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ABSTRACT

We present a theoretical analysis of the gain characteristics of InGaN/AlGaN quantum dot
(QD) lasers. We calculate the elastic strain distribution caused by the lattice mismatch between
the QD and the barrier using an original method which takes into account the hexagonal symmetry
of the structure’s elastic properties. The method is based on an analytical derivation of the Fourier
transform of the strain tensor. The proposed approach is combined with a plane-wave expansion
method to calculate the carrier spectrum and wave functions. The many-body gain of a laser
containing a periodic array of  QDs is calculated using the Padé approximation. We show that
band gap reduction and the Coulomb enhancement of the interband transition probability can
significantly modify the gain spectrum in InGaN/AlGaN QD lasers.

INTRODUCTION

Wide-band gap semiconductors are attracting considerable attention because of their potential
as visible light emitting diodes [1]. At the same time, advances in growth technology has
stimulated active investigations in the field of zero dimensional quantum dot (QD) structures. The
first GaN-based structures with self-organized QDs have been fabricated recently [2-4]. Lasers
based on self-organized QDs have potential advantages over conventional quantum well lasers
because of their atomic-like density of states. For wide-band gap heterostructures additional
benefits may arise from using QD structures instead of quantum well ones. Firstly, strain
relaxation in  QD structures is easier and therefore defect-free fabrication of strongly lattice-
mismatched heterostructures may be possible. Secondly, because of the carrier localization, the
role of many-body effects may increase, resulting in a stronger gain enhancement due to Coulomb
interactions. Moreover, recent publications [5,6] demonstrate that light emission from InGaN
quantum well  lasers may originate from dot-like localized states formed because of indium
composition fluctuations. It is therefore timely to undertake a theoretical investigation of the gain
characteristics of GaN-based QD structures.

We present here a theoretical study of the elastic strain distribution, carrier spectrum and
many-body gain in structures consisting of a periodic array of InGaN QDs embedded in an AlGaN
matrix.  Employing the Green’s function and Fourier transform techniques we find the 3D strain
distribution in the QDs. To calculate the carrier spectrum and wave functions we use the plane-
wave expansion method. This method allows us to take account of the strain-induced
modification of the band structure using analytical expressions for the Fourier transform of the
strain tensor. We thus avoid explicit calculation of the strain distribution. The calculated carrier
spectrum and wave functions are used as input for gain calculations including many-body effects.
We demonstrate that band gap reduction and Coulomb enhancement of the interband transition
probability significantly modify the gain spectrum.

For ease of calculation we use a model structure which assumes that the QDs all have the
same shape and size, and form a periodic structure with periods d|| and dz in the lateral and growth
directions respectively.



CALCULATION OF STRAIN DISTRIBUTION AND CARRIER SPECTRUM

The calculation of the spatial strain distribution in a QD structure requires solving a 3D
problem in elasticity theory for a generally non-trivial quantum dot shape. This is often achieved
by using  finite-difference methods or atomistic techniques [7,8]. These methods require
considerable computational effort.  A simple method to calculate the strain field in semiconductor
structures with QDs of arbitrary shape was presented in Ref. [9] for the case when the elastic
properties are assumed to be isotropic and the elastic constants of the QD and matrix materials
are equal.  The effects of anisotropic elastic constants on the strain distribution were included
later in [10] for cubic crystals.  We briefly describe here the generalization of this approach for
hexagonal crystals (details are given in [11]).

Consider a QD of arbitrary shape formed by embedding one kind of elastic material into a
second elastic material with hexagonal symmetry. The displacement vector due to the lattice
mismatch between the QD and matrix is expressed through the Green’s tensor Gin(r ,r ’) of the
elastic equation:
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lattice mismatch. Integration in (1) is carried out over the QD surface. The Green’s tensor is the
solution of the equation:
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Using a Fourier transform technique we solve Eq. (2) and find the Fourier transform of the strain
tensor eij  which corresponds to the displacement ui in the structure with a single QD. When the
elastic constants of the QD and matrix materials are equal, the solution of eq. (2) has the form
[11]:
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Here Cij denotes the elastic constants, ξ i are the components of the vector in the inverse space. In
Eq. (3) ~χQD  denotes the Fourier transform of the QD characteristic function χQD(r), which is

equal to unity inside the QD and zero outside. The strain tensor of the periodic array of QDs is
then expressed through the Fourier series:
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where ξn = 2π(n1/d1, n2/d2, n3/d3), di is the period in the i-th direction; and the summation is
carried out over all values of ni except the case when n1=n2=n3=0 [10].

