Skip to main content
Log in

Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gradient plasticity provides an effective theoretical framework to interpret heterogeneous and irreversible deformation processes on micron and submicron scales. By incorporating internal length scales into a plasticity framework, gradient plasticity gives access to size effects, strain heterogeneities at interfaces, and characteristic lengths of strain localization. To relate the magnitude of the internal length scale to parameters of the dislocation microstructure of the material, 3D discrete dislocation dynamics (DDD) simulations were performed for tricrystals of different dislocation source lengths (100, 200, and 300 nm). Comparing the strain profiles deduced from DDD with gradient plasticity predictions demonstrated that the internal length scale depends on the flow-stress-controlling mechanism. Different dislocation mechanisms produce different internal lengths. Furthermore, by comparing a gradient plasticity framework with interfacial yielding to the simulations it was found that, even though in the DDD simulations grain boundaries (GBs) were physically impenetrable to dislocations, on the continuum scale the assumption of plastically deformable GBs produces a better match of the DDD data than the assumption of rigid GBs. The associated effective GB strength again depends on the dislocation microstructure in the grain interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42(2), 475 (1994).

    Article  CAS  Google Scholar 

  2. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103(15), 155501 (2009).

    Article  CAS  Google Scholar 

  3. D. Liu, Y. He, X. Tang, H. Ding, P. Hu, and P. Cao: Size effects in the torsion of microscale copper wires: Experiment and analysis. Scr. Mater. 66(6), 406 (2012).

    Article  CAS  Google Scholar 

  4. J.S. Stölken and A.G. Evans: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109 (1998).

    Article  Google Scholar 

  5. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).

    Article  CAS  Google Scholar 

  6. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).

    Article  CAS  Google Scholar 

  7. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33–35), 5567 (2006).

    Article  CAS  Google Scholar 

  8. E.C. Aifantis: On the microstructural origin of certain inelastic models. Trans. ASME, J. Eng. Mater. Technol. 106(4), 326 (1984).

    Article  CAS  Google Scholar 

  9. E.C. Aifantis: The physics of plastic deformation. Int. J. Plast. 3(3), 211 (1987).

    Article  Google Scholar 

  10. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239 (1999).

    Article  Google Scholar 

  11. N.A. Fleck and J.W. Hutchinson: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245 (2001).

    Article  Google Scholar 

  12. K.E. Aifantis and J.R. Willis: The role of interfaces in enhancing the yield strength of composites and polycrystals. J. Mech. Phys. Solids 53(5), 1047 (2005).

    Article  Google Scholar 

  13. N.A. Fleck and J.R. Willis: A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier. J. Mech. Phys. Solids 57(1), 161 (2009).

    Article  Google Scholar 

  14. N.A. Fleck and J.R. Willis: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier. J. Mech. Phys. Solids 57(7), 1045 (2009).

    Article  CAS  Google Scholar 

  15. C. Polizzotto: A unified residual-based thermodynamic framework for strain gradient theories of plasticity. Int. J. Plast. 27(3), 388 (2011).

    Article  Google Scholar 

  16. M.E. Gurtin and N. Ohno: A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems. J. Mech. Phys. Solids 59(2), 320 (2011).

    Article  Google Scholar 

  17. G.Z. Voyiadjis and D. Faghihi: Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int. J. Plast. 30–31, 218 (2012).

    Article  Google Scholar 

  18. E.C. Aifantis: Strain gradient interpretation of size effects. Int. J. Fract. 95(1–4), 299 (1999).

    Article  Google Scholar 

  19. X. Zhang and K.E. Aifantis: Interpreting strain bursts and size effects in micropillars using gradient plasticity. Mater. Sci. Eng., A 528(15), 5036 (2011).

    Article  CAS  Google Scholar 

  20. A.A. Konstantinidis, K.E. Aifantis, and J.T.M. De Hosson: Capturing the stochastic mechanical behavior of micro and nanopillars. Mater. Sci. Eng., A 597(0), 89 (2014).

