
Introduction

Monitoring of biodiversity for conservation is important

to identify conservation needs and to test the effectiveness of

management actions. Some of the most frequently used

measures of biodiversity are three variants of “abundance”

N: the number of individuals (abundance), the number or

proportion of occupied spatial units (sites; distribution), and

the number of species (species richness). An important rea-

son for why the three variants of abundance N are so popular

in monitoring and ecology alike is their conceptual simplic-

ity; it is the number of reasonably well-defined units such as

individuals, occupied sites, and species.

However, despite its conceptual simplicity, the quantifi-

cation of N in practice can be challenging for two reasons

(Nichols et al. 2008): first, the area about which inference is

desired is typically much larger than the area that can actually

be examined. One main task of a well-designed monitoring

program is to ensure that the characteristics of the larger area

can be estimated from the smaller sample. Second, even at

sampled places not all units of N will usually be observed.

That is, only a fraction of all individuals or species present at

each site will be detected. Similarly, the occupancy status of

a site will be imperfectly assessed, i.e., part of a species’ dis-

tribution, may go undiscovered.

Here, we describe an explicit sampling-based view of

“abundance” monitoring that clearly acknowledges two sto-

chastic processes involved when monitoring abundance N

(we use the term “abundance” interchangeably for all three

varieties of N) at more than a single site: first, a spatial sam-
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Abstract: Biodiversity monitoring is important to identify conservation needs and test the efficacy of management actions.

Variants of “abundance” (N) are among the most widely monitored quantities, e.g., (true) abundance, number of occupied sites

(distribution, occupancy) or species richness. We propose a sampling-based view of monitoring that clearly acknowledges two

sampling processes involved when monitoring N. First, measurements from the surveyed sample area are generalized to a larger

area, hence the importance of a probability sample. Second, even within sampled areas only a sample of units (individuals,

occupied sites, species) is counted owing to imperfect detectability p. If p < 1, counts are random variables and their expecta-

tion E(n) is related to N via the relationship E(n) = N*p. Whenever p < 1, counts vary even under identical conditions and

underestimate N, and patterns in counts confound patterns in N with those in p. In addition, part of the population N may be

unavailable for detection, e.g., temporarily outside the sampled quadrat, underground or for another reason not exposed to

sampling; hence a more general way of describing a count is E(n) = N*a*p, where a is availability probability and p detection,

given availability. We give two examples of monitoring schemes that highlight the importance of explicitly accounting for

availability and detectability. In the Swiss reptile Red List update, the widespread and abundant slow worm (Anguis fragilis)

was recorded in only 22.1% of all sampled quadrats. Only an analysis that accounted for both availability and detectability

gave realistic estimates of the species’ distribution. Among 128 bird species monitored in the Swiss breeding bird survey,

detection in occupied 1 km
�

quadrats averaged only 64% and varied tremendously by species (3–99 %); hence observed

distributions greatly underestimated range sizes and should not be compared among species. We believe that monitoring design

and analyses should properly account for these two sampling processes to enable valid inferences about biodiversity. We argue

for a more rigorous approach to both monitoring design and analysis to obtain the best possible information about the state of

nature. An explicit recognition of, and proper accounting for, the two sampling processes involved in most monitoring pro-

grams will go a long way towards this goal.

Nomenclature: AERC TAC’s Taxonomic Recommendations (2003).

Abbreviations: AIC – Akaike’s Information Criterion, MHB – Monitoring Häufige Brutvögel.



ple, and second, a sample of all individuals present in the spa-

tial sample is observed. In the next section, we expand briefly

on this, describe the conceptual relationship between a count

and true N via detectability p, which may include a compo-

nent for availability (Pollock et al. 2004, Nichols et al. 2008),

and explain why explicit accounting for p is important in

monitoring and ecology. We describe the methodological

framework of site-occupancy models (MacKenzie et al.

2002, 2003), a statistical method to estimate species distribu-

tions free of distorting effects of imperfect detectability. We

then present two case studies of national monitoring schemes

that highlight the importance of accounting for detectability.

Throughout the article we use the term “monitoring” in a

general sense and do not distinguish between single invento-

ries (surveys) and inventories that are repeated over time

(i.e., monitoring in the strict sense) since the issues we deal

with have relevance for both.