Equations (3) and (4) give an analytical expression for the strain tensor in a periodic array of
QDs of arbitrary shape. It is worth noting that the QD shape enters the expressions only through
the form of the Fourier transform of the characteristic function χQD(r), which can be found
analytically for most dot shapes considered to date [10].



Figures 1 and 2 show the variation of eij ( )r  through a cylindrical QD and a pyramidal QD

respectively. The pyramid has sharp edges along the (001) and (111) directions; therefore near the
QD boundary the strain tensor components vary rather steeply.

The multiband envelope function approximation is commonly used to calculate the carrier
spectrum in semiconductor quantum structures.  This approach has proved to be a convenient and
reliable tool to describe quantum size effects in quantum wells (QWs) as well as in QD structures.
The coupling between the conduction and valence bands in wide-band gap GaN-based structures
is relatively small over the energy range of interest. Therefore we used a simple one-band model
with parabolic dispersion for the conduction band; the strain-induced shift of the band-edge is
given by aceii(r). To describe the valence band states we used a 6x6 Hamiltonian including strain-
related deformation potentials [14,15], but ignoring the strain-induced piezoelectric fields. These
fields are larger here than in III-V zinc-blende crystals, but can still be omitted because of the
small dot sizes considered below. Because the spin-orbit constants in both GaN and InN are only
of order a few meV, we set the spin-orbit interactions to zero, so that the 6x6 Hamiltonian is then
decomposed into two independent 3x3 matrices. In contrast to GaAs/InAs-based QD structures,
the effect of strain on the valence band edge potential profile is several times smaller in GaN-
based QDs. Figure 3 shows the variation of the HH, LH and CH valence band edges along the z
and x axes of the cylindrical dot, including the strain-induced splittings. In spite of the relatively
large strain (around 4%), the splitting between the (H,L)H and CH bands is only around 150
meV, compared to several hundreds of meV for similar GaAs/InAs-based structures. The HH and

Fig.1 Strain tensor dependence on space
position for a cylindrical In0.5Ga0.5N/
Al0.1Ga0.9N QD.  The QD diameter is
10nm, height is 3nm, lateral period is 25nm,
and period along z is 10 nm. Material
parameters are from Refs.[12,13].

Fig.2 Strain tensor dependence on  space
position along three different directions for a
GaN/AlN pyramidal QD. The QD base is
6x6nm, the height is 3nm, lateral period d//

=18nm, and period along z, dz =12nm.
Material parameters are from Refs.[12,13].



LH practically do not split inside the QD, although a small splitting is found outside. Thus the
strain in a cylindrical QD does not split the degeneracy of the HH and LH bands, although it does
separate off the CH band, because of its z-like character.

To calculate the carrier spectrum and wave functions we use a plane-wave expansion method.
The idea of this method is to describe the carrier states as a linear combination of a suitably
chosen set of bulk states associated with a periodic array of bulk wave vectors. The effective
Hamiltonian is represented in the form

� � �H H V= +0                                                                     (5)

where the ‘perturbation’ �V  describes the difference between the potential in a unit cell of the

periodic dot array, and the potential in the bulk Hamiltonian �H0 used to generate the basis states

|k, α>, where k is the momentum and α denote the type of the bulk carrier state, i.e. HH, LH or

CH. The operator matrix �V  in Eq.(5) should be obtained from the bulk-like Hamiltonian by
making the substitution ii ik ∂∂ /−→ , to take account of the spatial dependence of the band

parameters. Details of the interface boundary conditions are included by an appropriate
application of the differential operators at each interface. The solution of the initial Schroedinger
equation is found by expanding in a series with respect to the plane waves |k, α> ∝ exp(ik.r ).
The coefficients of this series and the energies of the carrier states in an array of QDs are found
numerically as the eigenvectors and eigenvalues of a matrix A, involving matrix elements

Vkα,k’ α’=<k’α’| �V |k, α>, which are the Fourier transforms of the matrix �V . The matrix elements

Vkα,k’ α’ depend linearly on the strain components. Therefore the Fourier transform of �V   is
expressed through the Fourier transform of the strain tensor and the QD characteristic function χ
QD(r). This means that using a plane-wave expansion method in conjunction with the Green's
function approach for strain calculations, there is no need to calculate the full spatial strain
distribution, unlike in other techniques.  This simple trick considerably reduces the computation
time to set up calculations and makes the plane-wave method very effective for the further study
of QD optical properties and modeling of QD devices.  We also note that the number of bulk
states ("plane waves") which must be included to obtain a given level of accuracy is reduced in
periodic structures with partly coupled QDs.

