Skip to main content
Log in

Effect of a high magnetic field on the morphological and crystallographic features of primary Al6Mn phase formed during solidification process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Morphological and crystallographic effects of a high magnetic field on the primary Al6Mn phase formed during the solidification of hypereutectic Al-3.25wt%Mn were investigated. Without the field, the primary Al6Mn crystals are mainly concentrated in the lower part and reveal a dispersed needle-like shape. In three dimension, the needles are in the form of a quadrangular prism (laterally bound by {110} and preferentially growing along <001>). When the magnetic field is applied, they tend to be distributed homogenously and show some extra agglomerate- or chain-like forms (preferentially extending along <100>). Furthermore, they also tend to preferentially orient with <100> parallel to the field direction. The homogenous distribution is caused by the magnetic viscosity resistance force. The “agglomerates” or “chains” are the result of a “bifurcation effect” due to the breakdown at the sharp edges of the quadrangular prisms. The preferential orientation should be attributed to the magnetocrystalline anisotropy of Al6Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Martienssen and H. Warlimont: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin-Heidelberg, New York, 2005), p. 180.

    Book  Google Scholar 

  2. L.F. Mondolfo: Aluminum Alloys: Structure and Properties (Butterworth, London, 1976), p. 324.

    Book  Google Scholar 

  3. A. Bahadur: Intermetallic phases in Al-Mn alloys. J. Mater. Sci. 23, 48 (1988).

    Article  CAS  Google Scholar 

  4. N. Masahashi, M. Matsuo, and K. Watanabe: Development of preferred orientation in annealing of Fe-3.25%Si in a high magnetic field. J. Mater. Res. 13, 457 (1998).

    Article  CAS  Google Scholar 

  5. N. Yoshikawa, T. Endo, S. Taniguchi, S. Awaji, K. Watanabe, and E. Aoyagi: Microstructure and orientation of iron crystals by thermal chemical vapor deposition with imposition of magnetic field. J. Mater. Res. 17, 2865 (2002).

    Article  CAS  Google Scholar 

  6. W.P. Tong, H. Zhang, J. Sun, L. Zuo, J.C. He, and J. Lu: Control of iron nitride formation by a high magnetic field. J. Mater. Res. 25, 2082 (2010).

    Article  CAS  Google Scholar 

  7. C.Q. Cheng, J. Zhao, and Y. Xu: Kinetics of intermetallic compound layers and Cu dissolution at Sn1.5Cu/Cu interface under high magnetic field. J. Mater. Res. 25, 359 (2010).

    Article  CAS  Google Scholar 

  8. C. Vives: Solidification of tin in the presence of electric and magnetic field. J. Cryst. Growth 76, 170 (1986).

    Article  CAS  Google Scholar 

  9. C. Vives: Effects of a magnetically forced convection during the crystallization in mould of aluminium alloys. J. Cryst. Growth 94, 739 (1989).

    Article  CAS  Google Scholar 

  10. T. Liu, Q. Wang, C. Zhang, A. Gao, D.G. Li, and J.C. He: Formation of chainlike structures in an Mn-89.7wt%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field. J. Mater. Res. 24, 2321 (2009).

    Article  CAS  Google Scholar 

  11. Q. Wang, A. Gao, T. Liu, F. Liu, C. Zhang, and J.C. He: Solidified microstructure evolution of Mn-Sb near-eutectic alloy under high magnetic field conditions. J. Mater. Res. 24, 2331 (2009).

    Article  CAS  Google Scholar 

  12. T. Liu, Q. Wang, A. Gao, H.W. Zhang, K. Wang, and J.C. He: Distribution of alloying elements and the corresponding structural evolution of Mn-Sb alloys in high magnetic field gradients. J. Mater. Res. 25, 1718 (2010).

    Article  CAS  Google Scholar 

  13. L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, and J.Z. Cui: Influence of a high magnetic field on the precipitation behaviors of the primary Al3Fe phase during the solidification of hypereutectic Al-3.31wt% Fe alloy. J. Cryst. Growth 339, 61 (2012).

    Article  CAS  Google Scholar 

  14. X. Li, A. Gagnoud, Z.M. Ren, Y. Fautrelle, and R. Moreaub: Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field. Acta Mater. 57, 2180 (2009).

    Article  CAS  Google Scholar 

  15. X. Li, Y.D. Zhang, Y. Fautrelle, Z.M. Ren, and C. Esling: Experimental evidence for liquid/solid interface instability caused by the stress in the solid during directional solidification under a strong magnetic field. Scr. Mater. 60, 489 (2009).