Monitoring abundance as a two-stage sampling

process

A sample of space

Typical monitoring programs want to make inference

about large areas, such as national parks, countries or perhaps

even an entire continent. Usually, therefore, the area of infer-

ence is larger than the examined area and the studied area

forms a sample of the former; see circles within the larger

shaded (statistical) population in Fig. 1. One main design

task is to lay out the spatial sample (sites) in such a way that

what is measured in them properly reflects the same quantity

in the larger area, and that estimates be as unbiased and ac-

curate, while presumably also as cheap as possible

(Thompson 2002, Williams et al. 2002, Thompson 2004).

Usually, a spatial probability sample, i.e., typically one

that is random of some kind, e.g., completely random, strati-

fied random or adaptive (Thompson 2002), is essential for

making valid inference from the set of selected sites to the

entire population of sites. Deviations from this ideal may be

unavoidable in many cases, and very few monitoring pro-

grams are based on a truly random spatial sample, rather,

“convenience” sampling is common (Anderson 2001). How-

ever, it is important to recognize that this creates a danger of

losing the ability to generalize to the entire area about which

inference is desired, unless selection bias can be modelled

(Little 2004).

A sample of individuals, occupied areas or species

The sample of individuals or species counted or of detec-

tion/nondetection observations is obtained by surveying each

unit in the spatial sample. This second step of sampling yields

the observations called “sample” in Fig. 1. It includes another

stochastic process: typically not every individual or species

is detected nor is occurrence of a species determined with

certainty at each sampled site. Instead, only a fraction p of all

individuals, occupied patches or species, will be detected,

where p is called detectability.

Although p = 1 is possible in principle, it will be a rare

event. Whenever detection is uncertain (p < 1), counts of in-

dividuals are random variables and not fixed quantities. Flip-

ping a coin is the best analogy of the counting process: each

individual, occupied patch or species present flips a coin to

determine whether it is detected (i.e., counted) or not. The

coin is loaded and can have any probability p of heads be-

tween 0 and 1. This has important consequences for the re-

sulting counts or detection/nondetection observations, since

counts may vary, even under identical conditions, from one

observation to the next, and they can only be described “on

average”.

Assuming detections are independent and absent double

counts or misidentifications, the counted number n among N

can be described by a binomial distribution, n~Bin(N,p),

where p is the probability that a member of N is detected and

appears in the count. In the case of species distributions, de-

tection/nondetection observations in each spatial unit are

Bernoulli trials (a binomial distribution with N = 1); in an

occupied patch at least one member of its inhabitants is re-

corded with probability p. The average or expected value of

a count of individuals or species over repeated realizations of

the count random variable is

E(n) = N * p (1)

hence, the expected count E(n) equals the product of true

”abundance” N and detectability p. For example, when there

are N = 16 greenfinches and detectability p for each one of

them is 0.6, counts will average 9.6, may (rarely) be zero or

16 and more frequently any number in between. Given a

count n and an estimate of detectability p, an estimate of

population size can be obtained by rearranging eq. 1:

is the canonical estimator underlying almost all

methods of population size estimation (Williams et al. 2002).

Similarly, for detection/nondetection (distribution) data

�p
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(2)

i.e., the average observed occurrence at a site E(η) is the

product of true distribution (expressed as site occupancy

probability and detectability p .

Whenever p < 1, counts will be smaller than true abun-

dance N. Similarly, patterns in observed counts or distribu-

tions will confound patterns in N and patterns in detectability

p. Hence, an observed pattern over time in abundance or spe-

cies richness (i.e., a trend T) based on counts at two time

points is

(3)

In contrast, the true trend (or more generally, relative abun-

dance; MacKenzie and Kendall 2002) is E(T����) = N�/N�. A

trend estimate based on observed counts will therefore only

be unbiased for the true trend if p� = p�.

This is illustrated using simulated data in Fig. 2, where a

species with a shrinking (case A) and one with a stable dis-

tribution (case B) is shown. Detectability of an occupied

patch increases, perhaps as a result of increased numbers of

better observers or improved survey methods. In 267 sam-

pled quadrats, this leads to wrong diagnoses: a true distribu-

tional trend is masked (case A) and an artefactual trend diag-

nosed (case B). Many scenarios are possible; depending on

patterns in the distribution and p.

Conceptually, detectability can be partitioned into com-

ponents (Marsh and Sinclair 1989, Pollock et al. 2004,

Nichols et al. 2008), among them availability for detection

(or exposure to sampling), and detection, given availability.

