Frisble, and L.F. Francis: Wettability contrast gravure printing. Adv. Mater. 27, 7420 (2015).

    CAS  Google Scholar 

  14. R. Melcher, N. Travitzky, C. Zollfrank, and P. Greil: 3D printing of Al2O3/Cu–O interpenetrating phase composite. J. Mater. Sci. 46, 1203 (2011).

    CAS  Google Scholar 

  15. S. Walker and A. Lewis: Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc. 134, 1419 (2012).

    CAS  Google Scholar 

  16. C.H.J. Kim, D. Zhao, G. Lee, and J. Liu: Strong, machinable carbon aerogels for high performance supercapacitors. Adv. Funct. Mater. 26, 4976 (2016).

    CAS  Google Scholar 

  17. X. Wu, D. Du, R. Fu, and W. Zeng: Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigments 95, 689 (2012).

    CAS  Google Scholar 

  18. C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, and Y. Li: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448 (2016).

    CAS  Google Scholar 

  19. J.N. Rodriguez, C. Zhu, E.B. Duoss, T.S. Wilson, C.M. Spadaccini, and J.P. Lewicki: Shape-morphing composites with designed micro-architectures. Sci. Rep. 6, 27933 (2016).

    Google Scholar 

  20. A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, and R.N. Shah: Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636 (2015).

    CAS  Google Scholar 

  21. S. Liao: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189 (2003).

    Google Scholar 

  22. Y. Wang, M. Li, W. Lu, Y. Gu, S. Wang, R. Sun, X. Zhang, Q. Li, and Z. Zhang: Bio-inspired design and fabrication of an ultralight and strong nano-carbon gradient composite. Mater. Des. 107, 198 (2016).

    CAS  Google Scholar 

  23. D. Dong, H. Guo, G. Li, L. Yan, X. Zhang, and W. Song: Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy 39, 470 (2017).

    CAS  Google Scholar 

  24. L. Shao, S. Quan, Y. Liu, Z. Guo, and Z. Wang: A novel “gel–sol” strategy to synthesize TiO2, nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307 (2013).

    CAS  Google Scholar 

  25. X. Zhang, O. Alloul, Q. He, J. Zhu, M.J. Verde, Y. Li, S. Wei, and Z. Guo: Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54, 3594 (2013).

    CAS  Google Scholar 

  26. D. Guo, P. Cai, J. Sun, W. He, X. Wu, T. Zhang, X. Wang, and X. Zhang: Reduced-graphene-oxide/metal-oxide p–n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon 99, 571 (2015).

    Google Scholar 

  27. S.L. Morisette, J. Cesarano, III, J.A. Lewis, and D.B. Dimos: Solid freeform fabrication using chemically reactive suspensions. U.S. Patent No. US6454972, 2002.

  28. M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni: Beat the diffraction limit in 3D direct laser writing in photosensitive glass. Opt. Express 17, 10304 (2009).

    CAS  Google Scholar 

  29. W. Liu, D. Haubold, B. Rutkowski, M. Oschatz, R. Hübner, M. Werheid, C. Ziegler, L. Sonntag, S. Liu, Z. Zheng, A. Herrmann, D. Geiger, B. Terlan, T. Gemming, L. Borchardt, S. Kaskel, A. Czyrska-Filemonowicz, and A. Eychmüller: Self-supporting hierarchical porous PtAg alloy nanotubular, aero-gels as highly active and durable electrocatalysts. Chem. Mater. 18, 6477 (2016).

    Google Scholar 

  30. Z. Shi, X. Shi, M. Ullah, A. Li, V. Revin, and G. Yang: Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv. Compos. Hybrid. Mater. 1, 79 (2017).

    Google Scholar 

  31. H. Wang, A. Du, Z. Zhang, B. Zhou, and J. Shen: An optical dustbin made by the subwavelength-induced super-black carbon aerogels. J. Mater. Res. 32, 3524 (2017).

    CAS  Google Scholar 

  32. A. Du, B. Zhou, Z. Zhang, and J. Shen: A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013).

    CAS  Google Scholar 

  33. L. Dashairya, M. Rout, and P. Saha: Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Adv. Compos. Hybrid. Mater. 1, 135 (2017).