    Article  CAS  Google Scholar 

  16. X. Li, Z.M. Ren, Y. Fautrelle, A. Gagnoud, Y.D. Zhang, and C. Esling: Degeneration of columnar dendrites during directional solidification under a high magnetic field. Scr. Mater. 60, 443 (2009).

    Article  CAS  Google Scholar 

  17. F.W. Jin, Z.M. Ren, W.L. Ren, K. Deng, Y.B. Zhong, and J.B. Yu: Effects of a high-gradient magnetic field on the migratory behavior of primary crystal silicon in hypereutectic Al-Si alloy. Sci. Technol. Adv. Mater. 9, 1 (2008).

    Article  Google Scholar 

  18. C.J. Wang, Q. Wang, Z.Y. Wang, H.T. Li, K. Nakajima, and J.C. He: Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field. J. Cryst. Growth 310, 1256 (2008).

    Article  CAS  Google Scholar 

  19. H.J. Kang, X.Z. Li, Y.Q. Su, D.M. Liu, J.J. Guo, and H.Z. Fu: 3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al-3at.%Mn alloy. Intermetallics 23, 32 (2012).

    Article  CAS  Google Scholar 

  20. D.W. Luo, J. Guo, Z.M. Yan, and T.J. Li: Effect of high magnetic fields on the solidification microstructure of an Al-Mn alloy. Rare Met. 28, 302 (2009).

    Article  CAS  Google Scholar 

  21. Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo: Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals. J. Appl. Cryst. 40, 436 (2006).

    Article  Google Scholar 

  22. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham: Reference data for the density and viscosity of liquid aluminum and liquid iron. J. Phys. Chem. Ref. Data 35, 285 (2006).

    Article  CAS  Google Scholar 

  23. J. Prywer: Correlation between growth of high-index faces, relative growth rates and crystallographic structure of crystal. Eur. Phys. J. B 25, 61 (2002).

    CAS  Google Scholar 

  24. J. Prywer: Correlation between crystal structure, relative growth rates and evolution of crystal surfaces. Acta Phys. Pol. A 103, 85 (2003).

    Article  CAS  Google Scholar 

  25. Y. Inatomi: Buoyancy convection in cylindrical conducting melt with low Grashof number under uniform static magnetic field. Int. J. Heat Mass Transfer 49, 4821 (2006).

    Article  CAS  Google Scholar 

  26. M. Kassemi, S. Barsi, J.I.D. Alexander, and M. Banish: Contamination of microgravity liquid diffusivity measurements by void-generated thermocapillary convection. J. Cryst. Growth 276, 621 (2005).

    Article  CAS  Google Scholar 

  27. D.H. Matthiesen, M.J. Wargo, S. Motakef, D.J. Carlson, J.S. Nakos, and A.F. Witt: Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields. J. Crystal Growth 85, 557 (1987).

    Article  CAS  Google Scholar 

  28. W.F. Berg: Crystal growth from solutions. Proc. R. Soc. London, Ser. A 164, 79 (1938).

    Article  CAS  Google Scholar 

  29. J.C. Van Dam and F.H. Mischgofsky: The application of a new, simple interference technique to the determination of growth concentration gradients of the layer perovskite NH3(CH2)3NH3CdCl4. J. Cryst. Growth 84, 539 (1987).

    Article  Google Scholar 

  30. M. Wang, R.W. Peng, P. Bennema, and N.B. Ming: Morphological instability of crystals grown from thin aqueous solution films with a free surface. Philos. Mag. A 71, 409 (1995).

    Article  CAS  Google Scholar 

  31. R.F. Xiao, J.I.D. Alexander, and F. Rosenberger: Growth morphology with anisotropic surface kinetics. J. Cryst. Growth 100, 313 (1990).

    Article  Google Scholar 

  32. M.C. Flemings: Solidification Processing (McGraw-Hill, New York, 1974), p. 322.

    Google Scholar 

  33. S. Asai, K. Sassa, and M. Tahashi: Crystal orientation of non-magnetic materials by imposition of a high magnetic field. Sci. Technol. Adv. Mater. 4, 455 (2003).

    Article  CAS  Google Scholar 

  34. T. Sugiyama, M. Tahashi, K. Sassa, and S. Asai: The control of crystal orientation in non-magnetic metals by imposition of a high magnetic field. ISIJ. Int. 43, 855 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51201029), the China Postdoctoral Science Foundation (Grant No. 2012M520637), and National Basic Research Program of China (Grant No. 2012CB619506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhao, Z., Zuo, Y. et al. Effect of a high magnetic field on the morphological and crystallographic features of primary Al6Mn phase formed during solidification process. Journal of Materials Research 28, 1567–1573 (2013). https://doi.org/10.1557/jmr.2013.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.155

Navigation