Frequently, part of the sampled population may be unavail-

able for detection in principle; an individual may be tempo-

rarily in a part of its activity range outside the sampled quad-

rat, a bird in an acoustic survey may not sing during a 10 min

sampling interval, a marine mammal in a visual surface sur-

vey may be diving or a salamander underground. A more

general form of eq. 1 is therefore

E(n) = N*a*p (4)

where a is the probability that a member of N is detectable in

principle (availability) and p the probability to detect it,

given availability. There is a certain symmetry in availability

probability; one may say that population size is reduced (i.e.,

N’ = N*a), and each member of N is detectable with prob-

ability p, or equivalently, that each member of N is detectable

with net detectability a*p. To determine whether one might

be estimating N or N’ it is helpful to consider the time scale

at which availability might be changing. If availability

changes daily, and repeated surveys are only conducted on a

single day, then one is likely estimating N’, but if surveys are

conducted on different days then one might be closer to esti-

mating N. A key consideration then is which quantity is of

more biological interest. Thus, in any particular monitoring
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program involving counts, it is important to know what part

of the population one is actually sampling. Often, only net

detectability is estimable and N is estimated directly, while

sometimes, only N’ can be estimated, and then, to estimate N,

additional information on availability is required (Kendall

1999, Pollock et al. 2004).

Attitudes towards detectability

Three attitudes towards possible complications engen-

dered by the fact of p < 1 are observed: ignorance, stand-

ardisation, and estimation (Schmidt 2004, Mazerolle et al.

2007). Proponents of ignorance assume (usually tacitly) p =

1 or at least that the expectation E(p) is constant across all

dimensions of desired comparisons such as time, space, spe-

cies or habitats. Typically, this strong assumption of constant

is neither tested nor even stated explicitly, although the as-

sumptions of perfect or constant have probably been proven

wrong whenever they were tested, e.g., in plants (Kéry et al.

2006), fish (Royle and Dorazio 2006) or frogs (Schmidt

2005).

The standardisation attitude is based on the fact that if all

that matter are patterns (e.g., a species becomes “more or less

common” over time, or is “more common in habitat A than

in habitat B”), then p is irrelevant as long as it stays constant

over dimensions of comparison (i.e., E(p) = constant).

Hence, if one is only interested in temporal trends, p may be

< 1 or even vary among years or habitats, but there must not

be an annual trend in p. Variation around a constant expecta-

tion over time will just add noise into the observed counts,

but no bias relative to the true population trajectory (Bart et

al. 2004).

Standardisation is important in monitoring because the

more factors causing variation in p are eliminated, the better

the ability to discern real patterns in N. This is widely recog-

nized and most monitoring programs contain elements of

standardisation. This may be called standardisation at the de-

sign and execution stage. Unfortunately, analysis of monitor-

ing programs where standardized methods were employed

show that detectabilities were not constant (Schmidt 2005,

Hochachka and Fiedler 2008).

There is also standardisation at the analysis stage: when

confounding factors suspected to affect counts or detec-

tion/non-detection observations via their effect on p are

measured during surveys, their effects can be eliminated us-

ing a statistical model. This is important and has been applied

to correct for variation in p caused by observer identity and

effort in a continent-wide avian monitoring program (Link

and Sauer 2007). A crucial caveat, though, is that only co-

variates that are uncorrelated with abundance itself must be

used (Nichols et al. 2008).

Whenever there is an interest in true abundance rather

than relative abundance or when ‘dangerous’ patterns in de-

tectability are suspected to be present, there is no way around

estimating p to correct observed counts or distributions for

imperfect detection. There is now an armada of methods

available for that (Buckland et al. 2001, Williams et al. 2002,

MacKenzie et al. 2006). Here, we give two examples of site-

occupancy models (MacKenzie et al. 2002, 2003) that fully

correct for p and estimate the desired population quantity in

an unbiased way. Site-occupancy models are particularly

useful for many monitoring programs; therefore, we briefly

introduce them first.

Primer on site-occupancy modeling of species

distributions

The site-occupancy model is a species distribution model

that accounts for possible nondetection error. The main goal

of the site-occupancy model is estimation of the proportion

of sampling units occupied by a species and to learn about

factors that determine species distributions and the factors

that affect nondetection (MacKenzie et al. 2006).

The sampling unit (“site”) definition is up to the re-

searcher. It may be a woodlot, 1 km
�

quadrat, pond, etc. The

proportion of occupied such units is indeed a frequently used

and useful metric in many monitoring programs.