    Google Scholar 

  34. W. Sun, A. Du, B. Zhou, J. Shen, S. Huang, and J. Tang: Ultra-low-density GNS/CA composite for peer review aerogels with ultra-high specific surface for dye removal. J. Sol. Gel Sci. Technol. 80, 1 (2016).

    Google Scholar 

  35. W. Sun, A. Du, F. Yu, J. Shen, S. Huang, J. Tang, and B. Zhou: Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10, 9123 (2016).

    CAS  Google Scholar 

  36. D. Liu, J. Shen, N. Liu, H. Yang, and A. Du: Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors. Electrochim. Acta 89, 571 (2013).

    CAS  Google Scholar 

  37. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    CAS  Google Scholar 

  38. J. Huang, B.G. Sumpter, and V. Meunier: Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520 (2010).

    Google Scholar 

  39. H. Ren, X. Shi, J. Zhu, Y. Zhang, Y. Bi, and L. Zhang: Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci. 51, 6419 (2016).

    CAS  Google Scholar 

  40. X. Shi, J. Zhu, Y. Zhang, S. He, Y. Bi, and L. Zhang: Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Adv. 5, 77130 (2015).

    CAS  Google Scholar 

  41. S. Haji and C. Erkey: Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. Ind. Eng. Chem. Res. 42, 6933 (2003).

    CAS  Google Scholar 

  42. P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, and R. Fan: Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 12, 10 (2017).

    Google Scholar 

  43. H. Ren, J. Zhu, Y. Bi, Y. Xu, and L. Zhang: Facile fabrication of flexible graphene/porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv. 92, 89140 (2016).

    Google Scholar 

  44. Z. Hu, Q. Shao, Y. Huang, L. Yu, D. Zhang, X. Xu, J. Lin, H. Liu, and Z. Guo: Light triggered interfacial damage self-healing of poly(p-phenylene benzobisoxazole) fiber composites. Nanotechnology 29, 185602 (2018).

    Google Scholar 

  45. J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, X. CAi, W. Wang, C. Zheng, P. Zhang, J. Cheng, and Z. Guo: Durably antibacterial and bacterially anti-adhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 10, 6124 (2018).

    CAS  Google Scholar 

  46. Z. Wu, S. Gao, L. Chen, D. Jiang, Q. Shao, B. Zhang, Z. Zhai, C. Wang, M. Zhao, Y. Ma, X. Zhang, L. Weng, M. Zhang, and Z. Guo: Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218, 1700357 (2017).

    Google Scholar 

  47. B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, and Z. Guo: Two-step hydrothermally synthesized carbon nanodots/WO photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769 (2017).

    CAS  Google Scholar 

  48. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shanker, J. Li, R. Fan, D. Cao, and Z. Guo: Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50 (2017).

    CAS  Google Scholar 

  49. T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu: Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253 (2018).

    CAS  Google Scholar 

  50. L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, and J. Jiang: Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282 (2011).

    CAS  Google Scholar 

  51. T. Ma, R. Chang, P. Zheng, F. Zhao, and X. Ma: Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem. Eng. J. 240, 595 (2014).

    CAS  Google Scholar 

  52. Y.F. Xie, D.Y. Qian, D.L. Wu, and X.F. Ma: Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem. Eng. J. 168, 959 (2011).

    CAS  Google Scholar 

  53. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei, and Y.N. Yang: Adsorption of cesium from aqueous solution using agricultural residue—Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47, 2563 (2013).

    CAS  Google Scholar 

  54. B. Hameed, A. Din, and A. Ahmad: Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141, 819 (2007).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the financial support from the National Key Research and Development Program of China (2017YFA0204600) and Science and Technology Innovation Fund of Shanghai Aerospace, China (SAST201469). We would like to thank Prof. Lili Qin from Tongji University for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhou or Ai Du.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Zhang, T., Zhou, B. et al. Nanostructured resorcinol-formaldehyde ink for 3D direct writing. Journal of Materials Research 33, 2052–2061 (2018). https://doi.org/10.1557/jmr.2018.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.104

Navigation