    Article  CAS  Google Scholar 

  21. E.C. Aifantis: Update on a class of gradient theories. Mech. Mater. 35(3–6), 259 (2003).

    Article  Google Scholar 

  22. M. Zaiser and E.C. Aifantis: Geometrically necessary dislocations and strain gradient plasticity — A dislocation dynamics point of view. Scr. Mater. 48(2), 133 (2003).

    Article  CAS  Google Scholar 

  23. M.E. Gurtin and L. Anand: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations. J. Mech. Phys. Solids 53(7), 1624 (2005).

    Article  Google Scholar 

  24. H. Gao and Y. Huang: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48(2), 113 (2003).

    Article  CAS  Google Scholar 

  25. I. Groma, F.F. Csikor, and M. Zaiser: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51(5), 1271 (2003).

    Article  CAS  Google Scholar 

  26. K.E. Aifantis and A.H.W. Ngan: Modeling dislocation-grain boundary interactions through gradient plasticity and nanoindentation. Mater. Sci. Eng., A 459(1–2), 251 (2007).

    Article  Google Scholar 

  27. E. Van der Giessen and A. Needleman: Discrete dislocation plasticity: A simple planar model. Modell. Simul. Mater. Sci. Eng. 3(5), 689 (1995).

    Article  Google Scholar 

  28. H.M. Zbib and T. Diaz de la Rubia: A multiscale model of plasticity. Int. J. Plast. 18(9), 1133 (2002).

    Article  Google Scholar 

  29. D. Weygand, L.H. Friedman, E. Van Der Giessen, and A. Needleman: Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 10(4), 437 (2002).

    Article  Google Scholar 

  30. K.E. Aifantis, J. Senger, D. Weygand, and M. Zaiser: Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars. IOP Conf. Ser.: Mater. Sci. Eng. 3, 012025 (2009).

    Article  Google Scholar 

  31. D. Weygand and P. Gumbsch: Study of dislocation reactions and rearrangements under different loading conditions. Mater. Sci. Eng., A 400–401(1–2 Suppl.), 158 (2005).

    Article  Google Scholar 

  32. A.J.E. Foreman: The bowing of a dislocation segment. Philos. Mag. 15, 1011 (1967).

    Article  CAS  Google Scholar 

  33. K.E. Aifantis and A.A. Konstantinidis: Hall-Petch revisited at the nanoscale. Mater. Sci. Eng., B 163(3), 139 (2009).

    Article  CAS  Google Scholar 

  34. X. Zhang and K.E. Aifantis: Interpreting the softening of nanomaterials through gradient plasticity. J. Mater. Res. 26(11), 1399 (2011).

    Article  CAS  Google Scholar 

  35. T. Hochrainer, S. Sandfeld, M. Zaiser, and P. Gumbsch: Continuum dislocation dynamics: Towards a physical theory of crystal plasticity. J. Mech. Phys. Solids 63, 167 (2014).

    Article  Google Scholar 

  36. M. Zaiser and S. Sandfeld: Scaling properties of dislocation simulations in the similitude regime. Modell. Simul. Mater. Sci. Eng. 22, 065012 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors XZ, KEA, and MZ are grateful to the KEA’s European Research Council Starting Grant MINATRAN 211166 for its support. XZ is grateful for the supports from the NSFC (11202172), the CPSF (2013M530405), and the Sichuan Provincial Youth Science and Technology Innovation Team (2013TD0004). MZ acknowledges the support under NSRF/ERC13 and GSRT/ARISTEIA II-SEDEMP. Finally, DW and MZ acknowledge the support by the Deutsche Forschungsgemeinschaft DFG-FG1650, grant WE3544/5-1, cofunded by the EPSRC under Grant No. Ep/J003387/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zaiser.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Aifantis, K.E., Senger, J. et al. Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?. Journal of Materials Research 29, 2116–2128 (2014). https://doi.org/10.1557/jmr.2014.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.234

Navigation