Only detection/nondetection data need to be collected

across a large number of sites, and these are usually easier

and cheaper to collect than abundance data in large-scale

monitoring programs (Weber et al. 2004, Joseph et al. 2006).

Key element of the model is allowance for imperfect detec-

tions and for that, it requires replicate observations of occur-

rence in at least some sites. Site-occupancy models are really

just two coupled logistic regressions where one binomial dis-

tribution describes the true distribution and the other the ob-

servations, conditional on occurrence. Data used are ‘detec-

tion/nondetection histories’, i.e., survey results from repeat

visits to the same sites. Assume a site is visited three times

during a season (within which occupancy state is assumed

constant); one resulting ‘detection history’ may be “detected

– not detected – detected”. Hence, the species is present but

imperfectly detected. From elementary probability, Mac-

Kenzie et al. (2002) define the probability of this history as

, where is probability of site occupancy

and p� is detectability at occasion i. In its multi-year version,

the site occupancy model also yields estimates of colonisa-

tion and extinction rates (MacKenzie et al. 2003).

For both cases, the combined probability of all detection

histories and their frequencies together form the likelihood

of the observed data and standard statistical techniques can

be used to obtain maximum likelihood parameter estimates.

All four parameter types can be modelled as functions of co-

variates (MacKenzie et al. 2002, 2003).

Site-occupancy models make the following key assump-

tions: (i) colonisation and extinction only take place between

seasons (the closure assumption, see case study 2 for how

closure problems may be relaxed), (ii) species are not falsely

recorded when absent (but see Royle and Link 2006), (iii) all

sites have the same probability of occupancy, extinction, col-

onisation and detection, except insofar as differences can be

modeled by covariates or using random effects (Royle 2006).

ψp p p1 2 31( )− ψ
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Case Study 1: Slow worm distribution in

Switzerland

Our first example illustrates a case where the “availabil-

ity” component of detection can be teased apart from “detec-

tion, given availability.” We analyse a survey aimed at esti-

mating the distribution occupancy of a fossorial legless

lizard, the slow worm (Anguis fragilis), as part of a national

multi-species survey that provided the basis for assessing the

Red List status of Swiss reptiles (Monney and Meyer 2005).

We randomly selected 294 1-km
�

quadrats and surveyed

each 1–3 times from April-October in either 2003 or 2004.

Field workers were free to choose the day of visit and survey

duration (mean survey duration per visit = 218 min, SD = 107

min). Herpetologists preferentially searched areas appearing

most suitable for reptiles, using visual encounter surveys

with occasionally cover objects turned. For financial reasons,

no attempt was made to use cover boards or other objects that

increase detectability of reptiles (e.g., Reading 1997). For

full details of methods, see Monney and Meyer (2005).

Slow worms were detected in 65/294 (22.1%) of quad-

rats, a very low proportion given the Swiss herpetologists’

consensus that this species is the most abundant and wide-

spread among Swiss reptiles (Hofer et al. 2001). To estimate

the Swiss distribution corrected for all components of de-

tectability, we used PRESENCE 2 to fit site-occupancy mod-

els to the survey data.

First, we allowed for imperfect detection but assumed

probabilities of occupancy and detection were constant

(model , Table 1); estimated occurrence prob-

ability ( ) was 38.3% (SE 6.0) and detection probability

( ) 33.9% (SE 5.4). Thus, accounting for imperfect detec-

tion almost doubled the estimated size of Swiss slow worm

distribution relative to the “naive” estimate of 22.1%. Never-

theless, this improved estimate was still low in comparison

with the experts’ view. Since the assumption of a constant

probability of detection across sites, observers, months, etc.

was deemed implausible, in a next step, we included promis-

ing covariates that might explain some of this variation. For

simplicity, we considered only one obvious covariate: survey

duration.

The ensuing model was better supported by the data

based on Akaike’s information criterion (AIC, Burnham and

Anderson 2002) than a model with constant detectability

(Table 1). Detectability increased with increasing survey du-

ration. However, detectability was still well below 100%

even after 600 minutes of searching (Fig. 3a), and estimated

occupancy ( ) was 56.3% (SE 57.1), higher than before,

but still lower than expected.

