Skip to main content
Log in

Size- and Surface-dependent Photoresistance in SnO2 Nanowires

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanostructured one-dimensional materials, such as nanowires, tubes and rods, are gaining increasing attention due to interesting properties and confinement effects, however controlled synthesis of these structures is still limited to a few methods. We present here the synthesis of SnO2 nanowires (Ø, 50 – 1000 nm) at moderate temperatures (550 – 900 °C) using a molecular source [Sn(OBut)4] with pre-existent Sn-O bonds. The growth occurs via a catalyst driven vapor-solid-solid mechanism. Size-selective synthesis of NWs in high areal density was achieved by choosing Au particles of appropriate size. HR-TEM analysis reveals the single crystalline behaviour of wires with a preferred growth direction [100]. Use of SnO2 nanowires as potential optical switches for UV applications was demonstrated by the photo-response measurements. Determination of band gap values confirmed the blue-shift of the main photo-response peak with shrinking radial dimensions of the wires. Furthermore, deposition of vanadium oxide onto SnO2 led to a red-shift of the main conduction value of the nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) S. M. Sze, Semiconductor Devices, John Wiley & Sons (2001). (b) G. Schmid, Nanoparticles: From Theory to Application, John Wiley & Sons (2004).

  2. P. G. Harrison and M. J. Willet, Nature 332, 337 (1988).

    Article  Google Scholar 

  3. (a) A. Salehi, M. Gholizade, Sensors and Actuators B 89, 173 (2003); (b) A. Salehi, Thin Solid Films 416, 260 (2002); (c) G. Sberveglieri, Sensors and Actuators B 6, 239 (1992).

    Article  CAS  Google Scholar 

  4. G. S. V. Coles and G. Williams, J. Mater. Chem. 2, 23 (1992).

    Article  CAS  Google Scholar 

  5. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei and C. Zhou, Adv. Mater. 15, 1754 (2003).

    Article  CAS  Google Scholar 

  6. (a) M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002); (b) A. Kolmakov, Y. X. Zhang, G. S. Cheng and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  CAS  Google Scholar 

  7. Z. R. Dai, J. L. Gole, J. D. Stout and Z. L. Wang, J. Phys. Chem. B 106, 1274 (2002).

    Article  CAS  Google Scholar 

  8. X. C. Jiang, Y. L. Wang, T. Herricks and Y. N. Xia, J. Mater. Chem. 14, 695 (2004).

    Article  CAS  Google Scholar 

  9. M. J. Zheng, G. H. Li, X. Y. Zhang, S. Y. Huang, Y. Lei, L. D. Zhang, Chem. Mater. 13, 3859 (2003).

    Article  Google Scholar 

  10. Y. J. Ma, F. Zhou, L. Lu and Z. Zhang, Solid State Commun. 130, 317 (2004).

    Article  Google Scholar 

  11. S. Mathur, S. Barth, H. Shen, J.-C. Pyun, U. Werner, Small 1, 713 (2005).

    Article  CAS  Google Scholar 

  12. M. J. Hampden-Smith, T. A. Wark, A. Rheingold, J. C. Huffman, Can. J. Chem. 69, 121 (1991).

    Article  CAS  Google Scholar 

  13. D. J. Houlton, A. C. Jones, P. W. Haycock, E. P. Williams, J. Bull, G. W. Critchlow, Chem. Vap. Dep. 1, 26 (1995).

    Article  CAS  Google Scholar 

  14. a) Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001); b) C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B 106, 2429 (2002).

    Article  CAS  Google Scholar 

  15. (a) J. C. Harmand, G. Patriarche, N. Péré-Laperne, M-N. Mérat-Combes, L. Travers, F. Glas, Appl. Phys. Lett. 2005, 87, 203101; (b) Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.

    Article  Google Scholar 

  16. (a) P. Camagni, G. Faglia, P. Galinetto, C. Perego, G. Samoggia and G. Sberveglieri, Sensors and Actuators B 31, 99 (1996); (b) E. Comini, G. Faglia and G. Sberveglieri, Sensors and Actuators B 78, 73 (2001).

    Article  CAS  Google Scholar 

  17. (a) H. Jerominek, F. Picard, D. Vincent, Optical Engineering 32, 2092 (1993); (b) T. J. Hanlon, R. E. Walker, J. A. Coath, M. A. Richardson, Thin Solid Films 405, 234 (2002).

    Article  CAS  Google Scholar 

  18. S. Mathur, H. Shen, V. Sivakov and U. Werner, Chem. Mater. 16, 2449 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, S., Barth, S., Pyun, JC. et al. Size- and Surface-dependent Photoresistance in SnO2 Nanowires. MRS Online Proceedings Library 901, 502 (2005). https://doi.org/10.1557/PROC-0901-Rb15-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0901-Rb15-02

Navigation