Figure 4 shows the calculated electron and hole energy levels for InGaN/AlGaN QDs. As the
In content increases, the barrier heights become larger both for electrons and holes in the QD,
with the energy levels then also shifting further away from the barrier band edges.

Figure 3.  Spatial variation of the valence band edges, including strain-induced splittings. The
structure parameters are the same as in Fig.1; the deformation potentials are assumed equal in
the QD and matrix, with D1  = 0.7 eV, D2  = 2.1 eV, D5  = -0.7 eV; the barrier height ratio
(without strain) is taken as Ev/Ec =7/3 [16].



GAIN MODELING

Many-body effects [19,20] such as Coulomb enhancement of the interband transition
probability and band gap renormalization are important for gain modeling especially for wide
band-gap semiconductors [21], because of the high exciton binding energies in these materials.
We have used the Padé approximation to model the gain associated with a periodic array of QDs.
We considered a structure where the dots are relatively close (the characteristic distance between
the dots is comparable to the QD size), so that the dots are partially coupled and form a 3D QD
superlattice [22]. We assumed therefore that the Coulomb interaction between the carriers is 3D-
like and used the unscreened Coulomb potential, with V(q)=4πe2/(ε0q

2). We use a Lorentzian line-
shape function to take account of broadening effects. This gives a reasonable description of the
higher energy side of the gain spectra and of the peak gain value, but is less reliable on the lower
energy side.

Figure 5 shows the calculated gain spectra for an InGaN/AlGaN QD laser. For comparison,
the gain spectra calculated without Coulomb enhancement are also shown. We see from Fig.5 that
the Coulomb enhancement strongly affects the peak gain value. In particular, at Ne = 8 x 1018 cm-3
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Figure 4.  Dependence of the hole and electron energy  levels on In content in an InxGa1-xN/
Al0.1G0.9N QD array. The energy is measured form the barrier valence (a) or conduction (b)
band edge. The QD is cylindrical with a diameter of 5nm and height of 2nm; the periods are
d||=10nm and dz=5nm.  Valence band parameters are from [17], electron effective masses from
[18], and the band offset ratio for unstrained materials is taken as Ev/Ec=7/3 [16].

Figure 5. Calculated gain spectra for an
In0.5Ga0.5N/Al0.1Ga0.9N QD structure at
T=300 K. Curves 3, 2 and 1 correspond
to carrier densities (cm-3) of 4x1018,
6x1018 and  8x1018, respectively. Dashed
curves are results without Coulomb
enhancement. The QDs are disk-like; the
diameter and height are 5nm and 2 nm
respectively. The QD array periods are
d||=7.5nm and dz=4nm.



the peak gain increases by a factor of 3.5 when the Coulomb enhancement is taken into account
(see Fig.5). Thus we demonstrate that including many-body effects strongly modifies the gain
spectrum of a laser based on a periodic array of InGaN QDs.

CONCLUSIONS

In conclusion, we have presented a simple technique to calculate the strain distribution due to
a quantum dot embedded in a host crystal with hexagonal symmetry. We have used the technique
to calculate the strain distribution associated with cylindrical and pyramidal (In)GaN quantum
dots embedded in an AlGaN matrix. Our results for the cylindrical dot were then used as input to
calculate the electron and hole confined state energies in a periodic array of cylindrical In0.5Ga0.5N
quantum dots embedded in a Al0.1Ga0.9N matrix, and these were used to determine the material
gain as a function of carrier density, both including and ignoring Coulomb interaction effects. We
show that the Coulomb interaction considerably enhances the peak gain at a fixed carrier density,
and conclude that InGaN quantum dots should provide a viable gain medium to achieve laser
emission in the visible and near-UV spectral regions.
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