Thus, in a next step we checked whether accounting for

non-availability of slow worms may yield more realistic dis-

tribution estimates. Slow worms spend most of their time un-

derground and few are visible at the surface. Thus, a large

area has to be searched until one encounters a slow worm that

is at the surface. Site occupancy models do not (yet) include

a separate parameter to estimate availability. However,

Royle et al. (2007: section “Modeling spatial coverage bias”)

suggest a way forward in this situation if a covariate is avail-

able that is informative on the spatial sampling intensity; they

used transect route length. Transect length was not available

for the Swiss reptiles but survey duration was. Greater survey

duration implies a larger area searched. Therefore, route

length and survey duration both describe availability in a

similar way and we used average survey duration per site as

a covariate on occupancy. Survey duration likely affects the

number of slow worms exposed to sampling via the effec-

tively sampled area and all else equal, larger areas are more

likely to be occupied than smaller areas. Assuming diminish-

ing returns of survey duration (i.e., increasingly redundant

searches), the reciprocal of survey duration is the appropriate

form of the covariate and the intercept of the linear model

that relates occupancy probability to inverse survey duration

can be interpreted as the estimated occupancy in an exhaus-

tively sampled 1 km
�

quadrat (see Royle et al. 2007, for dis-

cussion).

This model was slightly worse in terms of AIC than the

model that included survey duration as a covariate for de-

tectability only (Table 1). However, survey duration may si-

multaneously affect availability and detectability, and in-

deed, a model where survey duration was included as a

covariate on both, taking account of (spatial) availability and

detectability, given availability was best supported by the

data (Table 1). There was a positive effect of survey duration

ψ (.) (.)p
�ψ

�p

�ψ
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as a surrogate for availability (i.e., effective sampling area)

on site occupancy (Fig. 3b) and estimated site occupancy

reached an asymptote at ~ 60% after >1000 min average

survey duration. Our analysis shows that inference regarding

Swiss slow worm distribution differed markedly among

models and that the most realistic distribution estimate was

obtained with multiple components of detection taken ac-

count of.

Case Study 2: Distribution of Swiss breeding birds

Our second example illustrates a case where the “avail-

ability” component of detection cannot be teased apart from

“detection given availability” and therefore, net detection is

estimated. Hence, for species with large activity ranges, the

proportion of quadrats used is estimated rather than the pro-

portion of quadrats inhabited permanently (see discussion for

more on this important distinction). ‘Monitoring Häufige

Brutvögel’ (MHB; Schmid et al. 2004), the Swiss national

breeding bird survey, has been conducted annually since

1999 and aims at assessing distribution and abundance of

breeding birds. A random sample of 267 1-km
�

quadrats was

laid out as a grid (Kéry and Schmid 2006) and each quadrat

was surveyed three times per breeding season (15 April–15

July) by volunteers using territory mapping. Quadrats above

the timberline were surveyed only twice. Surveys followed a

quadrat-specific transect route averaging 5.1 km (range

1.2–9.4 km) that attempts to cover as much area as possible.

Mean duration of single surveys in 2001–2004 was 229 min

(range 60–427); first to third survey dates averaged 8 May,

28 May, and 8 June. Each survey aims to map as many spe-

cies and individuals as possible out of about 150 targeted

breeding bird species. Maps from all surveys in one season

are later overlaid and putative territories determined based on

known species-specific territory size and clustered observa-

tions. For our current analysis, territory counts were quan-

tised, so for each species, quadrat and year, we obtained a

detection history.

To characterise each species in terms of the difficulty

with which it is found in MHB, we estimated a single average

detectability for each by fitting a simple dynamic site-occu-

pancy model (MacKenzie et al. 2003, Royle and Kéry 2007)

to all MHB data from 266 quadrats surveyed 2001–2004. For

some late-arriving migrants in our analysis, within-season

occupancy status may not be constant over all three surveys.

Therefore, data from surveys taking place before species-

specific threshold dates, when the bulk of the population of

a species had arrived, were turned into missing values, i.e.,

not included in the analysis (MacKenzie et al. 2002).

We used WinBUGS (Spiegelhalter et al. 2003) to fit the

model to all four years of data for the 143 species detected in

at least one year (see Royle and Kéry (2007) for WinBUGS

code). We ran three Markov chains with random initial val-

ues for 2000 iterations each, discarded 1000 as burn-in and

thinned the remainder by 2, which resulted in 1500 iterations

for inference. Judging by a Gelman-Rubin statistic of <1.1

for all parameters (Gelman and Hill 2007), this was sufficient

to obtain convergence for all but 19 species. For them, we ran

up to 60,000 iterations, with a burnin of 20,000. We excluded

from analysis 15 species which were not detected in ≥
1 quadrats in all four years.

Among the remaining 128 species, detection in occupied

quadrats was far from certain. On average, Swiss bird species

were detected with probability of only 64% (Fig. 4a). Species

differed tremendously in detectability. The least detectable

species, Pernis apivorus, was detected in occupied quadrats

in barely 3% of surveys, while the easiest species to detect,

Fringilla coelebs and Passer hispaniolensis, had an esti-

mated p of essentially 1 (see Appendix). One consequence of

is that the distribution of the vast majority of species is un-

derestimated. This is shown in Fig. 4b, where the relative un-

derestimation of distribution is shown as a percentage of the

estimated true occupancy. Obviously, the distribution of

more elusive species was more strongly underestimated. For

about half of Swiss bird species, with , range size

in MHB would be clearly underestimated when based on raw

detections only. When the objective of a monitoring program

is accurate assessment of species distribution, an alternative

to estimation would be to either increase survey duration or

survey number until every species is detected when present

with some predetermined level of confidence, e.g., 95%. The

combined probability to detect a species after n surveys is

given by 1–(1–p)
�

(Kéry 2002), where p in our case is de-

tectability estimated under the site-occupancy model. Plotting

this for some numbers of surveys (Fig. 4c) is extremely useful

both for retrospectively assessing the sensitivity of a monitor-

�ψ

p <≈ 0 7.
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ing program and as a prospective tool for survey design. Ob-

viously, for most species repeated surveys are required for

‘almost certain’ probability of detection (median 2.7; Fig.

4d).

Discussion

We have described a formal sampling-based view of the

monitoring of “true” abundance, species distributions and

species richness that explicitly recognizes the two sampling

(i.e., stochastic) processes involved when monitoring ani-

mals and plants at more than a single site. The first process is

a spatial sample and the second, a sample of individuals, oc-

cupied sites or species. To draw valid inference on the state

of abundance, or (temporal or spatial) patterns in abundance,

we need to select our spatial sample randomly and control or

estimate detectability. Hardly anything of this individually is

really novel (e.g., Thompson 2002, Williams et al. 2002,

Thompson 2004, Royle and Dorazio 2006, Nichols et al.

2008) and yet, very few monitoring programs are based on a

decent spatial probability sample nor do they account for

possible “dangerous” patterns in detectability in a satisfac-

tory way. We fear that this may in many cases seriously im-

pair their usefulness.

In our case studies, we have focused on the issue of de-

tectability. Our ability to detect individuals, populations and

species is arguably always imperfect and this affects our abil-

ity to accurately describe the state of nature. In addition, it

has perhaps not been sufficiently widely recognized that de-

tection consists of several components (Pollock et al. 2004,

Nichols et al. 2008). Our examples showed clearly that

analyses of distribution data need to account for imperfect

detection, sometimes even for multiple components of detec-

tion. The same holds true for related parameters such as

abundance or species richness. The key insight is that ob-

served counts are not the same as true population size or spe-

cies richness, and observed distributions (=detection/nonde-

tection observations) are not the same as true distributions

(=presence/absence state); instead, they are linked with each

other by (components of) detectability. Extra-information is

required to partition variation in counts into its components

due to true N and detectability.

An emerging and very powerful paradigm for the analy-

sis of animal population data is that of hierarchical models

(e.g., Royle and Dorazio 2006, 2008). One reason why these

models are so useful for population analysis is that they sim-

ply replicate the hierarchical genesis of essentially all field

data on animals and plants: the first level is the unobserved

or only partially observed true state (e.g., abundance or oc-

currence) and the second is the observation process, which in

a way acts like a filter or a dirty lens through which we obtain

our observations.

The components of detection, availability and detectabil-

ity, are easy to distinguish in theory but less so in practice or
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detection may need to be split into further components still

(Johnson 2008, Nichols et al. 2008). A case in point is the

slow worm study where survey duration affected both avail-

ability and (narrow-sense) detectability. Despite such ambi-

guity, it is important to think carefully about the two (or

more) components of imperfect detection when designing a

monitoring program or when analysing data. The interpreta-

tion of the estimated quantity (N or proportion of area occu-

pied) depends on the components of detection involved

(Kendall 1999, Nichols et al. 2008). Kendall’s (1999) assess-

ment of the performance of closed population estimators for

N serves as an example. Without mortality or migration, the

Lincoln estimator for N (Williams et al. 2002) estimates the

number of individuals within the study area. However, if

there are births/immigration into the study area or

deaths/emigration from the study area, it estimates the size of

a superpopulation instead, that is, the number of all animals

using the study area at least some time during the entire sam-

pling period.

While detectability is relatively well understood because

of decades of research and development of methods to esti-

mate it, the understanding of availability varies widely. The

need to account for availability is well understood in, e.g.,

distance sampling of marine mammals (Buckland et al. 2001)

but poorly understood, nor even recognized as a potential

problem, in many other fields and taxonomic groups. This is

evidenced by the fact that many estimation models do not in-

clude an explicit parameter for availability; Pollock’s robust

design (Williams et al. 2002) is a notable exception.

How can we recognize incomplete availability and how

can we deal with it? In general, when availability is <1, there

is a mismatch in temporal or spatial terms between the scale

at which a population is sampled and the desired scope of

inference. In some cases, non-availability for detection is ob-

vious and it is straightforward to deal with the problem. For

example, if one wishes to know the number of butterfly spe-

cies in an area and surveys are only made during May and

June, then species that fly later in the season will be missed.

Hence, the total number of species – the quantity of interest

– remains unknown. The solution is clear: Survey the area for

butterflies throughout the entire activity season and use a

model that accounts for asynchronous presence at the sam-

pling site (e.g., Condit et al. 2007, Kéry et al. in press). An-

other availability issue may arise from a mismatch between

the spatial unit of inference and the scale of the field sam-

pling. For example, in the Swiss breeding bird survey, spatial

sampling units are 1 km
�

quadrats, but field workers often

search only a fraction of the quadrat and consequently many

individuals within the desired spatial scope of inference are

not actually exposed to sampling. Three solutions to deal

with the problem are: i) reduce the quadrat size or ii) use a

covariate informative about availability (such as route

length, e.g., Royle and Dorazio 2006; the latter is the ap-

proach taken in the slow worm analysis) and iii) design the

survey in such a way that availability is not a problem. In

general, it is clear that one always needs to think clearly about

how the biology of the species, the sampling process and the

model used interact to yield an estimate and how that esti-

mate needs to be interpreted.

A simple rule of thumb that may help to recognize when

availability is an issue (see also Royle and Dorazio 2006) is

this: if a sampling covariate affects abundance or distribution

(occupancy), then availability is probably less than 1. Ac-

counting for them in the analysis will adjust estimates for low

availability. Sampling covariates include route length (Royle

and Dorazio 2006, Royle et al. 2007), survey duration (as in

the slow worm example), weather conditions and observer

effects. They describe the sampling process rather than a spe-

cies’ biology. For example, route length does not affect the

true number of individuals within a sampling quadrat but in-

stead affects the number of individuals an observer can detect

at all.

In our Swiss bird example, we estimate net detectability

and therefore correct our estimates of distribution for imper-

fect detection in the broad sense, i.e., including availability.

We do not have the additional information required to parti-

tion detection into its two components. This would also give

us the actual proportions of the area that are occupied at each

particular survey among the three. Many species (e.g., large

raptors) have activity ranges larger than our sample quadrats,

so to be detected on any one visit, they must be (a) in that part

of their range covered by a sampling quadrat (the availability

part of detection) and (b) given that they are, they must be

detected (which is narrow-sense detectability). Given the

temporal frame of our bird sampling, what we estimate as “p”

is in fact the combination of p*a in eq. 4. Therefore, for spe-

cies with activity ranges larger than a sampling quadrat, our

estimate of occupancy must be interpreted not necessarily as

“permanent occupancy” but rather as “use” sometime during

the sampled time period (see also MacKenzie 2005, p. 850).

In summary, we believe that a more rigorous approach to

both the design of monitoring programs, and their analysis,

will help to obtain the best possible and least ambiguous in-

formation about the state of nature. A clear recognition of,

and proper accounting for, the two sampling processes in-

volved in all monitoring programs for ‘abundance’, and for

the components of detection, will go a long way towards this

goal.
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Appendix

Observed occupancy and estimated detectability of an occu-

pied quadrat and estimated occupancy under a dynamic site-

occupancy model for 128 Swiss breeding bird species in the

Swiss breeding bird survey MHB 2001–2004. Download-

able from the publisher’s web site at www.akademiai.com.
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